Skip to main content

Molecular Targeted Therapy for Wilms’ Tumor

  • Chapter
  • First Online:
Book cover Molecularly Targeted Therapy for Childhood Cancer

Abstract

Wilms’ tumor (nephroblastoma, WT) is the most common pediatric primary renal malignancy, originating from aberrant differentiation of a pluripotent renal stem cell derived from embryogenic metanephric blastema (Beckwith et al. 1990). In the United States, WT has an annual incidence of 7.6 cases per million children, with approximately 500 new cases diagnosed each year, accounting for 6% of all childhood cancers (Bernstein et al. 1999). The incidence rate is slightly higher in girls (female:male is 1.09), is slightly higher in black children, and significantly lower in Asian children (Dome et al. 2006a). Over 77% of WT patients are diagnosed prior to age 5, with girls and boys presenting at a median age of 3 and 2 years, respectively (Pastore et al. 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alami J, Williams BR, Yeger H (2003a) Differential expression of E-cadherin and beta catein in primary and metastatic Wilms tumours. Mol Pathol 56:218–225.

    Article  PubMed  CAS  Google Scholar 

  • Alami J, Williams Br, Yeger H (2003b) Derivation and characterization of a Wilms tumor cell line, WiT 49. Int J Cancer 107:365–374.

    Article  PubMed  CAS  Google Scholar 

  • Alami J, Williams BR, Yeger H (2002) Expression and localization of HGF and met in Wilms’ tumours. J Pathol 196:76–84.

    Article  PubMed  Google Scholar 

  • Alger EM, Heaps L, Darmanian A, Dagar V, Prawitt D, Peter GB, et al. (2007) Paternally inherited submicroscopic dupliction at 11p15.5 implicated insulin-like growth factor II in overgrowth and Wilms tumorigenesis. Cancer Res 67:2360–2363.

    Article  CAS  Google Scholar 

  • Arcellana-Panlilio MY, Egeler RM, Ujack E, Pinto A, Demetrick DJ, Robbins SM, et al. (2000) Decreased expression of the INK4 family of cyclin-dependent kinase inhibitor in Wilms tumor. Genes Chromosomes Can 29:63–69.

    Article  CAS  Google Scholar 

  • Bardeesy N, Beckwith B, Pelletier J ( 1995) Clonal expansion and attenuated apoptosis in Wilms tumors are associated with p53 gene mutations. Cancer Res 55:215–219.

    PubMed  CAS  Google Scholar 

  • Barker N, Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5:997–1014.

    Article  PubMed  CAS  Google Scholar 

  • Baudry D, Faussillin M, Cabanis MO, Rigolet M, Zucker JM, Patte C, et al. (2002) Changes in WT1 splicing are associated with a specific gene expression profile in Wilms tumour. Oncogene 36:5566–5573.

    Article  CAS  Google Scholar 

  • Baudry D, Hamelin M, Cabanis M, Fournet J, Tournade M, Sarnacki S, et al.(2000) WT1 splicing alterations in Wilms tumors. Clin Can Res 6:3957–3965.

    CAS  Google Scholar 

  • Beckwith JB, Kiviat NB, Bonadio JF (1990) Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol 10:1–36.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein L, Linet M, Smith M, Olshan AF (1999) Surveillance epidemiology end results – renal tumors. Nat Can Inst 91:1382–1396.

    Article  Google Scholar 

  • Blann AD, Li JL, Li C, Kumar S (2001) Increased serum VEGF in 13 children with Wilms’ tumour falls after surgery but rising levels predict poor prognosis. Cancer Lett 28:183–186.

    Article  Google Scholar 

  • Brown KW, Shaw AP, Poirier V, Tyler SJ, Berry PJ, Mott MG, et al. (1989) Loss of chromosome 11p alleles I cultured cell derived from Wilms tumors. Br J Can 60:25–29.

    Article  CAS  Google Scholar 

  • Camassei FD, Arancia G, Cianfriglia M, Bosman C, Francalanci P, Rava L, et al. (2002) Nephroblastoma: multidrug-resistance P-glycoprotein expression in tumor cells and intratumoral capillary endothelial cells. Am J Clin Pathol 117:484–490.

    Article  PubMed  Google Scholar 

  • Christensen JG, Burrows J, Salgia R (2005) c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 8:1–26.

    Article  CAS  Google Scholar 

  • Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, et al. (2005) Molecular subtypes an dphenotypic expression of Beckwith-Wiedeman syndrome. Eur J Hum Genet 13:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  • Daw NC, Furman WL, Stewart CF, Iacono LC, Krailo M, Bernstein ML, et al. (2005) Children’s Oncology Group Study. J Clin Oncol 23:6172–6180.

    Article  PubMed  CAS  Google Scholar 

  • DeAlmeida VI, Miao L, Ernst JA, Koeppen H, Polakis P, Rubinfeld B (2007) The soluble wnt receptor Frizzled8CRD-hFc inhibits the growth of teratocarcinomas in vivo. Cancer Res 1:5371–5379.

    Article  CAS  Google Scholar 

  • Desbois-Mouthon C, Cadoret A, Vlivet-Van Eggelpoel M-J, Bertrand F, Cherqui G, Perret C, et al. (2001) Insulin and IGF-1 stimulate the b-catenin pathway through two signalling cascades involving GSK-3b inhibition and Ras activation. Oncogene 20:252–9.

    Article  PubMed  CAS  Google Scholar 

  • Diller L, Ghahremani M, Morgan J, Grundy P, Reeves C, Breslow N, et al. (1998) Constitutional WT1 mutations in Wilms tumor patients. J Clin Oncol 16:3634–3640.

    PubMed  CAS  Google Scholar 

  • Dome JS, Perlman EJ, Ritchey ML, et al. (2006a) Renal Tumors. In Principles and Practice of Pediatric Oncology 5th Ed., Poplack DG and Pizzo PA (eds), p 904. Philadelphia: Lippincott Williams and Wilkins.

    Google Scholar 

  • Dome J, Cotton C, Perlman E, Breslow N, Kalapurakal J, Ritchey M, et al. (2006b) Treatment of anaplastic histology Wilms’ tumor: results from the fifth national Wilms’ tumor study. J Clin Oncol 24:2352–2358.

    Article  PubMed  Google Scholar 

  • Donovan MJ, Hempstead B, Huber LJ, Kaplan D, Tsoulfas P, Chao M, et al. (1994) Identification of the neurotrophin receptors p75 and trk in a series of Wilms’ tumors. Am J Pathol 145:792–801.

    PubMed  CAS  Google Scholar 

  • Drummond IA, Madden SL, Rohwer-Nutter P, Bell GI, Sukhatme VP, Rauscher FJ 3 rd (1992) Repression of the insulin-like growth factor II gene by the Wilms tumor suppressor WT1. Science 31:674–678.

    Article  Google Scholar 

  • Efferth T, Schulten HG, Thelen P, Bode ME, Beniers AJ, Granzen B, et al. (2001a) Differential expression of the heat shock protein 70 in the histological compartments of nephroblastomas. Anticancer Res 21:2915–2920.

    PubMed  CAS  Google Scholar 

  • Efferth T, Thelen P, Schulten HG, Bode ME, Granzen B, Benier AJ, et al. (2001b) Differential expression of the multirug resistance-related proteins MRP1 in the histological compartments of nephroblastomas. Int J Oncol 19:367–371.

    PubMed  CAS  Google Scholar 

  • Eggert A, Grotzer MA, Ikegaki N, Zhao H, Cnaan A, Brodeur GM, et al.(2001) Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms’ tumor. J Clin Oncol 1:689–696.

    Google Scholar 

  • Eguchi M, Nguyen C, Lee SC, Kahn M (2005) ICG-001, a novel small moleculre regulator of TCF/beta-catenin transcription. Med Chem 1:467–472.

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M, Hopkins NE, Jiang G, Dome JS, Yu MC, Woods CB, et al. (2003) Satellite DNA hypomethylation in karyotyped Wilms tumors. Can Genet Cytogenet 141:97–105.

    Article  CAS  Google Scholar 

  • Ehrlich M, Jiang G, Fiala E, Dome JS, Yu MC, Long TI, et al. (2002) Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 26:6694–6702.

    Article  CAS  Google Scholar 

  • Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, et al. (2004) A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 101:12682–12687.

    Article  PubMed  CAS  Google Scholar 

  • Englert C, Hou X, Maheswaran S, Bennett P, Ngwu C, Re GG, et al. (1995) WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J 14:4662–4675.

    PubMed  CAS  Google Scholar 

  • Englert C, Maheswaran S, Garvin AJ, Kreidberg J, Haber DA (1997) Induction of p21 by the Wilms’ tumor suppressor gene WT1. Cancer Res 15:1429–1434.

    Google Scholar 

  • Faussillon M, Moonier L, Junien C, Jeanpierre C (2005) Frequent overexpression of cyclin D2/cyclin-dependent kinase 4 in Wilms tumor. Cancer Lett 18:67–75.

    Article  CAS  Google Scholar 

  • Fernandeaz CV, Lestou VS, Wildish J, Lee CI Soreansen PH (2001) Detection of a novel t(6;15)(q21;q21) in a pediatric Wilms tumor. Canr Genet Cytogenet 129:165–167.

    Article  Google Scholar 

  • Fouladi M, Furman WL, Chin T, Freeman BB 3rd, Dudkin L, et al. (2006) Phase I study of depsipeptide in pediatric patients with refractory solid tumors: a Children’s Oncology Group report. J Clin Oncol 1:3678–3685.

    Article  CAS  Google Scholar 

  • Frischer JS, Huang J, Serur A, Kadenhe-Chiweshe A, McCrudden KW, O’Toole K, et al. (2004) Effects of potent VEGF blockade on experimental Wilms tumor and its persisting vasculature. Int J Oncol 25:549–553.

    PubMed  CAS  Google Scholar 

  • Fukuzawa R, Heathcott RW, Sano M, Morison IM, Yun K, Reeve AE (2004) Myogenesis in Wilms tumors is associated with mutations of the WT1 gene and activation of Bel-2 and the Wnt signaling pathway. Pediatr Dev Pathol 7:668–669.

    Article  Google Scholar 

  • Gansler T, Allen KD, Burant CF, Inabnett T, Scott A, Buse MG, et al. (1988) Detection of type 1insuline-like growth factor (IGF) receptors in Wilms tumors. Am J Pathol 130:431–435.

    PubMed  CAS  Google Scholar 

  • Gansler T, Furlanetto R, Gramling TS, Robinson KA, Blocker N, Buse MG, et al. (1989) Antibody to type I insulinlike growth factor receptor inhibits growth of Wilms’ tumor in culture and athymic mice. Am J of Path 135:961–966.

    CAS  Google Scholar 

  • Garvin AJ, Re GG, Tarnowski Bi, Hazen-Martin DJ, Sens DA (1993) The G401 cell line utilized for studies of chromosomal changes in Wilms tumor, is derived from a rhabdiod tumor of the kidney. Am J Pathol 142:375–380.

    PubMed  CAS  Google Scholar 

  • Garvin AJ, Sullivan JL, Bennett DD, Stanley WS, Inabnett T, Sens DA (1987) The in vitro growth, heterotransplantation and immonohistochemical characterization of the blastemal component of Wilms Tumor. Am J Pathol 129:353–363.

    PubMed  CAS  Google Scholar 

  • Garvin AJ, Surrette F, Hintz DS, Rudisill MT, Sens MA, Sens DA (1985) The in vitro growth and charaterization of the skeletal muscle component of Wilms tumor. Am J Pathol 121:298–310.

    PubMed  CAS  Google Scholar 

  • Gessler M, Konig A, Arden K, Grundy P, Orkin S, Sallan S, et al. (1994) Infrequent mutation of the WTI gene in 77 Wilms Tumors. Hum Mutat 3:212–222.

    Article  PubMed  CAS  Google Scholar 

  • Ghanem MA, Van Der Kwast TH, Den Hollander JC, Sudaryo MK, Mathoera RB, Van den Heuvel MM, et al. (2001a) Expression and prognostic value of epidermal growth factor receptor, transforming growth factor-alpha, and c-erb B-2 in nephroblastoma. Cancer 15;92(12):3120–3129.

    Article  CAS  Google Scholar 

  • Ghanem MA, Van der Kwast TH, Den Hollander JC, Sudaryo MK, Van den Heuvel MM, Noordzij MA, et al. (2001b) The prognostic significance of apoptosis-associated proteins BCL-2, BAX and BCL-X in clinical nephroblastoma. Br J Can 16:1557–1563.

    Article  CAS  Google Scholar 

  • Ghanem MA, van Steenbrugge GJ, Sudary MK, Mathoera RB, Nijman JM, van der Kwast TH (2003) Expression and prognostic relevance of vascular endothelial growth factor (VEGF) and its receptor (FLT-1) in nephroblastoma. J Clin Pathol 56:107–113.

    Article  PubMed  CAS  Google Scholar 

  • Graham C, Tucker C, Creech J, Favours E, Billups CA, Liu T, et al. (2006) Evaluation of the antitumor efficacy, pharmacokinetics, and pharmacodynamics of the histone deacetylase inhibitor depsipeptide in childhood cancer models in vivo. Clin Can Res 1:223–234.

    Article  CAS  Google Scholar 

  • Green D (2004) The treatment of stages I-IV favorable histology Wilms tumor. J of Clin Oncol 22(8):1366–72.

    Article  Google Scholar 

  • Grundy P, Telzerow P, Breslow N, Moksness J, Huff V, Paterson M, et al. (1994) Loss of heterozygosity for chromosomes 16q and 1 p in Wilms tumors predicts an adverse outcome. Cancer Res 54:2331–2333.

    PubMed  CAS  Google Scholar 

  • Grundy P, Telzerow P, Moksness J, Beslow NE (1996) Clinicopathologic correlates of loss of heterozygosity in Wilms tumor: a preliminary analysis. Med Pediatr Oncol 27:429–433.

    Article  PubMed  CAS  Google Scholar 

  • Grundy PE, Breslow NE, LI S, Perlman E, Beckwith JB, Ritchey ML, et al. (2005) Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol 23:7312–7321.

    Article  PubMed  CAS  Google Scholar 

  • Hancock AL, Brown KW, Moorewood K, Moon H, Holmgren C, Mardikar SH, et al. (2007) A CTCF-binding silencer regulates the imprinted genes AWT1 and exjobots seqiemtoa; epigenetic defects during Wilms Tumorigenesis. Hum Mol Genet 1:343–354.

    Google Scholar 

  • Herbst A, Koligs FT (2007) Wnt signaling as a therapeutic target for cancer. Meth in Mol Biol 361:63–91.

    CAS  Google Scholar 

  • Houghton PJ, Maris JM, Courtright J, Friedman HS, Keir ST, Lock RB, et al. (2007b) Initial Testing of the Histone Deacetylase Inhibitor Vorinostat by the Pediatric Preclinical Testing Program. Proceedings of the American Association for Cancer Research Annual Meeting 48:126, Apr 2007. (Abstract C226).

    Google Scholar 

  • Houghton PJ, Maris JM, Courtright J, Friedman HS, Keir ST, Lock RB, et al. (2007e) Pediatric preclinical testing program (PPTP) evaluation of the EGFR and ErbB2 inhibitor Lapatinib. Proceedings of the American Association for Cancer Research Annual Meeting 48:126, Apr 2007. (Abstract B118).

    Google Scholar 

  • Houghton PJ, Maris JM, Friedman HS, Keir ST, Lock RB, Carol H, et al. (2007d) Pediatric preclinical testing program (PPTP) evaluation of the multi-targeted kinase inhibitor Sunitinib. Proceedings of the American Association for Cancer Research Annual Meeting 48:126, Apr 2007. (Abstract 527).

    Google Scholar 

  • Houghton PJ, Maris JM, Friedman HS, Keir ST, Lock RB, Carol H, et al. (2007f) Pediatric preclinical testing program (PPTP) evaluation of the fully human anti-IGF-1R Antibody SCH 717454. (Abstract A212).

    Google Scholar 

  • Houghton PJ, Maris JM, Friedman HS, Keir ST, Lock RB, Gorlick R, et al. (2006) Pediatric preclinical testing program (PPTP) evaluation of the KSP inhibitor ispinesib (SB-715992). European Journal of Cancer Supplements 4(12):98. (Abstract 313).

    Article  Google Scholar 

  • Houghton PJ, Morton CL, Kolb EA, Gorlick R, Lock R, Carol H, et al.(2007c) Initial testing (stage 1) of the mTOR inhibitor rapamycin by the pediatric preclinial testing program. Ped Blood Can [Epub ahead of print].

    Google Scholar 

  • Houghton PJ, Morton CL, Kolb EA, Lock R, Carol H, Reynolds CP, et al. (2008) Initial testing (stage 1) of the proteasome inhibitor bortezomib by the pediatric preclinical testing program. Ped Blood Can 50:37–45.

    Article  Google Scholar 

  • Houghton PJ, Morton CL, Tucker C, Payne D, Favours E, Cole C, et al. (2007a) The pediatric preclinical testing program: description of models and early testing results. Ped Blood Can 49:928–940.

    Article  Google Scholar 

  • Huang J, Frischer JS, New T, Kim ES, Serur A, Lee A, et al. (2004) TNP-470 promotes initial vascular sprouting in xenograft tumors. Mol Cancer Ther 3:335–343.

    PubMed  CAS  Google Scholar 

  • Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, et al. (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 31:2271–81.

    Article  Google Scholar 

  • Karth J, Ferrer FA, Perlman E, Hanrahan C, Simons JW, Gearhart JP, et al. (2000) Coexpression of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor in Wilms’ tumor. J Pediatr Surg 35:1749–1753.

    Article  PubMed  CAS  Google Scholar 

  • Katoh M (2007) Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 3:30–38.

    Article  PubMed  CAS  Google Scholar 

  • Knudson AG, Strong LL (1972) Mutation and cancer: a model for Wilms’ tumor of the kidney. J Natl Can Inst 48: 313–234.

    Google Scholar 

  • Koesters R, Niggli F, von Knebel Doeberitz M, Stallmach T (2003) Nuclear accumulation of beta-catenin protein in Wilms’ tumours. J Pathol 1:68–76.

    Article  CAS  Google Scholar 

  • Koesters R, Ridder R, Kopp-Schneider A, Betts D, Adams V, Niggli F, et al. (1996) Mutational activation of the B-Catenin proto-oncogene is a common event in the development of Wilms tumors. Cancer Res 59:3880–3882.

    Google Scholar 

  • Kolb EA, Gorlick R, Houghton PJ, Morton CL, Lock RB, Tajbakhsh M, et al. (2007) Initial testing of dasatinib by the pediatric preclinical testing program. Ped Blood Can [Epub ahead of print].

    Google Scholar 

  • Koufos A, Grundy P, Morgan K, Aleck KA, Hadro T, Lampkin BC, et al. (1989) Familial Weidemann-Beckwith syndrome and a second Wilms tumor locus both map to 11p15.5. Am J Hum Genet 44:711–719.

    PubMed  CAS  Google Scholar 

  • Kudoh T., Ishidate T., Moriyama M., Toyoshima K., Akiyama T. (1995) G1 phase arrest induced by Wilms tumor protein WT1 is abrogated by cyclin/CDK complexes. Proc Natl Acad Sci USA 92:4517–4521.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Harrison CJ, Heighway J, Marsden HB, West DC, Jones PM (1987) A cell line from Wilms tumor with deletion in short arm of chromosome II. Int J Cancer 15:499–504.

    Article  Google Scholar 

  • Kurmasheva RT, Houghton PJ (2006) IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophy Acta 1766:1–22.

    CAS  Google Scholar 

  • Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Peterson F (2004) Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell 5:91–102.

    Article  PubMed  CAS  Google Scholar 

  • Li C, Kim C, Margolin A, Guo M, Zhu J (2004) CTNNB1 Mutations and Overexpression of Wnt/B-Catenin Target Genes in WT1-Mutant Wilms Tumors. Am J Pathol 165: 1943–1953.

    Article  PubMed  CAS  Google Scholar 

  • Li W, Kessler P, Yeger H, Alami J, Reeve AE, Heathcott R, Skeen J, et al. (2005) A gene expression signature for relapse of primary wilms tumors. Cancer Res 65:2592–2601.

    Article  PubMed  CAS  Google Scholar 

  • Lin RY, Argenta PA, Sullivan KM, Adzick NS (1995) Diagnostic and prognostic role of basic fibroblast growth factor in Wilms’ tumor patients. Clin Cancer Res 1:327–331.

    PubMed  CAS  Google Scholar 

  • Liu XW, Gong LJ, Guo LY, Katagiri Y, Jiang H, Wang ZY, et al.(2000) The Wilms’ tumor gene product WT1 mediates the down-regulation of the rat epidermal growth factor receptor by nerve growth factor in PC12 cells. J Biol Chem 16:5068–5073.

    Google Scholar 

  • Ma H, Nguyen C, Lee KS, Kahn M (2005) ICG-001, a novel small molecule regulator of TCF/beta-catenin transcription. Med Chem 1(5):467–72.

    Article  Google Scholar 

  • Maheswaran S, Englert C, Zheng G, Lee SB, Wong J, Harkin DP, et al. (1998) Inhibition of cellular proliferation by the Wilms tumor suppressor WT1 requires association with the inducible chaperone Hsp70. Genes Dev 15:1108–1120.

    Article  Google Scholar 

  • Maiti S, Alam R, Amos C, Huff V (2000) Frequent association of B-catenin and WT1 Mutations in Wilms tumors. Cancer Res 60:6288–6292.

    PubMed  CAS  Google Scholar 

  • Major MB, Camp ND, Berndt JD, Yi X, Goldenberg SJ, Hubbert C (2007) Wilms tumor suppressor WTX negatively regulates WNT/beta-catenin signaling. Science 316:1043–1046.

    Article  PubMed  CAS  Google Scholar 

  • Maris JM, Courtright J, Houghton PJ, Morton CL, Gorlick R, Kolb EA, et al. (2007) Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Ped Blood Can [Epub ahead of print].

    Google Scholar 

  • McDonald JM, Douglass EC, Fisher R, Geiser Cf, Krill CE, Strong LC, et al. (1998) Linkage of familial Wilms tumor predisposition to chromosome 19 and two-locus model for the etiology of familial tumors. Cancer Res 1:1387–1390.

    Google Scholar 

  • Metzger ML, Dome JS (2005) Current therapy for Wilms’ tumor. Oncologist 10:815–826.

    Article  PubMed  CAS  Google Scholar 

  • Miliaras D, Karasavvidou F, Papanikolaou A, Sioutopoulou D (2004) KIT expression in fetal, normal adult, and neoplastic renal tissues. J Clin Pathol 57:463–466.

    Article  PubMed  CAS  Google Scholar 

  • Miller MA, Karacay B, Breslow NE, Li S, O’Dorisio MS, Grundy PE, Sandler AD (2005) Prognostic value of quantifying apoptosis factor expression in favorable histology wilms tumors. J Pediatr Hematol 27:11–14.

    Article  Google Scholar 

  • Morris MR, Hesson LB, Wagner KL, Morgan NV, Astuti D, Lees RD, et al. (2003) Muligene methylation analysis of Wilms tumour and adult renal cell carcinoma. Oncogene 22:6794–6801.

    Article  PubMed  CAS  Google Scholar 

  • Morrison DJ, English MA, Licht JD (2005) WT1 induces apoptosis through transcriptional regulation of the proapoptotic Bel-2 family member Bak. Cancer Res 15:8174–8182.

    Article  CAS  Google Scholar 

  • Morton CL, Favours EG, Mercer KS, Boltz CR, Crumpton JC, Tucker C, et al. (2007) Evaluation of ABT-751 against childhood cancer models in vivo. Invest New Drugs 25:285–295.

    Article  PubMed  CAS  Google Scholar 

  • Moulton T, Crenshaw T, Hao Y, Moosikauwan J, Lin N, Demitzer F, et al. (1994) Epigenetic lesions at the H19 locus in Wilms tumour patients. Nat Genet 7:440–447.

    Article  PubMed  CAS  Google Scholar 

  • Mummert SK, Lobanenkov VA, Feinberg AP (2005) Association of chromosome arm 16q loss with loss of imprinting of insulin-like growth factor-II in Wilms tumor. Genes Chromosomes Can 43:155–161.

    Article  CAS  Google Scholar 

  • Natrajan R, Little S, Reis-Filho J, Hing L, Messahel B, Grundy P, et al. (2006a) Amplification and overexpression of cacna1e correlates with relapse in favorable histology Wilms tumors. Clin Can Res 12:7284–7293.

    Article  CAS  Google Scholar 

  • Natrajan R, little SE, Sodha N, Reis-Filho JS, Mackay A, Fenwick K et al. (2007c) Analysis by array CGH of genomic changes associated with the progression or relapse of Wilms tumor. J Pathol 21:52–59.

    Article  CAS  Google Scholar 

  • Natrajan R, Reis-Filho JS, Little SE, Messahel B, Brundler MA, Dome JS, et al. (2006b) Blastemal expression of type I insulin-like growth factor receptor in Wilms’ tumors is driven by increased copy number and correlates with relapse. Cancer Res 66: 11148–55.

    Article  PubMed  CAS  Google Scholar 

  • Natrajan R, Warren W, Messahel B, Reis-Filho JS, Brundler MA, Dome JS, et al. (2007b) Complex patterns of chromosome 9 alterations including the p16INK4A locus in Wilms tumours. J Clin Pathol 10:1–20.

    Google Scholar 

  • Natrajan R, Williams RD, Grigoriadis A, Mackay A, Fenwick K, Ashworth A, et al. (2007a) Delineation of a 1 MB breakpoint region at 1p13 in Wilms tumor by fine –tilling oligonucleotide array CGH. Genes Chromosome Can 46:607–615.

    Article  CAS  Google Scholar 

  • Nowicki M, Ostalska-Nowicka D, Kaczmarek M, Miskowiak B Witt M (2007) The significance of VEGF-C/VEGFR-2 interaction in the neovascularization and prognosis of nephroblastoma (Wilms’ tumour). Histopathology 50:358–364.

    Article  PubMed  CAS  Google Scholar 

  • Nusse R (2007) Converging on beta-catenin in Wilms tumor. Science 316:988–989.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, et al. (1993) Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms tumour. Nature 22: 749–751.

    Article  Google Scholar 

  • Ohori H, Yamakoshi H, Tomizawa M, Shibuya M, Kakudo Y, Takahashi A, et al. (2006) Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol Cancer Ther 5:2563–2571.

    Article  PubMed  CAS  Google Scholar 

  • Ozluk Y, Kilicaslan I, Gulluoglu MG, Ayan I, Uysal V (2006) The prognostic significance of angiogenesis and the effect of vascular endothelial growth factor on angiogenic process in Wilms’tumour. Pathology 38:408–414.

    Article  PubMed  CAS  Google Scholar 

  • Park CH, Chang JY, Hahm ER, Park S, Kim HK, Yang CH (2005) Quercetin, a potent inhibitor against beta-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Biophys Res Commun 328(1):227–34.

    Article  PubMed  CAS  Google Scholar 

  • Pastore G, Znaor A, Spreafico F, Graf N, Pritchard-Jones K, Steliarova-Foucher E (2006) malignant renal tumors incidence and survival in European children (1978–1997): Report from the Automated Childhood Cancer Information System Project. European Journal of Cancer 42: 2103–2114.

    Article  PubMed  Google Scholar 

  • Perotti D, De Vecchi G, Testi MA, Ludldi E, Modena P, Mondini P, et al. (2004) Germline mutations of the POU6F2 gene in Wilms tumors with loss of heterozygosity on chromosome 7p14. Hum Mutat 24:400–407.

    Article  PubMed  CAS  Google Scholar 

  • Peterson JK, Tucker C, Favours E, Cheshire PJ, Creech J, Billups CA, et al. (2005) In vivo evaluation of exabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin Cancer Res 1:6950–6958.

    Article  CAS  Google Scholar 

  • Ping AJ, Reeve AE, Law DJ, Young MR, Boehnke M, Feinberg AP (1989) Genetic linkage of Beckwith-Wiedemann syndrome to 11p15. Am J Hum Genet 44(5):720–723.

    PubMed  CAS  Google Scholar 

  • Pinthus JH, Fridman E, Dekel B, Goldberg I, Kaufman-Francis K, Eshhar Z, et al. (2004) ErbB2 is a tumor associated antigen and a suitable therapeutic target in Wilms tumor. J Urol 172:1644–1548.

    Article  PubMed  CAS  Google Scholar 

  • Pinthus JH, Sheffer Y, Nagler A, Fridman E, Mor Y, Genina O, et al. (2005) Inhibition of Wilms tumor xenograft progression by halofuginone is accompanied by activation of WT-1 gene expression. J Urol 174:1527–1531.

    Article  PubMed  CAS  Google Scholar 

  • Piva R, Pellergrion E, Mattioli M, Agnelli L, Lombard L, Boccalatte F, et al. (2006) Functional validation fo the ana plastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J Clin Invest 6:3171–3182.

    Article  CAS  Google Scholar 

  • Prawitt D, Enklaar T, Gartner-Rupprecht B, Spangengerg C, Oswald M, Lausch E, et al. (2005) Microdeletion of target sites for insulator protein CTCF in a chromosome 11p15 imprinting center in Beckwith-Wiedemann syndrome and Wilms’ tumor. Proc Natl Acad Sci15:4085–4090.

    Article  CAS  Google Scholar 

  • Pritchard-Jones K, Vujanic G (2006) Multiple Pathways to Wilms Tumor: How Much is Genetic? Ped Blood and Can 47:232–234.

    Article  Google Scholar 

  • Qing RQ, Schmitt S, Ruelicke T, Stallmach T, Schooenle EJ (1996) Autocrine regulation of growth by insulin-like growth factor (IFG)-II mediated by type I IGF-receptor in Wilms tumor cells. Pediatr Res 39(1):160–5.

    Article  PubMed  CAS  Google Scholar 

  • Rahman N, Abidi F, Ford D, Arbour L, Rapley E, Tonin P, Barton D, et al. (1998) Confirmation of FWT1 as a Wilms tumour susceptibility gene and phenotypic characteristic of Wilms tumour attributable to FWT1. Hum Genet 103:547–556.

    Article  PubMed  CAS  Google Scholar 

  • Rahman N, Arbour L, Tonic P, Renshaw J, Pelletier J, Baruchel S, Pritchard-Jones, et al. (1996) Evidence for a familial wills tumour gene (FWT1) on chromosome 17q12-q21. Nat Genet 13:461–463.

    CAS  Google Scholar 

  • Ramburan A, Chetty R, Hadley G P, Naidoo R, Govender D ( 2004) Microsatellite analysis of the DCC gene in nephroblastomas: pathologic correlations and prognostic implications. Mod Pathol 17: 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Ramburan A, Hadley GP, Govender D (2006) Expresson of E-cadherin, cadherin-11, alpha-, beta- and gamma-catenins in nephroblastomas: relatonship with clinicopathological parameters, prognostic factors and outcome. Pathology 38(1):39–44.

    Article  PubMed  CAS  Google Scholar 

  • Ramburan A, Oladiran F, Smith C, Hadley GP, Goverder D (2005) Microsatellite analysis of the adenomatous polyposis coli (APC) gene and imunoexpression of beta catenin in nephroblastoma: a study including 83 cases treated with preoperative chemotherapy. J Clin Pathol 58:44–50.

    Article  PubMed  CAS  Google Scholar 

  • Rasola A, Fassetta M, De Bacco F, D’Alessandro L, Gramaglia D, Di Renzo MF, et al. (2007) A positive feedback loop between hepatocyte growth factor receptor and beta-catenin sustains colorectal cancer cell invasive growth. Oncogene 15:1078–1087.

    Article  CAS  Google Scholar 

  • Ravenel J, Broman K, Perlman E, Niemitz E, Jayawardena T, Bell D, et al. (2001) Loss of imprintng of insulin-like growth factor-II (IGF2) Gene in distinguishing specific biologic subtypes of Wilms tumor. J Nat Can Inst 93:1698–1703.

    Article  CAS  Google Scholar 

  • Ravenel J, Perlman E, Broman K, Feinberg A (2002) Re: loss of imprinting of insulin-like growth factor-II (IGF2) gene in distinguishing specific biologic subtypes of Wilms tumor. J Nat Canr Inst 94:1809–1810.

    Article  CAS  Google Scholar 

  • Re GG, Hazen-Martin DJ, El Bahtimi R, Brownlee NA, Willingham MC, Garvin AJ (1999) Prognostic significance of Bcl-X(L) in rare tumor cases. Int J Cancer 20:192–200.

    Article  Google Scholar 

  • Rebhandl W, Handisurya A, Memaran N, Felberbauer FX, Aberle J, Paya K, et al. (2001) Expression of cytokeratin-18-related tissue polypeptide-specific (TPS) antigen in Wilms tumor. Med Pediatr Oncol 37:357–364.

    Article  PubMed  CAS  Google Scholar 

  • Reeve AE, Eccles MR, Wilkins RJ Bell GI, Millow LJ (1985) Expression of insulin-like growth factor-II transcriptions in Wilms tumour. Nature 19:258–260.

    Article  Google Scholar 

  • Reidemann J, Macaulay VM (2006) IGF1R signaling and its inhibition. Endocrin-Related Cancer 13:33–43.

    Article  CAS  Google Scholar 

  • Rivera M, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, et al. (2007) An X chromosome gene, WTX is commonly inactivated in Wilms tumor. Science 315:642–645.

    Article  PubMed  CAS  Google Scholar 

  • Safford SD, Freemerman AJ, Langdon S, Bentley R, Goyeau D, Grundy PE (2005) Decreased E-cadherin expression correlates with higher stage of Wilms’ tumors. J Pediatr Surg 40:341–348.

    Article  PubMed  Google Scholar 

  • Salem M, Kinoshita Y, Tajiri T, Souzaki R, Tatsuta K, Higashi M, et al.(2006) Association between the HER2 expression and histological differentiation in Wilms tumor. Pediatr Surg Int (11):891–896.

    Article  Google Scholar 

  • Samani AA, Yakar S, LeRoith D, Brodt P (2007) The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 28:20–47.

    Article  PubMed  CAS  Google Scholar 

  • Sattler M, Salgia R (2007) c-Met and hepatocyte growth factor: potential as novel targets in cancer therapy. Curr Oncol Rep 9:102–108.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt S, Ren-Qiu Q, Torresani T, Doebeli M, Zapf J, Schoenle J (1997) High molecular weight forms of IGF-II (big-IGF-II) released by Wilms tumor cells. Eur J of Endo 137:396–401.

    Article  CAS  Google Scholar 

  • Schulz S,. Becker KF, Braungart E, Reichmuth C, Klamt B, Becker I, et al.(2000) Molecular analysis of E-cadherin and cadherin-11 in Wilms tumour. J Pathol 191:162–169.

    Article  PubMed  CAS  Google Scholar 

  • Scott J, Cowell J, K Robertson ME, Priestley LM, Wadey R, Hopkins B, et al.(1985) Insulin-like growth factor-II gene expression in Wilms tumour and embryonic tissues. Nature 19:260–262.

    Article  Google Scholar 

  • Shan J, Shi DL, Wang J, Zheng J (2005) Identification of a specific inhibitor of the dishevelled PDZ domain. Biochemistry 29:15495–15503.

    Article  CAS  Google Scholar 

  • Shaw AP, Poirier V, Tyler S, Mott M, Berry Y, Maitland NJ (1988) Expression of the N-myc oncogene in Wilms’ tumour and related tissues. Oncogene 3(2):143–9.

    PubMed  CAS  Google Scholar 

  • Singh KP, Roy D (2006) SKCG-1: a new candidate growth regulatory gene at chromosome 11q23.2 in human sporadic Wilms tumours. Br J Can 94:1524–1532.

    Article  CAS  Google Scholar 

  • Skoldenberg EG, Christiansson J, Sandstedt B, Larsson A, Lackgren G, Christofferson R (2001) Angiogenesis and angiogenic growth factors in Wilms tumor. J Urol 165:2274–2279.

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Maris JM, Keir ST, et al. (2007) Pediatric preclinical testing program (PPTP) efficacy and pharmacodynamic evaluation of the Hsp90 inhibitor 17-DMAG. J Clin Oncol 25 (Abstract 3575).

    Google Scholar 

  • Smith MA, Morton CL, Phelps D, Girtman K, Neale G, Houghton PJ. (2006) SK-NEP-1 and Rh1 are Ewing family tumor lines. Ped Blood Can [Epub ahead of print].

    Google Scholar 

  • Smithey BE, Pappo AS, Hill DA (2002) C-kit expression in pediatric solid tumors: a comparative immunohistochemical study. Am J Surg Pathol 26:486–492.

    Article  PubMed  Google Scholar 

  • Stammler G, Volm M (1996) Expression of heat shock proteins, glutatahione peroxidase and catalase in childhood acute lymphoblastic leukemia and nephroblastoma. Cancer Lett 19:35–42.

    Article  Google Scholar 

  • Stanhope-Baker P, Kessler PM, LI W, Agarwal ML, Williams BR (2004) The Wilms tumor suppressor-1 target gene podacalyxin is transcriptionally repressed by p53. J Biol Chem 6:33357–33385.

    Google Scholar 

  • Steeman M, Rainier S, Dobry CJ, Grundy P, Horon I, Feingerg AP (1994) Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms tumour. Nat Genet 7:433–439.

    Article  Google Scholar 

  • Tajbakhsh M, Houghton PJ, Morton CL, Kolb EA, Gorlick R, Maris JM, et al. (2007) Initial testing of cisplatin by the pediatric preclinical testing program. Ped Blood Can [Epub ahead of print].

    Google Scholar 

  • Takahashi-Yanaga F, Sasaguri T (2007) The Wnt/B-catein signaling pathway as a target in drug discovery. J Pharmacol 104:293–302.

    CAS  Google Scholar 

  • Takamizawa S, Okamoto S, Bishop W, Wen J, Kimura K, Sandler A (2000) Differential apoptosis gene expression in pediatric tumors of the kidney. J Pediatr Surg 35:390–395.

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa S, Scott D, Wen J, Grundy P, Bishop W, Kimura K, et al.(2001) The survivin:fas ratio in pediatric renal tumors. J Pediatr Surg 36:37–42.

    Article  PubMed  CAS  Google Scholar 

  • Talts JF, Aufderheide E, Sorokin L, Ocklind G, Mattson R, Ekblom P (1993) Induction of mouse tenascin expression by a human sarcomatiod Wilms tumor cell line growing in nude mice. Int J Cancer 54:868–874.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Granata C, Wang Y, O’Briain DS, Puri P (1999) Apoptosis and bcl-2 oncogene expression in Wilms’ tumor. Pediatr Surg Int 15:243–247.

    Article  PubMed  CAS  Google Scholar 

  • Timofeeva QA, Plisov S, Evseev AA, Peng S, Jose-Kampfner M, Lovvorn HN, et al. (2006) Serine-phosphorylated STAT1 is a prosurvival factor in Wilms tumor pathogenesis. Oncogene 25:7555–7564.

    Article  PubMed  CAS  Google Scholar 

  • Vicanek C, Ferretti E, Goodyer C, Torban E, Moffett P, Pelletier J, et al. (1997) Regulation of renal EGF receptor expression is normal in Denys-Drash syndrome. Kidney Int 52(3):614–619.

    Article  PubMed  CAS  Google Scholar 

  • Vincent TS, Hazen-Martin DJ, Garvin AJ (1996a) Inhibition of insulin like growth factor II autocrin growth of Wilms tumor by suramin in vitro and vivo. Cancer Lett 15:49–56.

    Article  Google Scholar 

  • Vincent TS, Re GG, Hazen-Martin DJ, Tarnowsk BI, Willingham MC, Garvin AJ (1996b) All-trans-retinoic acid-induced growth Suppression of blastemal Wilms’ tumor. Pediatr Pathol Lab Med 16:777–789.

    Article  PubMed  CAS  Google Scholar 

  • Werner H, Gian G Re, Iain A, Drummond, Vikas P, Sukhatme, Frank J, et al.(1993) Increase expression of the insulin-like growth factor I receptor gene, IGF1R, in Wilms tumor is correlated with modulation of IGF1R promoter activity by the WT1 Wilms tumor gene product. Proc Nat Acad Sci 90:5828–5832.

    Article  PubMed  CAS  Google Scholar 

  • Werner H, Le Roith D (1997) The insulin-like growth factor-I receptor signaling pathways are important for tumorigenesis and inhibition of apoptosis. Crit Rev Oncol 8:71–92.

    Article  CAS  Google Scholar 

  • Wunsch L, Flemming P, Gluer S (2001) Expression of MIB and BCL-2 in patients with nephrogenic rest with and without associated Wilms tumors. Eur J Ped Surg 11:105–109.

    Article  CAS  Google Scholar 

  • Xu YQ, Grundy P, Polychronakos C (1997) Aberrant imprinting of the insulin-like growth factor II receptor gene in Wilms’ tumor. Oncogene 14(9):1041–6.

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Niu ZB, Hou Y, Wang CL (2006) The expression of HSP70 and HSP90alpha in children with Wilms tumor. J Pediatr Surg 41:1062–1066.

    Article  PubMed  Google Scholar 

  • Yokoi A, McCrudden KW, Huang J, Kim ES, Soffer SZ, Frischer JS, et al.(2003) Human epidermal growth factor receptor signaling contributes to tumor growth via angiogenesis in her2/neu-expressing experimental Wilms’ tumor. J Pediatr Surg 38 1569–1573.

    Article  PubMed  Google Scholar 

  • Zhao J, Yart A, Frigerio S, Perren A, Schraml P, Weisstanner C, et al. (2007) Sporadic human renal tumors display frequent allelic imbalances and novel mutations of the HRPT2 gene. Oncogene 26:334–3449.

    Google Scholar 

  • Zirn B, Samans B, Wittmann S, Pietsch T, Leuschner I, Graf N, et al. (2006) Target genes of the WNT/beta-catenin pathway in Wilms tumors. Genes Chromosomes Can 45:565–574.

    Article  CAS  Google Scholar 

  • Zumkeller W, Schwander J, Mitchell CD, Morrell DJ, Scholfield PN, Preece MA (1993) Insulin-like growth factor (IGF)-I, II and IGF binding protein-2 (IGFBP-2) in the plasma of children with Wilms tumor. Eur J Cancer 14:1973–1977.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Dome .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Geller, J.I., Dome, J.S. (2010). Molecular Targeted Therapy for Wilms’ Tumor. In: Houghton, P., Arceci, R. (eds) Molecularly Targeted Therapy for Childhood Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69062-9_19

Download citation

Publish with us

Policies and ethics