Advertisement

Molecular Therapy for Rhabdomyosarcoma

  • Raushan T. Kurmasheva
  • Hajime Hosoi
  • Ken Kikuchi
  • Peter J. Houghton
Chapter

Abstract

Rhabdomyosarcoma (RMS) is the most common sarcoma of childhood representing about 23% of all sarcomas, and approximately 7% of all pediatric malignancies (Arndt and Crist 1999). Histologically, RMS presents as three major variants, embryonal (ERMS), representing about 60%, botryoid that are usually combined with embryonal tumors, and alveolar RMS (ARMS) that comprise 30% of RMS. The pleiomorphic variant is an unrelated high-grade sarcoma with various degrees of muscle differentiation and is rarely (if ever) diagnosed in children. Embryonal RMS is not associated with any chromosomal translocation, but loss of heterozygosity at 11p15.5 is a common feature (Scrable et al. 1987; Scrable et al. 1989) associated with loss of imprinting of the IGF-2 locus (Anderson et al. 1999). Alveolar RMS is characterized by specific translocations. Approximately 60 to 70% of histologically diagnosed ARMSs involve translocations of t(2;13)(q35;q14) leading to PAX3-FKHR gene fusion (Galili et al. 1993), whereas 10% have the t(1;13)(q36;q14) translocation that encodes the PAX7-FKHR fusion (Davis et al. 1994). Both translocations generate in-frame fusion between the PAX gene DNA binding domain and the transactivation domain of FKHR. Interestingly, both ERMS and translocation-positive ARMS may have loss of imprinting at 11p15.5 (Anderson et al. 1999), suggesting that dysregulation of IGF2 may be common to both histologies. Recent studies using expression profiling suggest that histological ARMS that are translocation negative cluster with ERMS, hence the molecular classification of these tumors may differ from the histopathologic classification. Further, a small signature comprising as few as ten genes differentiates translocation-positive from translocation-negative RMS (Lae et al. 2007). Thus, the understanding of genetic events characteristic of RMS is at a point where these may be applied to differential diagnosis, and potentially to novel treatment strategies. It is well established that ARMSs are more aggressive than ERMS, and have a poorer prognosis (Qualman and Morotti 2002; Breneman et al. 2003). Further, the prognosis for patients with metastatic disease at diagnosis is significantly worse for ARMS having the t(2;13)(q35;q14) translocation compared to those having the t(1;13)(q36;q14) variant (Sorensen et al. 2002). Thus, the genetic alterations impact on chemo- or radio-sensitivity. However, it is also clear that any advanced stage RMS still presents a clinical challenge. Essentially, the cure rate for metastatic disease has not changed significantly in 30 years, despite intensification of cytotoxic therapy and introduction of novel cytotoxic agents (Pappo et al. 2007). Thus, while introduction of novel cytotoxic agents, such as the camptothecins that target topoisomerase 1 (Furman et al. 1999; Pappo et al. 2007), may ultimately improve outcome, it is probable that it will be at the expense of additional toxicity or necessitate reduced dose intensity of other agents used in the treatment of RMS. Alternative approaches that exploit the molecular characteristics of RMS conceptually appear to offer potential benefit with lower toxicity and with reduced sequellae. The obvious example is that of imatinib mesylate in the treatment of chronic myelogenous leukemia (Druker 2003; Druker et al. 2006) or gastrointestinal stromal tumors (Rubin et al. 2007; Siehl and Thiel 2007). However, the complexities of RMS biology suggest that a single “genetic driver” is unlikely, and that combinations of agents that target different molecular abnormalities will be necessary to eradicate these tumors using these rational approaches. Indeed, the development of therapeutic strategies that exploit synthetic lethal interactions that are consequential to the molecular aberrations in these tumors will be the major challenge in developing curative approaches to childhood RMS. Here, we review the reported molecular characteristics of RMS as they relate to the development of molecularly targeted therapy.

Keywords

Vascular Endothelial Growth Factor Myogenic Differentiation Differentially Methylated Region Nevoid Basal Cell Carcinoma Syndrome Synthetic Lethal Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Original work reported here was supported by PHS awards CA23099, CA96696, CA77776, and CA21675 (Cancer Center Support Grant), and by ALSAC.

References

  1. Alema, S., and Tato, F. 1994. Oncogenes and muscle differentiation: multiple mechanisms of interference. Semin Cancer Biol 5: 147–156.PubMedGoogle Scholar
  2. Ambrosini, G., Sambol, E.B., Carvajal, D., Vassilev, L.T., Singer, S., and Schwartz, G.K. 2007. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26: 3473–3481.PubMedGoogle Scholar
  3. Anderson, J., Gordon, A., McManus, A., Shipley, J., and Pritchard-Jones, K. 1999. Disruption of imprinted genes at chromosome region 11p15.5 in paediatric rhabdomyosarcoma. Neoplasia 1: 340–348.PubMedGoogle Scholar
  4. Arndt, C.A., and Crist, W.M. 1999. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 341: 342–352.PubMedGoogle Scholar
  5. Arsham, A.M., Plas, D.R., Thompson, C.B., and Simon, M.C. 2002. Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem 277: 15162–15170.PubMedGoogle Scholar
  6. Asakura, A., Seale, P., Girgis-Gabardo, A., and Rudnicki, M.A. 2002. Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159: 123–134.PubMedGoogle Scholar
  7. Ayalon, D., Glaser, T., and Werner, H. 2001. Transcriptional regulation of IGF-I receptor gene expression by the PAX3-FKHR oncoprotein. Growth Horm IGF Res 11: 289–297.PubMedGoogle Scholar
  8. Bach, L.A., Hsieh, S., Brown, A.L., and Rechler, M.M. 1994. Recombinant human insulin-like growth factor (IGF)-binding protein-6 inhibits IGF-II-induced differentiation of L6A1 myoblasts. Endocrinology 135: 2168–2176.PubMedGoogle Scholar
  9. Bach, L.A., Salemi, R., and Leeding, K.S. 1995. Roles of insulin-like growth factor (IGF) receptors and IGF-binding proteins in IGF-II-induced proliferation and differentiation of L6A1 rat myoblasts. Endocrinology 136: 5061–5069.PubMedGoogle Scholar
  10. Bardos, J.I., Chau, N.M., and Ashcroft, M. 2004. Growth factor-mediated induction of HDM2 positively regulates hypoxia-inducible factor 1alpha expression. Mol Cell Biol 24: 2905–2914.PubMedGoogle Scholar
  11. Barlow, J.W., Wiley, J.C., Mous, M., Narendran, A., Gee, M.F., Goldberg, M., Sexsmith, E., and Malkin, D. 2006. Differentiation of rhabdomyosarcoma cell lines using retinoic acid. Pediatr Blood Cancer 47: 773–784.PubMedGoogle Scholar
  12. Baserga, R. 2004. Targeting the IGF-1 receptor: from rags to riches. Eur J Cancer 40: 2013–2015.PubMedGoogle Scholar
  13. Beckert, S., Farrahi, F., Perveen Ghani, Q., Aslam, R., Scheuenstuhl, H., Coerper, S., Konigsrainer, A., Hunt, T.K., and Hussain, M.Z. 2006. IGF-I-induced VEGF expression in HUVEC involves phosphorylation and inhibition of poly(ADP-ribose)polymerase. Biochem Biophys Res Commun 341: 67–72.PubMedGoogle Scholar
  14. Begum, S., Emani, N., Cheung, A., Wilkins, O., Der, S., and Hamel, P.A. 2005. Cell-type-specific regulation of distinct sets of gene targets by Pax3 and Pax3/FKHR. Oncogene 24: 1860–1872.PubMedGoogle Scholar
  15. Benezra, R., Davis, R.L., Lockshon, D., Turner, D.L., and Weintraub, H. 1990. The protein Id: a negative regulator of helix-loop-helix DNA binding proteins. Cell 61: 49–59.PubMedGoogle Scholar
  16. Beppu, K., Nakamura, K., Linehan, W.M., Rapisarda, A., and Thiele, C.J. 2005. Topotecan blocks hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res 65: 4775–4781.PubMedGoogle Scholar
  17. Berg, T., Cohen, S.B., Desharnais, J., Sonderegger, C., Maslyar, D.J., Goldberg, J., Boger, D.L., and Vogt, P.K. 2002. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc Natl Acad Sci USA 99: 3830–3835.PubMedGoogle Scholar
  18. Bernasconi, M., Remppis, A., Fredericks, W.J., Rauscher, F.J., 3rd, and Schafer, B.W. 1996. Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA 93: 13164–13169.PubMedGoogle Scholar
  19. Bohula, E.A., Playford, M.P., and Macaulay, V.M. 2003. Targeting the type 1 insulin-like growth factor receptor as anti-cancer treatment. Anticancer Drugs 14: 669–682.PubMedGoogle Scholar
  20. Bond, M., Bernstein, M.L., Pappo, A., Schultz, K.R., Krailo, M., Blaney, S.M., and Adamson, P.C. 2008. A phase II study of imatinib mesylate in children with refractory or relapsed solid tumors: a Children’s Oncology Group study. Pediatr Blood Cancer 50:254–258.PubMedGoogle Scholar
  21. Bottger, A., Bottger, V., Garcia-Echeverria, C., Chene, P., Hochkeppel, H.K., Sampson, W., Ang, K., Howard, S.F., Picksley, S.M., and Lane, D.P. 1997. Molecular characterization of the hdm2-p53 interaction. J Mol Biol 269: 744–756.PubMedGoogle Scholar
  22. Braczkowski, R., Schally, A.V., Plonowski, A., Varga, J.L., Groot, K., Krupa, M., and Armatis, P. 2002. Inhibition of proliferation in human MNNG/HOS osteosarcoma and SK-ES-1 Ewing sarcoma cell lines in vitro and in vivo by antagonists of growth hormone-releasing hormone: effects on insulin-like growth factor II. Cancer 95: 1735–1745.PubMedGoogle Scholar
  23. Breneman, J.C., Lyden, E., Pappo, A.S., Link, M.P., Anderson, J.R., Parham, D.M., Qualman, S.J., Wharam, M.D., Donaldson, S.S., Maurer, H.M., et al. 2003. Prognostic factors and clinical outcomes in children and adolescents with metastatic rhabdomyosarcoma – a report from the Intergroup Rhabdomyosarcoma Study IV. J Clin Oncol 21: 78–84.PubMedGoogle Scholar
  24. Bridge, J.A., Liu, J., Weibolt, V., Baker, K.S., Perry, D., Kruger, R., Qualman, S., Barr, F., Sorensen, P., Triche, T., et al. 2000. Novel genomic imbalances in embryonal rhabdomyosarcoma revealed by comparative genomic hybridization and fluorescence in situ hybridization: an intergroup rhabdomyosarcoma study. Genes Chromosomes Cancer 27: 337–344.PubMedGoogle Scholar
  25. Bridge, J.A., Liu, J., Qualman, S.J., Suijkerbuijk, R., Wenger, G., Zhang, J., Wan, X., Baker, K.S., Sorensen, P., and Barr, F.G. 2002. Genomic gains and losses are similar in genetic and histologic subsets of rhabdomyosarcoma, whereas amplification predominates in embryonal with anaplasia and alveolar subtypes. Genes Chromosomes Cancer 33: 310–321.PubMedGoogle Scholar
  26. Brugarolas, J.B., Vazquez, F., Reddy, A., Sellers, W.R., and Kaelin, W.G., Jr. 2003. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4: 147–158.PubMedGoogle Scholar
  27. Brugarolas, J., Lei, K., Hurley, R.L., Manning, B.D., Reiling, J.H., Hafen, E., Witters, L.A., Ellisen, L.W., and Kaelin, W.G., Jr. 2004. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18: 2893–2904.PubMedGoogle Scholar
  28. Burkhart, C.A., Cheng, A.J., Madafiglio, J., Kavallaris, M., Mili, M., Marshall, G.M., Weiss, gonucleotide administration on tumorigenesis in a murine model of neuroblastoma. J Natl Cancer Inst 95: 1394–1403.PubMedGoogle Scholar
  29. Calzada-Wack, J., Schnitzbauer, U., Walch, A., Wurster, K.H., Kappler, R., Nathrath, M., and Hahn, H. 2002. Analysis of the PTCH coding region in human rhabdomyosarcoma. Hum Mutat 20: 233–234.PubMedGoogle Scholar
  30. Cam, H., Griesmann, H., Beitzinger, M., Hofmann, L., Beinoraviciute-Kellner, R., Sauer, M., Huttinger-Kirchhof, N., Oswald, C., Friedl, P., Gattenlohner, S., et al. 2006. p53 family members in myogenic differentiation and rhabdomyosarcoma development. Cancer Cell 10: 281–293.PubMedGoogle Scholar
  31. Casola, S., Pedone, P.V., Cavazzana, A.O., Basso, G., Luksch, R., d’Amore, E.S., Carli, M., Bruni, C.B., and Riccio, A. 1997. Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma. Oncogene 14: 1503–1510.PubMedGoogle Scholar
  32. Chen, J.K., Taipale, J., Young, K.E., Maiti, T., and Beachy, P.A. 2002. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 99: 14071–14076.PubMedGoogle Scholar
  33. Chen, Y., Takita, J., Hiwatari, M., Igarashi, T., Hanada, R., Kikuchi, A., Hongo, T., Taki, T., Ogasawara, M., Shimada, A., et al. 2006. Mutations of the PTPN11 and RAS genes in rhabdomyosarcoma and pediatric hematological malignancies. Genes Chromosomes Cancer 45: 583–591.PubMedGoogle Scholar
  34. Chen, Y., Takita, J., Mizuguchi, M., Tanaka, K., Ida, K., Koh, K., Igarashi, T., Hanada, R., Tanaka, Y., Park, M.J., et al. 2007. Mutation and expression analyses of the MET and CDKN2A genes in rhabdomyosarcoma with emphasis on MET overexpression. Genes Chromosomes Cancer 46: 348–358.PubMedGoogle Scholar
  35. Chesler, L., Schlieve, C., Goldenberg, D.D., Kenney, A., Kim, G., McMillan, A., Matthay, K.K., Rowitch, D., and Weiss, W.A. 2006. Inhibition of phosphatidylinositol 3-kinase destabilizes Mycn protein and blocks malignant progression in neuroblastoma. Cancer Res 66: 8139–8146.PubMedGoogle Scholar
  36. Cohen, B.D., Baker, D.A., Soderstrom, C., Tkalcevic, G., Rossi, A.M., Miller, P.E., Tengowski, M.W., Wang, F., Gualberto, A., Beebe, J.S., et al. 2005. Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871. Clin Cancer Res 11: 2063–2073.PubMedGoogle Scholar
  37. Cornelison, D.D., and Wold, B.J. 1997. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191: 270–283.PubMedGoogle Scholar
  38. Davicioni, E., Finckenstein, F.G., Shahbazian, V., Buckley, J.D., Triche, T.J., and Anderson, M.J. 2006. Identification of a PAX-FKHR gene expression signature that defines molecular classes and determines the prognosis of alveolar rhabdomyosarcomas. Cancer Res 66: 6936–6946.PubMedGoogle Scholar
  39. Davis, R.J., D’Cruz, C.M., Lovell, M.A., Biegel, J.A., and Barr, F.G. 1994. Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54: 2869–2872.PubMedGoogle Scholar
  40. De Giovanni, C., Melani, C., Nanni, P., Landuzzi, L., Nicoletti, G., Frabetti, F., Griffoni, C., Colombo, M.P., and Lollini, P.L. 1995. Redundancy of autocrine loops in human rhabdomyosarcoma cells: induction of differentiation by suramin. Br J Cancer 72: 1224–1229.PubMedGoogle Scholar
  41. De Pitta, C., Tombolan, L., Albiero, G., Sartori, F., Romualdi, C., Jurman, G., Carli, M., Furlanello, C., Lanfranchi, G., and Rosolen, A. 2006. Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors. Int J Cancer 118: 2772–2781.PubMedGoogle Scholar
  42. DePinto, W., Chu, X.J., Yin, X., Smith, M., Packman, K., Goelzer, P., Lovey, A., Chen, Y., Qian, H., Hamid, R., et al. 2006. In vitro and in vivo activity of R547: a potent and selective cyclin-dependent kinase inhibitor currently in phase I clinical trials. Mol Cancer Ther 5: 2644–2658.PubMedGoogle Scholar
  43. Dias, P., Kumar, P., Marsden, H.B., Gattamaneni, H.R., Heighway, J., and Kumar, S. 1990. N-myc gene is amplified in alveolar rhabdomyosarcomas (RMS) but not in embryonal RMS. Int J Cancer 45: 593–596.PubMedGoogle Scholar
  44. Doranz, B.J., Filion, L.G., Diaz-Mitoma, F., Sitar, D.S., Sahai, J., Baribaud, F., Orsini, M.J., Benovic, J.L., Cameron, W., and Doms, R.W. 2001. Safe use of the CXCR4 inhibitor ALX40-4C in humans. AIDS Res Hum Retroviruses 17: 475–486.PubMedGoogle Scholar
  45. Dorman, C.M., and Johnson, S.E. 2000. Activated Raf inhibits myogenesis through a mechanism independent of activator protein 1-mediated myoblast transformation. J Biol Chem 275: 27481–27487.PubMedGoogle Scholar
  46. Driman, D., Thorner, P.S., Greenberg, M.L., Chilton-MacNeill, S., and Squire, J. 1994. MYCN gene amplification in rhabdomyosarcoma. Cancer 73: 2231–2237.PubMedGoogle Scholar
  47. Druker, B.J. 2003. David A. Karnofsky Award lecture. Imatinib as a paradigm of targeted therapies. J Clin Oncol 21: 239s–245s.PubMedGoogle Scholar
  48. Druker, B.J., Guilhot, F., O’Brien, S.G., Gathmann, I., Kantarjian, H., Gattermann, N., Deininger, M.W., Silver, R.T., Goldman, J.M., Stone, R.M., et al. 2006. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355: 2408–2417.PubMedGoogle Scholar
  49. Easton, J.B., Kurmasheva, R.T., and Houghton, P.J. 2006. IRS-1: auditing the effectiveness of mTOR inhibitors. Cancer Cell 9: 153–155.PubMedGoogle Scholar
  50. Ebauer, M., Wachtel, M., Niggli, F.K., and Schafer, B.W. 2007. Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene 26: 7267–7281.PubMedGoogle Scholar
  51. Eder, J.P., Heath, E., Appleman, L., Shapiro, G., Wang, D., Malburg, L., Zhu, A.X., Leader, T., Wolanski, A., and LoRusso, P. 2007. Phase I experience with c-MET inhibitor XL880 administered orally to patients (pts) with solid tumors. ASCO Annual Meeting Proceedings Part I. J Clin Oncol 25: 3526.Google Scholar
  52. Efeyan, A., Ortega-Molina, A., Velasco-Miguel, S., Herranz, D., Vassilev, L.T., and Serrano, M. 2007. Induction of p53-dependent senescence by the MDM2 antagonist nutlin-3a in mouse cells of fibroblast origin. Cancer Res 67: 7350–7357.PubMedGoogle Scholar
  53. El-Badry, O.M., Minniti, C., Kohn, E.C., Houghton, P.J., Daughaday, W.H., and Helman, L.J. 1990. Insulin-like growth factor II acts as an autocrine growth and motility factor in human rhabdomyosarcoma tumors. Cell Growth Differ 1: 325–331.PubMedGoogle Scholar
  54. Engel, N., Thorvaldsen, J.L., and Bartolomei, M.S. 2006. CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum Mol Genet 15: 2945–2954.PubMedGoogle Scholar
  55. Epstein, J.A., Shapiro, D.N., Cheng, J., Lam, P.Y., and Maas, R.L. 1996. Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 93: 4213–4218.PubMedGoogle Scholar
  56. Ezzat, S., Zheng, L., Winer, D., and Asa, S.L. 2006. Targeting N-cadherin through fibroblast growth factor receptor-4: distinct pathogenetic and therapeutic implications. Mol Endocrinol 20: 2965–2975.PubMedGoogle Scholar
  57. Feng, Y., Zhu, Z., Xiao, X., Choudhry, V., Barrett, J.C., and Dimitrov, D.S. 2006. Novel human monoclonal antibodies to insulin-like growth factor (IGF)-II that potently inhibit the IGF receptor type I signal transduction function. Mol Cancer Ther 5: 114–120.PubMedGoogle Scholar
  58. Ferracini, R., Olivero, M., Di Renzo, M.F., Martano, M., De Giovanni, C., Nanni, P., Basso, G., Scotlandi, K., Lollini, P.L., and Comoglio, P.M. 1996. Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene 12: 1697–1705.PubMedGoogle Scholar
  59. Ferrara, N. 2002. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2: 795–803.PubMedGoogle Scholar
  60. Flores, E.R. 2007. The roles of p63 in cancer. Cell Cycle 6: 300–304.PubMedGoogle Scholar
  61. Flores, E.R., Tsai, K.Y., Crowley, D., Sengupta, S., Yang, A., McKeon, F., and Jacks, T. 2002. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416: 560–564.PubMedGoogle Scholar
  62. Flores, E.R., Sengupta, S., Miller, J.B., Newman, J.J., Bronson, R., Crowley, D., Yang, A., McKeon, F., and Jacks, T. 2005. Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.PubMedGoogle Scholar
  63. Flygare, J., Gustafsson, K., Kimby, E., Christensson, B., and Sander, B. 2005. Cannabinoid receptor ligands mediate growth inhibition and cell death in mantle cell lymphoma. FEBS Lett 579: 6885–6889.PubMedGoogle Scholar
  64. Fredericks, W.J., Galili, N., Mukhopadhyay, S., Rovera, G., Bennicelli, J., Barr, F.G., and Rauscher, F.J., 3rd. 1995. The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcomas is a more potent transcriptional activator than PAX3. Mol Cell Biol 15: 1522–1535.PubMedGoogle Scholar
  65. Fry, D.W., Harvey, P.J., Keller, P.R., Elliott, W.L., Meade, M., Trachet, E., Albassam, M., Zheng, X., Leopold, W.R., Pryer, N.K., et al. 2004. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3: 1427–1438.PubMedGoogle Scholar
  66. Furman, W.L., Stewart, C.F., Poquette, C.A., Pratt, C.B., Santana, V.M., Zamboni, W.C., Bowman, L.C., Ma, M.K., Hoffer, F.A., Meyer, W.H., et al. 1999. Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 17: 1815–1824.PubMedGoogle Scholar
  67. Gable, K.L., Maddux, B.A., Penaranda, C., Zavodovskaya, M., Campbell, M.J., Lobo, M., Robinson, L., Schow, S., Kerner, J.A., Goldfine, I.D., et al. 2006. Diarylureas are small-molecule inhibitors of insulin-like growth factor I receptor signaling and breast cancer cell growth. Mol Cancer Ther 5: 1079–1086.PubMedGoogle Scholar
  68. Galili, N., Davis, R.J., Fredericks, W.J., Mukhopadhyay, S., Rauscher, F.J., 3rd, Emanuel, B.S., Rovera, G., and Barr, F.G. 1993. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5: 230–235.PubMedGoogle Scholar
  69. Gallicchio, M.A., Kneen, M., Hall, C., Scott, A.M., and Bach, L.A. 2001. Overexpression of insulin-like growth factor binding protein-6 inhibits rhabdomyosarcoma growth in vivo. Int J Cancer 94: 645–651.PubMedGoogle Scholar
  70. Ganjavi, H., Gee, M., Narendran, A., Freedman, M.H., and Malkin, D. 2005. Adenovirus-mediated p53 gene therapy in pediatric soft-tissue sarcoma cell lines: sensitization to cisplatin and doxorubicin. Cancer Gene Ther 12: 397–406.PubMedGoogle Scholar
  71. Garcia, A., Rosen, L., Cunningham, C.C., Nemunaitis, J., Li, C., Rulewski, N., Dovholuk, A., Savage, R., Chan, T., Bukowksi, R., and Mekhail T. 2007. Phase 1 study of ARQ 197, a selective inhibitor of the c-Met RTK in patients with metastatic solid tumors reaches recommended phase 2 dose. ASCO Annual Meeting Proceedings Part I. J Clin Oncol 25: 3525.Google Scholar
  72. Gee, M.F., Tsuchida, R., Eichler-Jonsson, C., Das, B., Baruchel, S., and Malkin, D. 2005. Vascular endothelial growth factor acts in an autocrine manner in rhabdomyosarcoma cell lines and can be inhibited with all-trans-retinoic acid. Oncogene 24: 8025–8037.PubMedGoogle Scholar
  73. Gerber, H.P., Kowalski, J., Sherman, D., Eberhard, D.A., and Ferrara, N. 2000. Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Res 60: 6253–6258.PubMedGoogle Scholar
  74. Gerber, A.N., Wilson, C.W., Li, Y.J., and Chuang, P.T. 2007. The hedgehog regulated oncogenes Gli1 and Gli2 block myoblast differentiation by inhibiting MyoD-mediated transcriptional activation. Oncogene 26: 1122–1136.PubMedGoogle Scholar
  75. Ginsberg, J.P., Davis, R.J., Bennicelli, J.L., Nauta, L.E., and Barr, F.G. 1998. Up-regulation of MET but not neural cell adhesion molecule expression by the PAX3-FKHR fusion protein in alveolar rhabdomyosarcoma. Cancer Res 58: 3542–3546.PubMedGoogle Scholar
  76. Goga, A., Yamng, D., Tward, A.D., Morgan, D.O., and Bishop, J.M. 2007. Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nature Med 13: 820–827.PubMedGoogle Scholar
  77. Goldstein, M., Meller, I., Issakov, J., and Orr-Urtreger, A. 2006. Novel genes implicated in embryonal, alveolar, and pleomorphic rhabdomyosarcoma: a cytogenetic and molecular analysis of primary tumors. Neoplasia 8: 332–343.PubMedGoogle Scholar
  78. Gordon, A.T., Brinkschmidt, C., Anderson, J., Coleman, N., Dockhorn-Dworniczak, B., Pritchard-Jones, K., and Shipley, J. 2000. A novel and consistent amplicon at 13q31 associated with alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 28: 220–226.PubMedGoogle Scholar
  79. Gressner, O., Schilling, T., Lorenz, K., Schulze Schleithoff, E., Koch, A., Schulze-Bergkamen, H., Lena, A.M., Candi, E., Terrinoni, A., Catani, M.V., et al. 2005. TAp63alpha induces apoptosis by activating signaling via death receptors and mitochondria. EMBO J 24: 2458–2471.PubMedGoogle Scholar
  80. Grob, T.J., Novak, U., Maisse, C., Barcaroli, D., Luthi, A.U., Pirnia, F., Hugli, B., Graber, H.U., De Laurenzi, V., Fey, M.F., et al. 2001. Human delta Np73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ 8: 1213–1223.PubMedGoogle Scholar
  81. Guba, M., von Breitenbuch, P., Steinbauer, M., Koehl, G., Flegel, S., Hornung, M., Bruns, C.J., Zuelke, C., Farkas, S., Anthuber, M., et al. 2002. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8: 128–135.PubMedGoogle Scholar
  82. Guba, M., Graeb, C., Jauch, K.W., and Geissler, E.K. 2004. Pro- and anti-cancer effects of immunosuppressive agents used in organ transplantation. Transplantation 77: 1777–1782.PubMedGoogle Scholar
  83. Guba, M., Koehl, G.E., Neppl, E., Doenecke, A., Steinbauer, M., Schlitt, H.J., Jauch, K.W., and Geissler, E.K. 2005. Dosing of rapamycin is critical to achieve an optimal antiangiogenic effect against cancer. Transpl Int 18: 89–94.PubMedGoogle Scholar
  84. Guerreiro, A.S., Boller, D., Doepfner, K.T., and Arcaro, A. 2006. IGF-IR: potential role in antitumor agents. Drug News Perspect 19: 261–272.PubMedGoogle Scholar
  85. Hachitanda, Y., Toyoshima, S., Akazawa, K., and Tsuneyoshi, M. 1998. N-myc gene amplification in rhabdomyosarcoma detected by fluorescence in situ hybridization: its correlation with histologic features. Mod Pathol 11: 1222–1227.PubMedGoogle Scholar
  86. Hahn, H., Wojnowski, L., Specht, K., Kappler, R., Calzada-Wack, J., Potter, D., Zimmer, A., Muller, U., Samson, E., Quintanilla-Martinez, L., et al. 2000. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 275: 28341–28344.PubMedGoogle Scholar
  87. Haluska, P., Carboni, J.M., Loegering, D.A., Lee, F.Y., Wittman, M., Saulnier, M.G., Frennesson, D.B., Kalli, K.R., Conover, C.A., Attar, R.M., et al. 2006. In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res 66: 362–371.PubMedGoogle Scholar
  88. Hao, Y., Crenshaw, T., Moulton, T., Newcomb, E., and Tycko, B. 1993. Tumour-suppressor activity of H19 RNA. Nature 365: 764–767.PubMedGoogle Scholar
  89. Haruta, T., Uno, T., Kawahara, J., Takano, A., Egawa, K., Sharma, P.M., Olefsky, J.M., and Kobayashi, M. 2000. A rapamycin-sensitive pathway down-regulates insulin signaling via phosphorylation and proteasomal degradation of insulin receptor substrate-1. Mol Endocrinol 14: 783–794.PubMedGoogle Scholar
  90. Hernandez-Sanchez, C., Werner, H., Roberts, C.T., Jr., Woo, E.J., Hum, D.W., Rosenthal, S.M., and LeRoith, D. 1997. Differential regulation of insulin-like growth factor-I (IGF-I) receptor gene expression by IGF-I and basic fibroblastic growth factor. J Biol Chem 272: 4663–4670.PubMedGoogle Scholar
  91. Hoar, K., Chakravarty, A., Rabino, C., Wysong, D., Bowman, D., Roy, N., and Ecsedy, J.A. 2007. MLN8054, a small-molecule inhibitor of Aurora A, causes spindle pole and chromosome congression defects leading to aneuploidy. Mol Cell Biol 27: 4513–4525.PubMedGoogle Scholar
  92. Honda, R., Tanaka, H., and Yasuda, H. 1997. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25–27.PubMedGoogle Scholar
  93. Hope, K.J., Jin, L., and Dick, J.E. 2003. Human acute myeloid leukemia stem cells. Arch Med Res 34: 507–514.PubMedGoogle Scholar
  94. Hope, K.J., Jin, L., and Dick, J.E. 2004. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 5: 738–743.PubMedGoogle Scholar
  95. Houghton, P.J., Morton, C.L., Tucker, C., Payne, D., Favours, E., Cole, C., Gorlick, R., Kolb, E.A., Zhang, W., Lock, R., et al. 2007. The pediatric preclinical testing program: description of models and early testing results. Pediatr Blood Cancer 49:928–940.PubMedGoogle Scholar
  96. Houghton, P.J., Morton, C.L., Kolb, E.A., Gorlick, R., Lock, R., Carol, H., Reynolds, C.P., Maris, J.M., Keir, S.T., Billups, C.A., et al. 2008. Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 50: 799–805.PubMedGoogle Scholar
  97. Huang, S., Shu, L., Dilling, M.B., Easton, J., Harwood, F.C., Ichijo, H., and Houghton, P.J. 2003. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 11: 1491–1501.PubMedGoogle Scholar
  98. Hudson, C.C., Liu, M., Chiang, G.G., Otterness, D.M., Loomis, D.C., Kaper, F., Giaccia, A.J., and Abraham, R.T. 2002. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22: 7004–7014.PubMedGoogle Scholar
  99. Hurwitz, H.I., Fehrenbacher, L., Hainsworth, J.D., Heim, W., Berlin, J., Holmgren, E., Hambleton, J., Novotny, W.F., and Kabbinavar, F. 2005. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 23: 3502–3508.PubMedGoogle Scholar
  100. Huttinger-Kirchhof, N., Cam, H., Griesmann, H., Hofmann, L., Beitzinger, M., and Stiewe, T. 2006. The p53 family inhibitor DeltaNp73 interferes with multiple developmental programs. Cell Death Differ 13: 174–177.PubMedGoogle Scholar
  101. Hwa, V., Oh, Y., and Rosenfeld, R.G. 1999. Insulin-like growth factor binding proteins: a proposed superfamily. Acta Paediatr Suppl 88: 37–45.PubMedGoogle Scholar
  102. Issa, J.P., Kantarjian, H.M., and Kirkpatrick, P. 2005. Azacitidine. Nat Rev Drug Discov 4: 275–276.PubMedGoogle Scholar
  103. Jaboin, J., Wild, J., Hamidi, H., Khanna, C., Kim, C.J., Robey, R., Bates, S.E., and Thiele, C.J. 2002. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 62: 6108–6115.PubMedGoogle Scholar
  104. Jankowski, K., Kucia, M., Wysoczynski, M., Reca, R., Zhao, D., Trzyna, E., Trent, J., Peiper, S., Zembala, M., Ratajczak, J., et al. 2003. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 63: 7926–7935.PubMedGoogle Scholar
  105. Kalebic, T., Tsokos, M., and Helman, L.J. 1994. In vivo treatment with antibody against IGF-1 receptor suppresses growth of human rhabdomyosarcoma and down-regulates p34cdc2. Cancer Res 54: 5531–5534.PubMedGoogle Scholar
  106. Kaleko, M., Rutter, W.J., and Miller, A.D. 1990. Overexpression of the human insulinlike growth factor I receptor promotes ligand-dependent neoplastic transformation. Mol Cell Biol 10: 464–473.PubMedGoogle Scholar
  107. Kelly, P.N., Dakic, A., Adams, J.M., Nutt, S.L., and Strasser, A. 2007. Tumor growth need not be driven by rare cancer stem cells. Science 317: 337.PubMedGoogle Scholar
  108. Khan, J., Bittner, M.L., Saal, L.H., Teichmann, U., Azorsa, D.O., Gooden, G.C., Pavan, W.J., Trent, J.M., and Meltzer, P.S. 1999. cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proc Natl Acad Sci USA 96: 13264–13269.PubMedGoogle Scholar
  109. Knudsen, E.S., Pazzagli, C., Born, T.L., Bertolaet, B.L., Knudsen, K.E., Arden, K.C., Henry, R.R., and Feramisco, J.R. 1998. Elevated cyclins and cyclin-dependent kinase activity in the rhabdomyosarcoma cell line RD. Cancer Res 58: 2042–2049.PubMedGoogle Scholar
  110. Kolb, A.E., Gorlick, R., Houghton, P.J., Morton, C.L., Lock, R., Carol, H., Reynolds, C.P., Maris, J.M., Keir, S.T., Billups, C.A., et al. 2008. Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 50: 1190–1197.PubMedGoogle Scholar
  111. Komdeur, R., Hoekstra, H.J., Molenaar, W.M., Van Den Berg, E., Zwart, N., Pras, E., Plaza-Menacho, I., Hofstra, R.M., and Van Der Graaf, W.T. 2003. Clinicopathologic assessment of postradiation sarcomas: KIT as a potential treatment target. Clin Cancer Res 9: 2926–2932.PubMedGoogle Scholar
  112. Kranz, D., and Dobbelstein, M. 2006. Nongenotoxic p53 activation protects cells against S-phase-specific chemotherapy. Cancer Res 66: 10274–10280.PubMedGoogle Scholar
  113. Kurmasheva, R.T., Dudkin, L., Billups, C., Debelenko, L.V., Morton, C.L., Houghton, P.J. 2009. The insulin-like growth factor-1 receptor-targeting antibody, CP-751,871, suppresses tumor-derived VEGF and synergizes with rapamycin in models of childhood sarcoma. Cancer Res 69: 7662–71.PubMedGoogle Scholar
  114. Kurmasheva, R.T., and Houghton, P.J. 2006. IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta 1766: 1–22.PubMedGoogle Scholar
  115. Kurmasheva, R.T., Peterson, C.A., Parham, D.M., Chen, B., McDonald, R.E., and Cooney, C.A. 2005. Upstream CpG island methylation of the PAX3 gene in human rhabdomyosarcomas. Pediatr Blood Cancer 44: 328–337.PubMedGoogle Scholar
  116. Kurmasheva, R.T., Harwood, F.C., and Houghton, P.J. 2007. Differential regulation of vascular endothelial growth factor by Akt and mammalian target of rapamycin inhibitors in cell lines derived from childhood solid tumors. Mol Cancer Ther 6: 1620–1628.PubMedGoogle Scholar
  117. Kutko, M.C., Glick, R.D., Butler, L.M., Coffey, D.C., Rifkind, R.A., Marks, P.A., Richon, V.M., and LaQuaglia, M.P. 2003. Histone deacetylase inhibitors induce growth suppression and cell death in human rhabdomyosarcoma in vitro. Clin Cancer Res 9: 5749–5755.PubMedGoogle Scholar
  118. Lae, M., Ahn, E.H., Mercado, G.E., Chuai, S., Edgar, M., Pawel, B.R., Olshen, A., Barr, F.G., and Ladanyi, M. 2007. Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas. J Pathol 212: 143–151.PubMedGoogle Scholar
  119. Langenau, D.M., Keefe, M.D., Storer, N.Y., Guyon, J.R., Kutok, J.L., Le, X., Goessling, W., Neuberg, D.S., Kunkel, L.M., and Zon, L.I. 2007. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21: 1382–1395.PubMedGoogle Scholar
  120. LaRusch, G.A., Jackson, M.W., Dunbar, J.D., Warren, R.S., Donner, D.B., and Mayo, L.D. 2007. Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction between hypoxia inducible factor 1alpha and Hdm2. Cancer Res 67: 450–454.PubMedGoogle Scholar
  121. Lazaro, J.B., Bailey, P.J., and Lassar, A.B. 2002. Cyclin D-cdk4 activity modulates the subnuclear localization and interaction of MEF2 with SRC-family coactivators during skeletal muscle differentiation. Genes Dev 16: 1792–1805.PubMedGoogle Scholar
  122. LeRoith, D., Baserga, R., Helman, L., and Roberts, C.T., Jr. 1995. Insulin-like growth factors and cancer. Ann Intern Med 122: 54–59.PubMedGoogle Scholar
  123. Leuschner, I., Langhans, I., Schmitz, R., Harms, D., Mattke, A., and Treuner, J. 2003. p53 and mdm-2 expression in Rhabdomyosarcoma of childhood and adolescence: clinicopathologic study by the Kiel Pediatric Tumor Registry and the German Cooperative Soft Tissue Sarcoma Study. Pediatr Dev Pathol 6: 128–136.PubMedGoogle Scholar
  124. Li, L., Zhou, J., James, G., Heller-Harrison, R., Czech, M.P., and Olson, E.N. 1992. FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 71: 1181–1194.PubMedGoogle Scholar
  125. Lin, R., Connolly, P.J., Lu, Y., Chiu, G., Li, S., Yu, Y., Huang, S., Li, X., Emanuel, S.L., Middleton, S.A., et al. 2007. Synthesis and evaluation of pyrazolo[3,4-b]pyridine CDK1 inhibitors as anti-tumor agents. Bioorg Med Chem Lett 17: 4297–4302.PubMedGoogle Scholar
  126. Linardic, C.M., Downie, D.L., Qualman, S., Bentley, R.C., and Counter, C.M. 2005. Genetic modeling of human rhabdomyosarcoma. Cancer Res 65: 4490–4495.PubMedGoogle Scholar
  127. Logan, I.R., McNeill, H.V., Cook, S., Lu, X., Lunec, J., and Robson, C.N. 2007. Analysis of the MDM2 antagonist nutlin-3 in human prostate cancer cells. Prostate 67: 900–906.PubMedGoogle Scholar
  128. Lollini, P.L., De Giovanni, C., Del Re, B., Landuzzi, L., Nicoletti, G., Prodi, G., Scotlandi, K., and Nanni, P. 1989. Myogenic differentiation of human rhabdomyosarcoma cells induced in vitro by antineoplastic drugs. Cancer Res 49: 3631–3636.PubMedGoogle Scholar
  129. Longati, P., Comoglio, P.M., and Bardelli, A. 2001. Receptor tyrosine kinases as therapeutic targets: the model of the MET oncogene. Curr Drug Targets 2: 41–55.PubMedGoogle Scholar
  130. Lu, Y.J., Williamson, D., Clark, J., Wang, R., Tiffin, N., Skelton, L., Gordon, T., Williams, R., Allan, B., Jackman, A., et al. 2001. Comparative expressed sequence hybridization to chromosomes for tumor classification and identification of genomic regions of differential gene expression. Proc Natl Acad Sci USA 98: 9197–9202.PubMedGoogle Scholar
  131. Lu, X., Pearson, A., and Lunec, J. 2003. The MYCN oncoprotein as a drug development target. Cancer Lett 197: 125–130.PubMedGoogle Scholar
  132. Ma, P.C., Schaefer, E., Christensen, J.G., and Salgia, R. 2005. A selective small molecule c-MET Inhibitor, PHA665752, cooperates with rapamycin. Clin Cancer Res 11: 2312–2319.PubMedGoogle Scholar
  133. Manfredi, M.G., Ecsedy, J.A., Meetze, K.A., Balani, S.K., Burenkova, O., Chen, W., Galvin, K.M., Hoar, K.M., Huck, J.J., LeRoy, P.J., et al. 2007. Antitumor activity of MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci USA 104: 4106–4111.PubMedGoogle Scholar
  134. Mao, J., Maye, P., Kogerman, P., Tejedor, F.J., Toftgard, R., Xie, W., Wu, G., and Wu, D. 2002. Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 277: 35156–35161.PubMedGoogle Scholar
  135. Maris, J.M., Courtright, J., Houghton, P.J., Morton, C.L., Gorlick, R., Kolb, E.A., Lock, R., Tajbakhsh, M., Reynolds, C.P., Keir, S.T., et al. 2008a. Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer 50: 581–587.PubMedGoogle Scholar
  136. Maris, J.M., Courtright, J., Houghton, P.J., Morton, C.L., Kolb, E.A., Lock, R.B., Tajbakhsh, M., Reynolds, C.P., Keir, S.T., Wu, J., and Smith, M.A. 2008b. Initial testing (stage 1) of sunitinib by the pediatric preclinical testing program. Pediatr Blood Cancer 51:42–48.PubMedGoogle Scholar
  137. Matsuoka, S., Edwards, M.C., Bai, C., Parker, S., Zhang, P., Baldini, A., Harper, J.W., and Elledge, S.J. 1995. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9: 650–662.PubMedGoogle Scholar
  138. McAllister, S.D., Chan, C., Taft, R.J., Luu, T., Abood, M.E., Moore, D.H., Aldape, K., and Yount, G. 2005. Cannabinoids selectively inhibit proliferation and induce death of cultured human glioblastoma multiforme cells. J Neurooncol 74: 31–40.PubMedGoogle Scholar
  139. Melino, G., De Laurenzi, V., and Vousden, K.H. 2002. p73: friend or foe in tumorigenesis. Nat Rev Cancer 2: 605–615.PubMedGoogle Scholar
  140. Melino, G., Bernassola, F., Ranalli, M., Yee, K., Zong, W.X., Corazzari, M., Knight, R.A., Green, D.R., Thompson, C., and Vousden, K.H. 2004. p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279: 8076–8083.PubMedGoogle Scholar
  141. Mercer, S.E., Ewton, D.Z., Shah, S., Naqvi, A., and Friedman, E. 2006. Mirk/Dyrk1b mediates cell survival in rhabdomyosarcomas. Cancer Res 66: 5143–5150.PubMedGoogle Scholar
  142. Minniti, C.P., Tsokos, M., Newton, W.A., Jr., and Helman, L.J. 1994. Specific expression of insulin-like growth factor-II in rhabdomyosarcoma tumor cells. Am J Clin Pathol 101: 198–203.PubMedGoogle Scholar
  143. Misawa, A., Hosoi, H., Arimoto, A., Shikata, T., Akioka, S., Matsumura, T., Houghton, P.J., and Sawada, T. 2000. N-Myc induction stimulated by insulin-like growth factor I through mitogen-activated protein kinase signaling pathway in human neuroblastoma cells. Cancer Res 60: 64–69.PubMedGoogle Scholar
  144. Mitsiades, C.S., Mitsiades, N.S., McMullan, C.J., Poulaki, V., Shringarpure, R., Akiyama, M., Hideshima, T., Chauhan, D., Joseph, M., Libermann, T.A., et al. 2004. Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5: 221–230.PubMedGoogle Scholar
  145. Mohammadi, M., Froum, S., Hamby, J.M., Schroeder, M.C., Panek, R.L., Lu, G.H., Eliseenkova, A.V., Green, D., Schlessinger, J., and Hubbard, S.R. 1998. Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain. EMBO J 17: 5896–5904.PubMedGoogle Scholar
  146. Mora-Bermudez, F., Gerlich, D., and Ellenberg, J. 2007. Maximal chromosome compaction occurs by axial shortening in anaphase and depends on Aurora kinase. Nat Cell Biol 9: 822–831.PubMedGoogle Scholar
  147. Morgenstern, D.A., and Anderson, J. 2006. MYCN deregulation as a potential target for novel therapies in rhabdomyosarcoma. Expert Rev Anticancer Ther 6: 217–224.PubMedGoogle Scholar
  148. Morison, I.M., Ramsay, J.P., and Spencer, H.G. 2005. A census of mammalian imprinting. Trends Genet 21: 457–465.PubMedGoogle Scholar
  149. Muller, M., Schilling, T., Sayan, A.E., Kairat, A., Lorenz, K., Schulze-Bergkamen, H., Oren, M., Koch, A., Tannapfel, A., Stremmel, W., et al. 2005. TAp73/Delta Np73 influences apoptotic response, chemosensitivity and prognosis in hepatocellular carcinoma. Cell Death Differ 12:1564–1577.PubMedGoogle Scholar
  150. Nabarro, S., Himoudi, N., Papanastasiou, A., Gilmour, K., Gibson, S., Sebire, N., Thrasher, A., Blundell, M.P., Hubank, M., Canderan, G., et al. 2005. Coordinated oncogenic transformation and inhibition of host immune responses by the PAX3-FKHR fusion oncoprotein. J Exp Med 202: 1399–1410.PubMedGoogle Scholar
  151. Novitch, B.G., Mulligan, G.J., Jacks, T., and Lassar, A.B. 1996. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J Cell Biol 135: 441–456.PubMedGoogle Scholar
  152. O’Reilly, K.E., Rojo, F., She, Q.B., Solit, D., Mills, G.B., Smith, D., Lane, H., Hofmann, F., Hicklin, D.J., Ludwig, D.L., et al. 2006. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.PubMedGoogle Scholar
  153. Pappo, A.S., Lyden, E., Breitfeld, P., Donaldson, S.S., Wiener, E., Parham, D., Crews, K.R., Houghton, P., and Meyer, W.H. 2007. Two consecutive phase II window trials of irinotecan alone or in combination with vincristine for the treatment of metastatic rhabdomyosarcoma: the Children’s Oncology Group. J Clin Oncol 25: 362–369.PubMedGoogle Scholar
  154. Pavelic, J., Matijevic, T., and Knezevic, J. 2007. Biological and physiological aspects of action of insulin-like growth factor peptide family. Indian J Med Res 125: 511–522.PubMedGoogle Scholar
  155. Pavlakovic, H., Havers, W., and Schweigerer, L. 2001. Multiple angiogenesis stimulators in a single malignancy: implications for anti-angiogenic tumour therapy. Angiogenesis 4: 259–262.PubMedGoogle Scholar
  156. Perry, R.L., Parker, M.H., and Rudnicki, M.A. 2001. Activated MEK1 binds the nuclear MyoD transcriptional complex to repress transactivation. Mol Cell 8: 291–301.PubMedGoogle Scholar
  157. Pession, A., and Tonelli, R. 2005. The MYCN oncogene as a specific and selective drug target for peripheral and central nervous system tumors. Curr Cancer Drug Targets 5: 273–283.PubMedGoogle Scholar
  158. Petricoin, E.F., 3rd, Espina, V., Araujo, R.P., Midura, B., Yeung, C., Wan, X., Eichler, G.S., Johann, D.J., Jr., Qualman, S., Tsokos, M., et al. 2007. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67: 3431–3440.PubMedGoogle Scholar
  159. Propper, D.J., McDonald, A.C., Man, A., Thavasu, P., Balkwill, F., Braybrooke, J.P., Caponigro, F., Graf, P., Dutreix, C., Blackie, R., et al. 2001. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol 19: 1485–1492.PubMedGoogle Scholar
  160. Qualman, S.J., and Morotti, R.A. 2002. Risk assignment in pediatric soft-tissue sarcomas: an evolving molecular classification. Curr Oncol Rep 4: 123–130.PubMedGoogle Scholar
  161. Radhakrishnan, S.K., and Gartel, A.L. 2006. A novel transcriptional inhibitor induces apoptosis in tumor cells and exhibits antiangiogenic activity. Cancer Res 66: 3264–3270.PubMedGoogle Scholar
  162. Radhakrishnan, S.K., Halasi, M., Bhat, U.G., Kurmasheva, R.T., Houghton, P.J., and Gartel, A.L. 2008. Proapoptotic compound ARC targets Akt and N-myc in neuroblastoma cells. Oncogene 27: 694–699.PubMedGoogle Scholar
  163. Rao, S.S., and Kohtz, D.S. 1995. Positive and negative regulation of D-type cyclin expression in skeletal myoblasts by basic fibroblast growth factor and transforming growth factor beta. A role for cyclin D1 in control of myoblast differentiation. J Biol Chem 270: 4093–4100.PubMedGoogle Scholar
  164. Rao, S.S., Chu, C., and Kohtz, D.S. 1994. Ectopic expression of cyclin D1 prevents activation of gene transcription by myogenic basic helix-loop-helix regulators. Mol Cell Biol 14: 5259–5267.PubMedGoogle Scholar
  165. Rees, H., Williamson, D., Papanastasiou, A., Jina, N., Nabarro, S., Shipley, J., and Anderson, J. 2006. The MET receptor tyrosine kinase contributes to invasive tumour growth in rhabdomyosarcomas. Growth Factors 24: 197–208.PubMedGoogle Scholar
  166. Romer, J.T., Kimura, H., Magdaleno, S., Sasai, K., Fuller, C., Baines, H., Connelly, M., Stewart, C.F., Gould, S., Rubin, L.L., et al. 2004. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6: 229–240.PubMedGoogle Scholar
  167. Romualdi, C., De Pitta, C., Tombolan, L., Bortoluzzi, S., Sartori, F., Rosolen, A., and Lanfranchi, G. 2006. Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 7: 287.PubMedGoogle Scholar
  168. Rubin, B.P., Heinrich, M.C., and Corless, C.L. 2007. Gastrointestinal stromal tumour. Lancet 369: 1731–1741.PubMedGoogle Scholar
  169. Saab, R., Bills, J.L., Miceli, A.P., Anderson, C.M., Khoury, J.D., Fry, D.W., Navid, F., Houghton, P.J., and Skapek, S.X. 2006. Pharmacologic inhibition of cyclin-dependent kinase 4/6 activity arrests proliferation in myoblasts and rhabdomyosarcoma-derived cells. Mol Cancer Ther 5: 1299–1308.PubMedGoogle Scholar
  170. Sachdev, D., and Yee, D. 2006. Inhibitors of insulin-like growth factor signaling: a therapeutic approach for breast cancer. J Mammary Gland Biol Neoplasia 11: 27–39.PubMedGoogle Scholar
  171. Sachdev, D., and Yee, D. 2007. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol Cancer Ther 6: 1–12.PubMedGoogle Scholar
  172. Santos, E.S., Rosenblatt, J.D., and Goodman, M. 2004. Role of farnesyltransferase inhibitors in hematologic malignancies. Expert Rev Anticancer Ther 4: 843–856.PubMedGoogle Scholar
  173. Sarfaraz, S., Afaq, F., Adhami, V.M., and Mukhtar, H. 2005. Cannabinoid receptor as a novel target for the treatment of prostate cancer. Cancer Res 65: 1635–1641.PubMedGoogle Scholar
  174. Sarfaraz, S., Afaq, F., Adhami, V.M., Malik, A., and Mukhtar, H. 2006. Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J Biol Chem 281: 39480–39491.PubMedGoogle Scholar
  175. Sayan, A.E., Roperch, J.P., Sayan, B.S., Rossi, M., Pinkoski, M.J., Knight, R.A., Willis, A.E., and Melino, G. 2007. Generation of DeltaTAp73 proteins by translation from a putative internal ribosome entry site. Ann N Y Acad Sci 1095: 315–324.PubMedGoogle Scholar
  176. Schoenherr, C.J., Levorse, J.M., and Tilghman, S.M. 2003. CTCF maintains differential methylation at the Igf2/H19 locus. Nat Genet 33: 66–69.PubMedGoogle Scholar
  177. Scholl, F.A., Betts, D.R., Niggli, F.K., and Schafer, B.W. 2000. Molecular features of a human rhabdomyosarcoma cell line with spontaneous metastatic progression. Br J Cancer 82: 1239–1245.PubMedGoogle Scholar
  178. Scotlandi, K., Manara, M.C., Nicoletti, G., Lollini, P.L., Lukas, S., Benini, S., Croci, S., Perdichizzi, S., Zambelli, D., Serra, M., et al. 2005. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65: 3868–3876.PubMedGoogle Scholar
  179. Scrable, H.J., Witte, D.P., Lampkin, B.C., and Cavenee, W.K. 1987. Chromosomal localization of the human rhabdomyosarcoma locus by mitotic recombination mapping. Nature 329: 645–647.PubMedGoogle Scholar
  180. Scrable, H., Witte, D., Shimada, H., Seemayer, T., Sheng, W.W., Soukup, S., Koufos, A., Houghton, P., Lampkin, B., and Cavenee, W. 1989. Molecular differential pathology of rhabdomyosarcoma. Genes Chromosomes Cancer 1: 23–35.PubMedGoogle Scholar
  181. Seale, P., and Rudnicki, M.A. 2000. A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218: 115–124.PubMedGoogle Scholar
  182. Seale, P., Sabourin, L.A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., and Rudnicki, M.A. 2000. Pax7 is required for the specification of myogenic satellite cells. Cell 102: 777–786.PubMedGoogle Scholar
  183. Secchiero, P., Corallini, F., Gonelli, A., Dell’Eva, R., Vitale, M., Capitani, S., Albini, A., and Zauli, G. 2007. Antiangiogenic activity of the MDM2 antagonist nutlin-3. Circ Res 100: 61–69.PubMedGoogle Scholar
  184. Sepp-Lorenzino, L. 1998. Structure and function of the insulin-like growth factor I receptor. Breast Cancer Res Treat 47: 235–253.PubMedGoogle Scholar
  185. Shi, Y., Yan, H., Frost, P., Gera, J., and Lichtenstein, A. 2005. Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascade. Mol Cancer Ther 4: 1533–1540.PubMedGoogle Scholar
  186. Siehl, J., and Thiel, E. 2007. C-kit, GIST, and imatinib. Recent Results Cancer Res 176: 145–151.PubMedGoogle Scholar
  187. Skapek, S.X., Rhee, J., Spicer, D.B., and Lassar, A.B. 1995. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 267: 1022–1024.PubMedGoogle Scholar
  188. Skapek, S.X., Rhee, J., Kim, P.S., Novitch, B.G., and Lassar, A.B. 1996. Cyclin-mediated inhibition of muscle gene expression via a mechanism that is independent of pRB hyperphosphorylation. Mol Cell Biol 16: 7043–7053.PubMedGoogle Scholar
  189. Skaper, S.D., Kee, W.J., Facci, L., Macdonald, G., Doherty, P., and Walsh, F.S. 2000. The FGFR1 inhibitor PD 173074 selectively and potently antagonizes FGF-2 neurotrophic and neurotropic effects. J Neurochem 75: 1520–1527.PubMedGoogle Scholar
  190. Sorensen, P.H., Lynch, J.C., Qualman, S.J., Tirabosco, R., Lim, J.F., Maurer, H.M., Bridge, J.A., Crist, W.M., Triche, T.J., and Barr, F.G. 2002. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children’s oncology group. J Clin Oncol 20: 2672–2679.PubMedGoogle Scholar
  191. Steenman, M.J., Rainier, S., Dobry, C.J., Grundy, P., Horon, I.L., and Feinberg, A.P. 1994. Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms’ tumour. Nat Genet 7: 433–439.PubMedGoogle Scholar
  192. Stewart, C.E., and Rotwein, P. 1996. Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev 76: 1005–1026.PubMedGoogle Scholar
  193. Stiewe, T., and Putzer, B.M. 2002. Role of p73 in malignancy: tumor suppressor or oncogene? Cell Death Differ 9: 237–245.PubMedGoogle Scholar
  194. Stoeltzing, O., Liu, W., Reinmuth, N., Fan, F., Parikh, A.A., Bucana, C.D., Evans, D.B., Semenza, G.L., and Ellis, L.M. 2003. Regulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and angiogenesis by an insulin-like growth factor-I receptor autocrine loop in human pancreatic cancer. Am J Pathol 163: 1001–1011.PubMedGoogle Scholar
  195. Stone, R.M., De Angelo, J., Galinsky, I., Estey, E., Klimek, V., Grandin, W., Lebwohl, D., Yap, A., Cohen, P., Fox, E., et al. 2004. PKC 412 FLT3 inhibitor therapy in AML: results of a phase II trial. Ann Hematol 83 Suppl 1: S89–S90.PubMedGoogle Scholar
  196. Stratton, M.R., Fisher, C., Gusterson, B.A., and Cooper, C.S. 1989. Detection of point mutations in N-ras and K-ras genes of human embryonal rhabdomyosarcomas using oligonucleotide probes and the polymerase chain reaction. Cancer Res 49: 6324–6327.PubMedGoogle Scholar
  197. Takahashi, Y., Oda, Y., Kawaguchi, K., Tamiya, S., Yamamoto, H., Suita, S., and Tsuneyoshi, M. 2004. Altered expression and molecular abnormalities of cell-cycle-regulatory proteins in rhabdomyosarcoma. Mod Pathol 17: 660–669.PubMedGoogle Scholar
  198. Taulli, R., Scuoppo, C., Bersani, F., Accornero, P., Forni, P.E., Miretti, S., Grinza, A., Allegra, P., Schmitt-Ney, M., Crepaldi, T., et al. 2006. Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res 66: 4742–4749.PubMedGoogle Scholar
  199. Taylor, A.C., Shu, L., Danks, M.K., Poquette, C.A., Shetty, S., Thayer, M.J., Houghton, P.J., and Harris, L.C. 2000. P53 mutation and MDM2 amplification frequency in pediatric rhabdomyosarcoma tumors and cell lines. Med Pediatr Oncol 35: 96–103.PubMedGoogle Scholar
  200. Thimmaiah, K.N., Easton, J., Huang, S., Veverka, K.A., Germain, G.S., Harwood, F.C., and Houghton, P.J. 2003. Insulin-like growth factor I-mediated protection from rapamycin-induced apoptosis is independent of Ras-Erk1-Erk2 and phosphatidylinositol 3′-kinase-Akt signaling pathways. Cancer Res 63: 364–374.PubMedGoogle Scholar
  201. Tiffin, N., Williams, R.D., Shipley, J., and Pritchard-Jones, K. 2003. PAX7 expression in embryonal rhabdomyosarcoma suggests an origin in muscle satellite cells. Br J Cancer 89: 327–332.PubMedGoogle Scholar
  202. Tomescu, O., Xia, S.J., Strezlecki, D., Bennicelli, J.L., Ginsberg, J., Pawel, B., and Barr, F.G. 2004. Inducible short-term and stable long-term cell culture systems reveal that the PAX3-FKHR fusion oncoprotein regulates CXCR4, PAX3, and PAX7 expression. Lab Invest 84: 1060–1070.PubMedGoogle Scholar
  203. Tonelli, R., Purgato, S., Camerin, C., Fronza, R., Bologna, F., Alboresi, S., Franzoni, M., Corradini, R., Sforza, S., Faccini, A., et al. 2005. Anti-gene peptide nucleic acid specifically inhibits MYCN expression in human neuroblastoma cells leading to cell growth inhibition and apoptosis. Mol Cancer Ther 4: 779–786.PubMedGoogle Scholar
  204. Tostar, U., Malm, C.J., Meis-Kindblom, J.M., Kindblom, L.G., Toftgard, R., and Unden, A.B. 2006. Deregulation of the hedgehog signalling pathway: a possible role for the PTCH and SUFU genes in human rhabdomyoma and rhabdomyosarcoma development. J Pathol 208: 17–25.PubMedGoogle Scholar
  205. Tovar, C., Rosinski, J., Filipovic, Z., Higgins, B., Kolinsky, K., Hilton, H., Zhao, X., Vu, B.T., Qing, W., Packman, K., et al. 2006. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103: 1888–1893.PubMedGoogle Scholar
  206. Tsutsumi, N., Yonemitsu, Y., Shikada, Y., Onimaru, M., Tanii, M., Okano, S., Kaneko, K., Hasegawa, M., Hashizume, M., Maehara, Y., et al. 2004. Essential role of PDGFRalpha-p70S6K signaling in mesenchymal cells during therapeutic and tumor angiogenesis in vivo: role of PDGFRalpha during angiogenesis. Circ Res 94: 1186–1194.PubMedGoogle Scholar
  207. Vassilev, L.T. 2007. MDM2 inhibitors for cancer therapy. Trends Mol Med 13: 23–31.PubMedGoogle Scholar
  208. Vogelstein, B., Lane, D., and Levine, A.J. 2000. Surfing the p53 network. Nature 408: 307–310.PubMedGoogle Scholar
  209. Wachtel, M., Dettling, M., Koscielniak, E., Stegmaier, S., Treuner, J., Simon-Klingenstein, K., Buhlmann, P., Niggli, F.K., and Schafer, B.W. 2004. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res 64: 5539–5545.PubMedGoogle Scholar
  210. Wang, W., Kumar, P., Wang, W., Epstein, J., Helman, L., Moore, J.V., and Kumar, S. 1998. Insulin-like growth factor II and PAX3-FKHR cooperate in the oncogenesis of rhabdomyosarcoma. Cancer Res 58: 4426–4433.PubMedGoogle Scholar
  211. Wang, X., Le, P., Liang, C., Chan, J., Kiewlich, D., Miller, T., Harris, D., Sun, L., Rice, A., Vasile, S., et al. 2003. Potent and selective inhibitors of the Met [hepatocyte growth factor/scatter factor (HGF/SF) receptor] tyrosine kinase block HGF/SF-induced tumor cell growth and invasion. Mol Cancer Ther 2: 1085–1092.PubMedGoogle Scholar
  212. Wang, Y., Hailey, J., Williams, D., Wang, Y., Lipari, P., Malkowski, M., Wang, X., Xie, L., Li, G., Saha, D., et al. 2005. Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther 4: 1214–1221.PubMedGoogle Scholar
  213. Wedge, S.R., Kendrew, J., Hennequin, L.F., Valentine, P.J., Barry, S.T., Brave, S.R., Smith, N.R., James, N.H., Dukes, M., Curwen, J.O., et al. 2005. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65: 4389–4400.PubMedGoogle Scholar
  214. Weinstein, I.B., and Joe, A.K. 2006. Mechanisms of disease: oncogene addiction – a rationale for molecular targeting in cancer therapy. Nat Clin Pract Oncol 3: 448–457.PubMedGoogle Scholar
  215. Weksberg, R., Teshima, I., Williams, B.R., Greenberg, C.R., Pueschel, S.M., Chernos, J.E., Fowlow, S.B., Hoyme, E., Anderson, I.J., Whiteman, D.A., et al. 1993. Molecular characterization of cytogenetic alterations associated with the Beckwith–Wiedemann syndrome (BWS) phenotype refines the localization and suggests the gene for BWS is imprinted. Hum Mol Genet 2: 549–556.PubMedGoogle Scholar
  216. Williams, J.A., Guicherit, O.M., Zaharian, B.I., Xu, Y., Chai, L., Wichterle, H., Kon, C., Gatchalian, C., Porter, J.A., Rubin, L.L., et al. 2003. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 100: 4616–4621.PubMedGoogle Scholar
  217. Williamson, D., Lu, Y.J., Gordon, T., Sciot, R., Kelsey, A., Fisher, C., Poremba, C., Anderson, J., Pritchard-Jones, K., and Shipley, J. 2005. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. J Clin Oncol 23: 880–888.PubMedGoogle Scholar
  218. Williamson, D., Selfe, J., Gordon, T., Lu, Y.J., Pritchard-Jones, K., Murai, K., Jones, P., Workman, P., and Shipley, J. 2007. Role for amplification and expression of glypican-5 in rhabdomyosarcoma. Cancer Res 67: 57–65.PubMedGoogle Scholar
  219. Wittman, M.D., Balasubramanian, B., Stoffan, K., Velaparthi, U., Liu, P., Krishnanathan, S., Carboni, J., Li, A., Greer, A., Attar, R., et al. 2007. Novel 1H-(benzimidazol-2-yl)-1H-pyridin-2-one inhibitors of insulin-like growth factor I (IGF-1R) kinase. Bioorg Med Chem Lett 17: 974–977.PubMedGoogle Scholar
  220. Yang, Y., Hoeflich, A., Butenandt, O., and Kiess, W. 1996. Opposite regulation of IGF-I and IGF-I receptor mRNA and concomitant changes of GH receptor and IGF-II/M6P receptor mRNA in human IM-9 lymphoblasts. Biochim Biophys Acta 1310: 317–324.PubMedGoogle Scholar
  221. Yoo, C.B., and Jones, P.A. 2006. Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5: 37–50.PubMedGoogle Scholar
  222. Yu, Y., Davicioni, E., Triche, T.J., and Merlino, G. 2006. The homeoprotein six1 transcriptionally activates multiple protumorigenic genes but requires ezrin to promote metastasis. Cancer Res 66: 1982–1989.PubMedGoogle Scholar
  223. Zaika, A.I., Slade, N., Erster, S.H., Sansome, C., Joseph, T.W., Pearl, M., Chalas, E., and Moll, U.M. 2002. DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med 196: 765–780.PubMedGoogle Scholar
  224. Zhan, S., Shapiro, D.N., and Helman, L.J. 1994. Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest 94: 445–448.PubMedGoogle Scholar
  225. Zhang, L., and Wang, C. 2003. PAX3-FKHR transformation increases 26S proteasome-dependent degradation of p27Kip1, a potential role for elevated Skp2 expression. J Biol Chem 278: 27–36.PubMedGoogle Scholar
  226. Zhang, L., Kashanchi, F., Zhan, Q., Zhan, S., Brady, J.N., Fornace, A.J., Seth, P., and Helman, L.J. 1996. Regulation of insulin-like growth factor II P3 promotor by p53: a potential mechanism for tumorigenesis. Cancer Res 56: 1367–1373.PubMedGoogle Scholar
  227. Zhang, L., Zhan, Q., Zhan, S., Kashanchi, F., Fornace, A.J., Jr., Seth, P., and Helman, L.J. 1998a. p53 regulates human insulin-like growth factor II gene expression through active P4 promoter in rhabdomyosarcoma cells. DNA Cell Biol 17: 125–131.PubMedGoogle Scholar
  228. Zhang, L., Zhan, S., Navid, F., Li, Q., Choi, Y.H., Kim, M., Seth, P., and Helman, L.J. 1998b. AP-2 may contribute to IGF-II overexpression in rhabdomyosarcoma. Oncogene 17: 1261–1270.PubMedGoogle Scholar
  229. Zhang, J.M., Wei, Q., Zhao, X., and Paterson, B.M. 1999. Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. EMBO J 18: 926–933.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Raushan T. Kurmasheva
  • Hajime Hosoi
  • Ken Kikuchi
  • Peter J. Houghton
    • 1
  1. 1.Department of Molecular PharmacologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations