Development of Targeted Therapies for Neurofibromatosis Type 1 (NF1) Related Tumors



Neurofibromatosis Type 1 (NF1), previously referred to as von Recklinghausen disease, is a relatively common (1:2,500 to 1:3,000) autosomal dominant, progressive tumor predisposition syndrome characterized by manifestations in many organ systems including neurocutaneous findings and the propensity to develop tumors of the peripheral and central nervous system (Friedman 2002; Korf 2002; Ferner 2007). The natural history of NF1 is poorly understood, and for most NF1 related tumor manifestations the only standard treatment option is surgery (Korf 2001; Ferner et al. 2007). Increasing knowledge of molecular and biologic pathways implied in the development of NF1 related tumors has resulted in the development of treatment trials with targeted agents (Packer et al. 2002).


Epidermal Growth Factor Receptor Malignant Peripheral Nerve Sheath Tumor Plexiform Neurofibroma Optic Pathway Glioma Neural Crest Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albritton, K., Rankin, C., Coffin, M., Ratner, N., Budd, G., Schuetze, S., Randall, L., DeClue, J., and Borden, E. 2006. Phase II study of erlotinib in metastatic or unresectable malignant peripheral nerve sheath tumors (MPNSTs). Paper presented at: ASCO (Atlanta, GA).Google Scholar
  2. Angelov, L., Salhia, B., Roncari, L., McMahon, G., and Guha, A. 1999. Inhibition of angiogenesis by blocking activation of the vascular endothelial growth factor receptor 2 leads to decreased growth of neurogenic sarcomas. Cancer Res 59: 5536–5541.PubMedGoogle Scholar
  3. Babovic-Vuksanovic, D., Ballman, K., Michels, V., McGrann, P., Lindor, N., King, B., Camp, J., Micic, V., Babovic, N., Carrero, X., et al. 2006. Phase II trial of pirfenidone in adults with neurofibromatosis type 1. Neurology 67: 1860–1862.PubMedCrossRefGoogle Scholar
  4. Babovic-Vuksanovic, D., Widemann, B.C., Dombi, E., Gillespie, A., Wolters, P.L., Toledo-Tamula, M.A., O’Neill, B.P., Fox, E., MacDonald, T., Beck, H., et al. 2007. Phase I trial of pirfenidone in children with neurofibromatosis 1 and plexiform neurofibromas. Pediatr Neurol 36: 293–300.PubMedCrossRefGoogle Scholar
  5. Badache, A., and De Vries, G.H. 1998. Neurofibrosarcoma-derived Schwann cells overexpress platelet-derived growth factor (PDGF) receptors and are induced to proliferate by PDGF BB. J Cell Physiol 177: 334–342.PubMedCrossRefGoogle Scholar
  6. Barkan, B., Starinsky, S., Friedman, E., Stein, R., and Kloog, Y. 2006. The RAS inhibitor Farnesylthiosalicylic acid as potential therapy for neurofibromatosis type 1. Clin Cancer Res 12: 5533–5541.PubMedCrossRefGoogle Scholar
  7. Bender, J.L., Adamson, P.C., Reid, J.M., Xu, L., Baruchel, S., Shaked, Y., Kerbel, R.S., Cooney-Qualter, E.M., Stempak, D., Chen, H.X., et al. 2008. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol 26: 399–405.CrossRefGoogle Scholar
  8. Carli, M., Ferrari, A., Mattke, A., Zanetti, I., Casanova, M., Bisogno, G., Cecchetto, G., Alaggio, R., De Sio, L., Koscielniak, E., et al. 2005. Pediatric malignant peripheral nerve sheath tumor: the Italian and German soft tissue sarcoma cooperative group. J Clin Oncol 23: 8422–8430.PubMedCrossRefGoogle Scholar
  9. Castleberry, R., Loh, M., Jayaprakash, N., Peterson, A., Casey, V., Chang, M., Widemann, B., and Emanuel, P. 2005. Phase II window study of the farnesyltransferase inhibitor R115777 (zarnestra) in untreated juvenile myelomonocytic leukemia (JMML): A Children’s Oncology Group Study. Paper presented at: American Society of Hematology (Atlanta, GA).Google Scholar
  10. Cichowski, K., and Jacks, T. 2001. NF1 tumor suppressor gene function: narrowing the GAP. Cell 104: 593–604.PubMedCrossRefGoogle Scholar
  11. Cichowski, K., Shih, T.S., Schmitt, E., Santiago, S., Reilly, K., McLaughlin, M.E., Bronson, R.T., and Jacks, T. 1999. Mouse models of tumor development in neurofibromatosis type 1. Science 286: 2172–2176.PubMedCrossRefGoogle Scholar
  12. Dang, I., Nelson, J., and DeVries, G. 2005. C-kit receptor expression in normal human schwann cells and scwann cell lines derived from neurofibromatosis type 1 tumors. J Neurosci Res 82: 465–471.PubMedCrossRefGoogle Scholar
  13. Dasgupta, B., Li, W., Perry, A., and Gutmann, D.H. 2005a. Glioma formation in neurofibromatosis 1 reflects preferential activation of K-RAS in astrocytes. Cancer Res 65: 236–245.PubMedGoogle Scholar
  14. Dasgupta, B., Yi, Y., Chen, D.Y., Weber, J.D., and Gutmann, D.H. 2005b. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res 65: 2755–2760.PubMedCrossRefGoogle Scholar
  15. DeClue, J.E., Cohen, B.D., and Lowy, D.R. 1991. Identification and characterization of the neurofibromatosis type 1 protein product. Proc Natl Acad Sci USA 88: 9914–9918.PubMedCrossRefGoogle Scholar
  16. DeClue, J.E., Heffelfinger, S., Benvenuto, G., Ling, B., Li, S., Rui, W., Vass, W.C., Viskochil, D., and Ratner, N. 2000. Epidermal growth factor receptor expression in neurofibromatosis type 1-related tumors and NF1 animal models. J Clin Invest 105: 1233–1241.PubMedCrossRefGoogle Scholar
  17. DeClue, J.E., Papageorge, A.G., Fletcher, J.A., Diehl, S.R., Ratner, N., Vass, W.C., and Lowy, D.R. 1992. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69: 265–273.PubMedCrossRefGoogle Scholar
  18. Dombi, E., Solomon, J., Gillespie, A.J., Fox, E., Balis, F.M., Patronas, N., Korf, B.R., Babovic-Vuksanovic, D., Packer, R.J., Belasco, J., et al. 2007. NF1 plexiform neurofibroma growth rate by volumetric MRI: relationship to age and body weight. Neurology 68: 643–647.PubMedCrossRefGoogle Scholar
  19. Emanuel, P.D. 2004. Juvenile myelomonocytic leukemia. Curr Hematol Rep 3: 203–209.PubMedGoogle Scholar
  20. Evans, D.G., Baser, M.E., McGaughran, J., Sharif, S., Howard, E., and Moran, A. 2002. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 39: 311–314.PubMedCrossRefGoogle Scholar
  21. Ferner, R.E. 2007. Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 6: 340–351.PubMedCrossRefGoogle Scholar
  22. Ferner, R.E., and Gutmann, D.H. 2002. International consensus statement on malignant peripheral nerve sheath tumors in neurofibromatosis. Cancer Res 62: 1573–1577.PubMedGoogle Scholar
  23. Ferner, R.E., Huson, S.M., Thomas, N., Moss, C., Willshaw, H., Evans, D.G., Upadhyaya, M., Towers, R., Gleeson, M., Steiger, C., et al. 2007. Guidelines for the diagnosis and management of individuals with neurofibromatosis 1. J Med Genet 44: 81–88.PubMedCrossRefGoogle Scholar
  24. Friedman, J.M. 2002. Neurofibromatosis 1: clinical manifestations and diagnostic criteria. J Child Neurol 17: 548–554; discussion 571–542, 646–551.PubMedCrossRefGoogle Scholar
  25. Gerber, H.P., Vu, T.H., Ryan, A.M., Kowalski, J., Werb, Z., and Ferrara, N. 1999. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med 5: 623–628.PubMedCrossRefGoogle Scholar
  26. Gupta, A., Cohen, B.H., Ruggieri, P., Packer, R.J., and Phillips, P.C. 2003. Phase I study of thalidomide for the treatment of plexiform neurofibroma in neurofibromatosis 1. Neurology 60: 130–132.PubMedCrossRefGoogle Scholar
  27. Gutmann, D.H., and Giovannini, M. 2002. Mouse models of neurofibromatosis 1 and 2. Neoplasia 4: 279–290.PubMedCrossRefGoogle Scholar
  28. Hegedus, B., Banerjee, D., Yeh, T.H., Rothermich, S., Perry, A., Rubin, J.B., Garbow, J.R., and Gutmann, D.H. 2008. Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Res 68: 1520–1528.PubMedCrossRefGoogle Scholar
  29. Hegedus, B., Dasgupta, B., Shin, J.E., Emnett, R.J., Hart-Mahon, E.K., Elghazi, L., Bernal-Mizrachi, E., and Gutmann, D.H. 2007. Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and RAS-dependent mechanisms. Cell Stem Cell 1: 443–457.PubMedCrossRefGoogle Scholar
  30. Hiatt, K.K., Ingram, D.A., Zhang, Y., Bollag, G., and Clapp, D.W. 2001. Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1−/− cells. J Biol Chem 276: 7240–7245.PubMedCrossRefGoogle Scholar
  31. Holtkamp, N., Atallah, I., Okuducu, A.F., Mucha, J., Hartmann, C., Mautner, V.F., Friedrich, R.E., Mawrin, C., and von Deimling, A. 2007. MMP-13 and p53 in the progression of malignant peripheral nerve sheath tumors. Neoplasia 9: 671–677.PubMedCrossRefGoogle Scholar
  32. Holtkamp, N., Mautner, V.F., Friedrich, R.E., Harder, A., Hartmann, C., Theallier-Janko, A., Hoffmann, K.T., and von Deimling, A. 2004. Differentially expressed genes in neurofibromatosis 1-associated neurofibromas and malignant peripheral nerve sheath tumors. Acta Neuropathol 107: 159–168.PubMedCrossRefGoogle Scholar
  33. Holtkamp, N., Okuducu, A.F., Mucha, J., Afanasieva, A., Hartmann, C., Atallah, I., Estevez-Schwarz, L., Mawrin, C., Friedrich, R.E., Mautner, V.F., et al. 2006. Mutation and expression of PDGFRA and KIT in malignant peripheral nerve sheath tumors, and its implications for imatinib sensitivity. Carcinogenesis 27: 664–671.PubMedCrossRefGoogle Scholar
  34. Houghton, P., Adamson, P., Blaney, S., Fine, H., Gorlick, R., Haber, M., Helman, L., Hirschfeld, S., Hollingshead, M., Israel, M., et al. 2002. Testing of new agents in childhood preclinical models: Meeting summary. Clin Cancer Res 8: 3646–3657.PubMedGoogle Scholar
  35. Houghton, P., Morton, C., Kolb, E., Giorlick, R., Lock, R., Carol, H., Reynolds, C., Marris, J., Keir, S., Billups, C., et al. 2008. Initial testing (stage 1) of the mTOR inhibiotr rapamycin by the pediatric preclinical testing program. Pediatr Blood Cancer 50: 799–805.PubMedCrossRefGoogle Scholar
  36. Huson, S.M., Compston, D.A., Clark, P., and Harper, P.S. 1989. A genetic study of von Recklinghausen neurofibromatosis in south east Wales. I. Prevalence, fitness, mutation rate, and effect of parental transmission on severity. J Med Genet 26: 704–711.PubMedCrossRefGoogle Scholar
  37. Huson, S.M., Harper, P.S., and Compston, D.A. 1988. Von Recklinghausen neurofibromatosis. A clinical and population study in south-east Wales. Brain 111 (Pt 6): 1355–1381.PubMedCrossRefGoogle Scholar
  38. Ingram, D.A., Hiatt, K., King, A.J., Fisher, L., Shivakumar, R., Derstine, C., Wenning, M.J., Diaz, B., Travers, J.B., Hood, A., et al. 2001. Hyperactivation of p21(ras) and the hematopoietic-specific Rho GTPase, Rac2, cooperate to alter the proliferation of neurofibromin-deficient mast cells in vivo and in vitro. J Exp Med 194: 57–69.PubMedCrossRefGoogle Scholar
  39. Ingram, D.A., Yang, F.C., Travers, J.B., Wenning, M.J., Hiatt, K., New, S., Hood, A., Shannon, K., Williams, D.A., and Clapp, D.W. 2000. Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191: 181–188.PubMedCrossRefGoogle Scholar
  40. Jakacki, R., Dombi, E., Goldmann, S., Allen, J., Pollack, I., Geyer, R. 2008. Phase I trial of pegylated interferon alfa-2b for children and young adults with neurofibromatosis type I and unresectable plexiformneurofibromas. Neuro Oneol 10: 463.Google Scholar
  41. Johannessen, C.M., Johnson, B.W., Williams, S.M., Chan, A.W., Reczek, E.E., Lynch, R.C., Rioth, M.J., McClatchey, A., Ryeom, S., and Cichowski, K. 2008. TORC1 is essential for NF1-associated malignancies. Curr Biol 18: 56–62.PubMedCrossRefGoogle Scholar
  42. Johannessen, C.M., Reczek, E.E., James, M.F., Brems, H., Legius, E., and Cichowski, K. 2005. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci USA 102: 8573–8578.PubMedCrossRefGoogle Scholar
  43. Johansson, G., Mahller, Y.Y., Collins, M.H., Kim, M.O., Nobukuni, T., Perentesis, J., Cripe, T.P., Lane, H.A., Kozma, S.C., Thomas, G., et al. 2008. Effective in vivo targeting of the mammalian target of rapamycin pathway in malignant peripheral nerve sheath tumors. Mol Cancer Ther 7: 1237–1245.PubMedCrossRefGoogle Scholar
  44. Joseph, N.M., Mosher, J.T., Buchstaller, J., Snider, P., McKeever, P.E., Lim, M., Conway, S.J., Parada, L.F., Zhu, Y., and Morrison, S.J. 2008. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 13: 129–140.PubMedCrossRefGoogle Scholar
  45. Kawachi, Y., Xu, X., Ichikawa, E., Imakado, S., and Otsuka, F. 2003. Expression of angiogenic factors in neurofibromas. Exp Dermatol 12: 412–417.PubMedCrossRefGoogle Scholar
  46. Khalaf, W.F., Yang, F.C., Chen, S., White, H., Bessler, W., Ingram, D.A., and Clapp, D.W. 2007. K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/− mast cells. J Immunol 178: 2527–2534.PubMedGoogle Scholar
  47. Kim, H.A., et al. 1997. Nf1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Mol Cell Biol 17: 862–872.PubMedGoogle Scholar
  48. King, A., Listernick, R., Charrow, J., Piersall, L., and Gutmann, D.H. 2003. Optic pathway gliomas in neurofibromatosis type 1: the effect of presenting symptoms on outcome. Am J Med Genet A 122: 95–99.CrossRefGoogle Scholar
  49. Kluwe, L., Friedrich, R., and Mautner, V.F. 1999a. Loss of NF1 allele in Schwann cells but not in fibroblasts derived from an NF1-associated neurofibroma. Genes Chromosomes Cancer 24: 283–285.PubMedCrossRefGoogle Scholar
  50. Kluwe, L., Friedrich, R.E., and Mautner, V.F. 1999b. Allelic loss of the NF1 gene in NF1-associated plexiform neurofibromas. Cancer Genet Cytogenet 113: 65–69.PubMedCrossRefGoogle Scholar
  51. Korf, B.R. 1999. Plexiform neurofibromas. Am J Med Genet 89: 31–37.PubMedCrossRefGoogle Scholar
  52. Korf, B.R. 2000. Malignancy in neurofibromatosis type 1. Oncologist 5: 477–485.PubMedCrossRefGoogle Scholar
  53. Korf, B.R. 2001. Diagnosis and management of neurofibromatosis type 1. Curr Neurol Neurosci Rep 1: 162–167.PubMedCrossRefGoogle Scholar
  54. Korf, B.R. 2002. Clinical features and pathobiology of neurofibromatosis 1. J Child Neurol 17: 573–577; discussion 602–574, 646–551.PubMedCrossRefGoogle Scholar
  55. Kourea, H.P., Cordon-Cardo, C., Dudas, M., Leung, D., and Woodruff, J.M. 1999. Expression of p27(kip) and other cell cycle regulators in malignant peripheral nerve sheath tumors and neurofibromas: the emerging role of p27(kip) in malignant transformation of neurofibromas. Am J Pathol 155: 1885–1891.PubMedCrossRefGoogle Scholar
  56. Kranenburg, O., Gebbink, M.F., and Voest, E.E. 2004. Stimulation of angiogenesis by RAS proteins. Biochim Biophys Acta 1654: 23–37.PubMedGoogle Scholar
  57. Lancet, J.E., and Karp, J.E. 2003. Farnesyltransferase inhibitors in hematologic malignancies: new horizons in therapy. Blood 102: 3880–3889.PubMedCrossRefGoogle Scholar
  58. Lau, N., Feldkamp, M., Roncari, L., Loehr, A., Shannon, P., Gutmann, D., and Guha, A. 2000. Loss of neurofibromin is associated with activation of RAS/MAPK and PI3-K/AKT signaling in neurofibromatosis 1 astrocytoma. J Neuropathol Exp Neurol 59: 759–767.PubMedGoogle Scholar
  59. Levy, P., Vidaud, D., Leroy, K., Laurendeau, I., Wechsler, J., Bolasco, G., Parfait, B., Wolkenstein, P., Vidaud, M., and Bieche, I. 2004. Molecular profiling of malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1, based on large-scale real-time RT-PCR. Mol Cancer 3: 20.PubMedCrossRefGoogle Scholar
  60. Li, H., Velasco-Miguel, S., Vass, W.C., Parada, L.F., and DeClue, J.E. 2002. Epidermal growth factor receptor signaling pathways are associated with tumorigenesis in the Nf1:p53 mouse tumor model. Cancer Res 62: 4507–4513.PubMedGoogle Scholar
  61. Ling, B.C., Wu, J., Miller, S.J., Monk, K.R., Shamekh, R., Rizvi, T.A., Decourten-Myers, G., Vogel, K.S., DeClue, J.E., and Ratner, N. 2005. Role for the epidermal growth factor receptor in neurofibromatosis-related peripheral nerve tumorigenesis. Cancer Cell 7: 65–75.PubMedCrossRefGoogle Scholar
  62. Listernick, R., Charrow, J., Greenwald, M., and Mets, M. 1994. Natural history of optic pathway tumors in children with neurofibromatosis type 1: a longitudinal study. J Pediatr 125: 63–66.PubMedCrossRefGoogle Scholar
  63. Listernick, R., Ferner, R.E., Liu, G.T., and Gutmann, D.H. 2007. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol 61: 189–198.PubMedCrossRefGoogle Scholar
  64. Mantripragada, K.K., Spurlock, G., Kluwe, L., Chuzhanova, N., Ferner, R.E., Frayling, I.M., Dumanski, J.P., Guha, A., Mautner, V., and Upadhyaya, M. 2008. High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clin Cancer Res 14: 1015–1024.PubMedCrossRefGoogle Scholar
  65. Maki, R.G., D’Adamo, D.R., Keohan, M.L., Saulle, M., Schuetze, S.M., Undevia, S.D., Livingston, M.B., Cooney, M.M., Hensley, M.L., Mita, M.M., Takimoto, C.H., Kraft, A.S., Elias, A.D., Brockstein, B., Blachère, N.E., Edgar, M.A., Schwartz, L.H., Qin, L.X., Antonescu, C.R., Schwartz, G.K. 2009. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J Clin Oncol 27: 3133–3140. Google Scholar
  66. Mashour, G.A., Driever, P.H., Hartmann, M., Drissel, S.N., Zhang, T., Scharf, B., Felderhoff-Muser, U., Sakuma, S., Friedrich, R.E., Martuza, R.L., et al. 2004. Circulating growth factor levels are associated with tumorigenesis in neurofibromatosis type 1. Clin Cancer Res 10: 5677–5683.PubMedCrossRefGoogle Scholar
  67. Mashour, G.A., Ratner, N., Khan, G.A., Wang, H.L., Martuza, R.L., and Kurtz, A. 2001. The angiogenic factor midkine is aberrantly expressed in NF1-deficient Schwann cells and is a mitogen for neurofibroma-derived cells. Oncogene 20: 97–105.PubMedCrossRefGoogle Scholar
  68. Mattingly, R., Kraniak, J., Dilworth, J., Mathieu, P., Bealmear, B., Nowak, J., Benjamins, J., Tainsky, M., and Reiners, J. 2006a. The mitogen-activated protein kinase/extracellular signal regulated kinase kinase inhibitor PD184352 (CI-1040) selectively induces apoptosis in malignant schwannoma cell lines. J Pharmacol Exp Ther 316: 456–465.PubMedCrossRefGoogle Scholar
  69. Mattingly, R.R., Kraniak, J.M., Dilworth, J.T., Mathieu, P., Bealmear, B., Nowak, J.E., Benjamins, J.A., Tainsky, M.A., and Reiners, J.J., Jr. 2006b. The mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD184352 (CI-1040) selectively induces apoptosis in malignant schwannoma cell lines. J Pharmacol Exp Ther 316: 456–465.PubMedCrossRefGoogle Scholar
  70. McClatchey, A.I., and Cichowski, K. 2001. Mouse models of neurofibromatosis. Biochim Biophys Acta 1471: M73–M80.PubMedGoogle Scholar
  71. Messiaen, L.M., Callens, T., Mortier, G., Beysen, D., Vandenbroucke, I., Van Roy, N., Speleman, F., and Paepe, A.D. 2000. Exhaustive mutation analysis of the NF1 gene allows identification of 95% of mutations and reveals a high frequency of unusual splicing defects. Hum Mutat 15: 541–555.PubMedCrossRefGoogle Scholar
  72. Miller, A.B., Hoogstraten, B., Staquet, M., and Winkler, A. 1981. Reporting results of cancer treatment. Cancer 47: 207–214.PubMedCrossRefGoogle Scholar
  73. Miller, S.J., Rangwala, F., Williams, J., Ackerman, P., Kong, S., Jegga, A.G., Kaiser, S., Aronow, B.J., Frahm, S., Kluwe, L., et al. 2006. Large-scale molecular comparison of human schwann cells to malignant peripheral nerve sheath tumor cell lines and tissues. Cancer Res 66: 2584–2591.PubMedCrossRefGoogle Scholar
  74. Needle, M.N., et al. 1997. Prognostic signs in the surgical management of plexiform neurofibroma: the Children’s Hospital of Philadelphia experience, 1974–1994. J Pediatr 131: 678–682.PubMedCrossRefGoogle Scholar
  75. NIH, Consensus, Development, and Conference. 1988. Neurofibromatosis statement. Arch Neurol 45: 475.Google Scholar
  76. North, K. 1997. Neurofibromatosis type 1 in childhood (London, Mac keith Press).Google Scholar
  77. Packer, R., Gutmann, D., Rubenstein, A., Viskochil, D., Zimmerman, R., Vezina, G., Small, J., and Korf, B. 2002. Plexiform neurofibromas in NF1: toward biologic-based therapy. Neurology 58: 1461–1470.PubMedCrossRefGoogle Scholar
  78. Perry, A., Kunz, S.N., Fuller, C.E., Banerjee, R., Marley, E.F., Liapis, H., Watson, M.A., and Gutmann, D.H. 2002. Differential NF1, p16, and EGFR patterns by interphase cytogenetics (FISH) in malignant peripheral nerve sheath tumor (MPNST) and morphologically similar spindle cell neoplasms. J Neuropathol Exp Neurol 61: 702–709.PubMedGoogle Scholar
  79. Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T., and Kerbel, R.S. 1995. Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55: 4575–4580.PubMedGoogle Scholar
  80. Reilly, K., Loisel, D., Bronson, R., McLaughlin, M., and Jacks, T. 2000. Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain specific effects. Nat Genet 26: 109–113.PubMedCrossRefGoogle Scholar
  81. Rowinsky, E., Windle, J., and Von Hoff, D. 1999. RAS protein farnesyltransferse: a strategic target for anticancer therapeutic development. J Clin Oncol 17: 3631–3652.PubMedGoogle Scholar
  82. Sandsmark, D.K., Pelletier, C., Weber, J.D., and Gutmann, D.H. 2007. Mammalian target of rapamycin: master regulator of cell growth in the nervous system. Histol Histopathol 22: 895–903.PubMedGoogle Scholar
  83. Santos, E.S., Rosenblatt, J.D., and Goodman, M. 2004. Role of farnesyltransferase inhibitors in hematologic malignancies. Expert Rev Anticancer Ther 4: 843–856.PubMedCrossRefGoogle Scholar
  84. Satoh, T., and Kaziro, Y. 1992. RAS in signal transduction. Cancer Biol 3: 169–177.Google Scholar
  85. Serra, E., Rosenbaum, T., Winner, U., Aledo, R., Ars, E., Estivill, X., Lenard, H.G., and Lazaro, C. 2000. Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell subpopulations. Hum Mol Genet 9: 3055–3064.PubMedCrossRefGoogle Scholar
  86. Sherman, L.S., Atit, R., Rosenbaum, T., Cox, A.D., and Ratner, N. 2000. Single cell RAS-GTP analysis reveals altered RAS activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J Biol Chem 275: 30740–30745.PubMedCrossRefGoogle Scholar
  87. Skotheim, R.I., Kallioniemi, A., Bjerkhagen, B., Mertens, F., Brekke, H.R., Monni, O., Mousses, S., Mandahl, N., Soeter, G., Nesland, J.M., et al. 2003. Topoisomerase-II alpha is upregulated in malignant peripheral nerve sheath tumors and associated with clinical outcome. J Clin Oncol 21: 4586–4591.PubMedCrossRefGoogle Scholar
  88. Solomon, J., Warren, K., Dombi, E., Patronas, N., and Widemann, B. 2004. Automated detection and volume measurement of plexiform neurofibromas in neurofibromatosis 1 using magnetic resonance imaging. Comput Med Imaging Graph 28: 257–265.PubMedCrossRefGoogle Scholar
  89. Thomas, S.L., Deadwyler, G.D., Tang, J., Stubbs, E.B., Jr., Muir, D., Hiatt, K.K., Clapp, D.W., and De Vries, G.H. 2006. Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells. Biochem Biophys Res Commun 348: 971–980.PubMedCrossRefGoogle Scholar
  90. Upadhyaya, M., Huson, S.M., Davies, M., Thomas, N., Chuzhanova, N., Giovannini, S., Evans, D.G., Howard, E., Kerr, B., Griffiths, S., et al. 2007. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Am J Hum Genet 80: 140–151.PubMedCrossRefGoogle Scholar
  91. Upadhyaya, M., Kluwe, L., Spurlock, G., Monem, B., Majounie, E., Mantripragada, K., Ruggieri, M., Chuzhanova, N., Evans, D.G., Ferner, R., et al. 2008. Germline and somatic NF1 gene mutation spectrum in NF1-associated malignant peripheral nerve sheath tumors (MPNSTs). Hum Mutat 29: 74–82.PubMedCrossRefGoogle Scholar
  92. Upadhyaya, M., Ruggieri, M., Maynard, J., Osborn, M., Hartog, C., Mudd, S., Penttinen, M., Cordeiro, I., Ponder, M., Ponder, B.A., et al. 1998. Gross deletions of the neurofibromatosis type 1 (NF1) gene are predominantly of maternal origin and commonly associated with a learning disability, dysmorphic features and developmental delay. Hum Genet 102: 591–597.PubMedCrossRefGoogle Scholar
  93. Watson, M.A., Perry, A., Tihan, T., Prayson, R.A., Guha, A., Bridge, J., Ferner, R., and Gutmann, D.H. 2004. Gene expression profiling reveals unique molecular subtypes of neurofibromatosis type I-associated and sporadic malignant peripheral nerve sheath tumors. Brain Pathol 14: 297–303.PubMedCrossRefGoogle Scholar
  94. Weiss, B., Bollag, G., and Shannon, K. 1999. Hyperactive RAS as a therapeutic target in neurofibromatosis type 1. Am J Med Genet 89: 14–22.PubMedGoogle Scholar
  95. Widemann, B.C., Salzer, W.L., Arceci, R.J., Blaney, S.M., Fox, E., End, D., Gillespie, A., Whitcomb, P., Palumbo, J.S., Pitney, A., et al. 2006. Phase I trial and pharmacokinetic study of the farnesyltransferase inhibitor tipifarnib in children with refractory solid tumors or neurofibromatosis type I and plexiform neurofibromas. J Clin Oncol 24: 507–516.PubMedCrossRefGoogle Scholar
  96. Wu, J., Williams, J.P., Rizvi, T.A., Kordich, J.J., Witte, D., Meijer, D., Stemmer-Rachamimov, A.O., Cancelas, J.A., and Ratner, N. 2008. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13: 105–116.PubMedCrossRefGoogle Scholar
  97. Yang, F.C., Chen, S., Clegg, T., Li, X., Morgan, T., Estwick, S.A., Yuan, J., Khalaf, W., Burgin, S., Travers, J., et al. 2006. Nf1+/− mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet 15: 2421–2437.PubMedCrossRefGoogle Scholar
  98. Yang, F.C., Ingram, D.A., Chen, S., Hingtgen, C.M., Ratner, N., Monk, K.R., Clegg, T., White, H., Mead, L., Wenning, M.J., et al. 2003. Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/− mast cells. J Clin Invest 112: 1851–1861.PubMedGoogle Scholar
  99. Zheng, H., Chang, L., Patel, N., Yang, J., Lowe, L., Burns, D.K., and Zhu, Y. 2008. Induction of abnormal proliferation by nonmyelinating schwann cells triggers neurofibroma formation. Cancer Cell 13: 117–128.PubMedCrossRefGoogle Scholar
  100. Zhou, H., Coffin, C.M., Perkins, S.L., Tripp, S.R., Liew, M., and Viskochil, D.H. 2003. Malignant peripheral nerve sheath tumor: a comparison of grade, immunophenotype, and cell cycle/growth activation marker expression in sporadic and neurofibromatosis 1-related lesions. Am J Surg Pathol 27: 1337–1345.PubMedCrossRefGoogle Scholar
  101. Zhu, Y., Ghosh, P., Charnay, P., Burns, D.K., and Parada, L.F. 2002. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296: 920–922.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Pharmacology and Experimental Therapeutics SectionNational Cancer Institute, Pediatric Oncology BranchBethesdaUSA

Personalised recommendations