Future Treatments of Ependymoma

  • Richard J. Gilbertson


Although ependymoma is the third most common form of central nervous system (CNS) tumor, it is a poorly understood disease. The variable patterns of histology and clinical presentation, lack of consensus regarding appropriate means to stage and grade the disease, and the separation of pediatric and adult oncology services, have each hindered efforts to advance understanding of ependymoma biology and treatment. As a result, no new therapeutic approaches have been identified to treat ependymoma during the last 20 years and up to 40% of patients remain incurable (Brandes et al. 2005; Merchant and Fouladi 2005). The remarkable insensitivity of ependymoma to most nonsurgical conventional therapies has contributed further to this impasse in clinical management.


Cancer Stem Cell Posterior Fossa Stem Cell Niche Primitive Neuroectodermal Tumor Molecular Target Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., and Clarke, M.F. 2003. From the cover: prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: 3983–3988.PubMedCrossRefGoogle Scholar
  2. Alston, R.D., Rowan, S., Eden, T.O., Moran, A., and Birch, J.M. 2007. Cancer incidence patterns by region and socioeconomic deprivation in teenagers and young adults in England. Br J Cancer 96: 1760–1766.PubMedCrossRefGoogle Scholar
  3. Ammerlaan, A.C., de Bustos, C., Ararou, A., Buckley, P.G., Mantripragada, K.K., Verstegen, M.J., Hulsebos, T.J., and Dumanski, J.P. 2005. Localization of a putative low-penetrance ependymoma susceptibility locus to 22q11 using a chromosome 22 tiling-path genomic microarray. Genes Chromosomes Cancer Epublication ahead of print.Google Scholar
  4. Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. 2006. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444: 756–760.PubMedCrossRefGoogle Scholar
  5. Bonnet, D., and Dick, J.E. 1997. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737.PubMedCrossRefGoogle Scholar
  6. Brandes, A.A., Cavallo, G., Reni, M., Tosoni, A., Nicolardi, L., Scopece, L., Franceschi, E., Sotti, G., Talacchi, A., Turazzi, S., et al. 2005. A multicenter retrospective study of chemotherapy for recurrent intracranial ependymal tumors in adults by the Gruppo Italiano Cooperativo di Neuro-Oncologia. Cancer 104: 143–148.PubMedCrossRefGoogle Scholar
  7. Butler, W.E., Khan, A., and Khan, S.A. 2002. Posterior fossa ependymoma with intense but transient disseminated enhancement but not metastasis. Pediatr Neurosurg 37: 27–31.PubMedCrossRefGoogle Scholar
  8. Calabrese, C., Poppleton, H., Kocak, M., Hogg, T.L., Fuller, C., Hamner, B., Oh, E.Y., Gaber, M.W., Finklestein, D., Allen, M., et al. 2007. A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82.PubMedCrossRefGoogle Scholar
  9. Carter, M., Nicholson, J., Ross, F., Crolla, J., Allibone, R., Balaji, V., Perry, R., Walker, D., Gilbertson, R., and Ellison, D.W. 2002. Genetic abnormalities detected in ependymomas by comparative genomic hybridisation. Br J Cancer 86: 929–939.PubMedCrossRefGoogle Scholar
  10. CBTRUS. 2006. Statistical Report: Primary Brain Tumors in the United States, 1995–1999. Central Brain Tumor Registry of the United States, Hinsdale, IL, 2002.Google Scholar
  11. Chastagner, P., Sommelet-Olive, D., Kalifa, C., Brunat-Mentigny, M., Zucker, J.M., Demeocq, F., Baranzelli, M.C., Tron, P., Bergeron, C., Pein, F., et al. 1993. Phase II study of ifosfamide in childhood brain tumors: a report by the French Society of Pediatric Oncology (SFOP). Med Pediatr Oncol 21: 49–53.PubMedCrossRefGoogle Scholar
  12. Clarke, M.F., and Fuller, M. 2006. Stem cells and cancer: two faces of eve. Cell 124: 1111–1115.PubMedCrossRefGoogle Scholar
  13. Davidson, A., Lewis, I., Pearson, A.D., Stevens, M.C., and Pinkerton, C.R. 1993. 21-day schedule oral etoposide in children – a feasibility study. Eur J Cancer 29A: 2223–2225.PubMedCrossRefGoogle Scholar
  14. Druker, B.J., Sawyers, C.L., Kantarjian, H., Resta, D.J., Reese, S.F., Ford, J.M., Capdeville, R., and Talpaz, M. 2001. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344: 1038–1042.PubMedCrossRefGoogle Scholar
  15. Duffner, P.K., Horowitz, M.E., Krischer, J.P., Friedman, H.S., Burger, P.C., Cohen, M.E., Sanford, R.A., Mulhern, R.K., James, H.E., Freeman, C.R., et al. 1993. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N Engl J Med 328: 1725–1731.PubMedCrossRefGoogle Scholar
  16. Duffner, P.K., Krischer, J.P., Sanford, R.A., Horowitz, M.E., Burger, P.C., Cohen, M.E., Friedman, H.S., and Kun, L.E. 1998. Prognostic factors in infants and very young children with intracranial ependymomas. Pediatr Neurosurg 28: 215–222.PubMedCrossRefGoogle Scholar
  17. Dyer, S., Prebble, E., Davison, V., Davies, P., Ramani, P., Ellison, D., and Grundy, R. 2002. Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 161: 2133–2141.PubMedCrossRefGoogle Scholar
  18. Ebert, C., von Haken, M., Meyer-Puttlitz, B., Wiestler, O.D., Reifenberger, G., Pietsch, T., and von Deimling, A. 1999. Molecular genetic analysis of ependymal tumors. NF2 mutations and chromosome 22q loss occur preferentially in intramedullary spinal ependymomas. Am J Pathol 155: 627–632.PubMedCrossRefGoogle Scholar
  19. Evans, A.E., Anderson, J.R., Lefkowitz-Boudreaux, I.B., and Finlay, J.L. 1996. Adjuvant chemotherapy of childhood posterior fossa ependymoma: cranio-spinal irradiation with or without adjuvant CCNU, vincristine, and prednisone: a Childrens Cancer Group study. Med Pediatr Oncol 27: 8–14.PubMedCrossRefGoogle Scholar
  20. Fakhrai, N., Neophytou, P., Dieckmann, K., Nemeth, A., Prayer, D., Hainfellner, J., and Marosi, C. 2004. Recurrent spinal ependymoma showing partial remission under Imatimib. Acta Neurochir (Wien) 146: 1255–1258.CrossRefGoogle Scholar
  21. Friedman, H.S., Krischer, J.P., Burger, P., Oakes, W.J., Hockenberger, B., Weiner, M.D., Falletta, J.M., Norris, D., Ragab, A.H., Mahoney, D.H., Jr., et al. 1992. Treatment of children with progressive or recurrent brain tumors with carboplatin or iproplatin: a Pediatric Oncology Group randomized phase II study. J Clin Oncol 10: 249–256.PubMedGoogle Scholar
  22. Gaspar, N., Grill, J., Geoerger, B., Lellouch-Tubiana, A., Michalowski, M.B., and Vassal, G. 2006. p53 pathway dysfunction in primary childhood ependymomas. Pediatr Blood Cancer 46: 604-613.PubMedCrossRefGoogle Scholar
  23. Gaynon, P.S., Ettinger, L.J., Baum, E.S., Siegel, S.E., Krailo, M.D., and Hammond, G.D. 1990. Carboplatin in childhood brain tumors. A Children’s Cancer Study Group Phase II trial. Cancer 66: 2465–2469.PubMedCrossRefGoogle Scholar
  24. Gilbertson, R.J., Bentley, L., Hernan, R., Junttila, T.T., Frank, A.J., Haapasalo, H., Connelly, M., Wetmore, C., Curran, T., Elenius, K., et al. 2002. ERBB receptor signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res 8: 3054–3064.PubMedGoogle Scholar
  25. Gilbertson, R.J., and Gutmann, D.H. 2007. Tumorigenesis in the brain: location, location, location. Cancer Res 67: 5579–5582.PubMedCrossRefGoogle Scholar
  26. Gilbertson, R.J., and Rich, J.N. 2007. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7: 733–736.PubMedCrossRefGoogle Scholar
  27. Grill, J., Avet-Loiseau, H., Lellouch-Tubiana, A., Sevenet, N., Terrier-Lacombe, M.J., Venuat, A.M., Doz, F., Sainte-Rose, C., Kalifa, C., and Vassal, G. 2002. Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas. Cancer Genet Cytogenet 136: 121–125.PubMedCrossRefGoogle Scholar
  28. Grill, J., Le Deley, M.C., Gambarelli, D., Raquin, M.A., Couanet, D., Pierre-Kahn, A., Habrand, J.L., Doz, F., Frappaz, D., Gentet, J.C., et al. 2001. Postoperative chemotherapy without irradiation for ependymoma in children under 5 years of age: a multicenter trial of the French Society of Pediatric Oncology. J Clin Oncol 19: 1288–1296.PubMedGoogle Scholar
  29. Grundy, R.G., Wilne, S.A., Weston, C.L., Robinson, K., Lashford, L.S., Ironside, J., Cox, T., Chong, W.K., Campbell, R.H., Bailey, C.C., et al. 2007. Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol 8: 696–705.PubMedCrossRefGoogle Scholar
  30. Gurney, J., Smith, M., and Bunin, G. 2001. CNS and miscellaneous intra-cranial and intraspinal neoplasms. SEER Pediatric Monograph, National Cancer Institute: 51–63.Google Scholar
  31. Hirose, Y., Aldape, K., Bollen, A., James, C.D., Brat, D., Lamborn, K., Berger, M., and Feuerstein, B.G. 2001. Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol 158: 1137–1143.PubMedCrossRefGoogle Scholar
  32. Hukin, J., Epstein, F., Lefton, D., and Allen, J. 1998. Treatment of intracranial ependymoma by surgery alone. Pediatr Neurosurg 29: 40–45.PubMedCrossRefGoogle Scholar
  33. Huntly, B.J., and Gilliland, D.G. 2005. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5: 311–321.PubMedCrossRefGoogle Scholar
  34. Jeuken, J.W., Sprenger, S.H., Gilhuis, J., Teepen, H.L., Grotenhuis, A.J., and Wesseling, P. 2002. Correlation between localization, age, and chromosomal imbalances in ependymal tumours as detected by CGH. J Pathol 197: 238–244.PubMedCrossRefGoogle Scholar
  35. Khan, A.B., D’Souza, B.J., Wharam, M.D., Champion, L.A., Sinks, L.F., Woo, S.Y., McCullough, D.C., and Leventhal, B.G. 1982. Cisplatin therapy in recurrent childhood brain tumors. Cancer Treat Rep 66: 2013–2020.PubMedGoogle Scholar
  36. Kieran, M.W., Packer, R.J., Onar, A., Blaney, S.M., Phillips, P., Pollack, I.F., Geyer, J.R., Gururangan, S., Banerjee, A., Goldman, S., et al. 2007. Phase I and pharmacokinetic study of the oral farnesyltransferase inhibitor lonafarnib administered twice daily to pediatric patients with advanced central nervous system tumors using a modified continuous reassessment method: a Pediatric Brain Tumor Consortium Study. J Clin Oncol 25: 3137–3143.PubMedCrossRefGoogle Scholar
  37. Kleihues, P., Louis, D.N., Scheithauer, B.W., Rorke, L.B., Reifenberger, G., Burger, P.C., and Cavenee, W.K. 2002. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 61: 215–225; discussion 226–219.PubMedGoogle Scholar
  38. Korshunov, A., Golanov, A., Sycheva, R., and Timirgaz, V. 2004. The histologic grade is a main prognostic factor for patients with intracranial ependymomas treated in the microneurosurgical era: an analysis of 258 patients. Cancer 100: 1230–1237.PubMedCrossRefGoogle Scholar
  39. Korshunov, A., Neben, K., Wrobel, G., Tews, B., Benner, A., Hahn, M., Golanov, A., and Lichter, P. 2003. Gene expression patterns in ependymomas correlate with tumor location, grade, and patient age. Am J Pathol 163: 1721–1727.PubMedCrossRefGoogle Scholar
  40. Koschny, R., Koschny, T., Froster, U.G., Krupp, W., and Zuber, M.A. 2002. Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet 135: 147–159.PubMedCrossRefGoogle Scholar
  41. Kricheff, II, Becker, M., Schneck, S.A., and Taveras, J.M. 1964. Intracranial ependymomas: factors influencing prognosis. J Neurosurg 21: 7–14.PubMedCrossRefGoogle Scholar
  42. Kumar, P., Rastogi, N., Jain, M., and Chhabra, P. 2007. Extraneural metastases in anaplastic ependymoma. J Cancer Res Therap: 102–104.Google Scholar
  43. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M.A., and Dick, J.E. 1994. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648.PubMedCrossRefGoogle Scholar
  44. Lynch, T.J., Bell, D.W., Sordella, R., Gurubhagavatula, S., Okimoto, R.A., Brannigan, B.W., Harris, P.L., Haserlat, S.M., Supko, J.G., Haluska, F.G., et al. 2004. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350: 2129–2139. Epub 2004 Apr 2129.PubMedCrossRefGoogle Scholar
  45. Mendrzyk, F., Korshunov, A., Benner, A., Toedt, G., Pfister, S., Radlwimmer, B., and Lichter, P. 2006. Identification of gains on 1q and epidermal growth factor receptor overexpression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 12: 2070–2079.PubMedCrossRefGoogle Scholar
  46. Merchant, T.E., and Fouladi, M. 2005. Ependymoma: new therapeutic approaches including radiation and chemotherapy. J Neurooncol 75: 287–299.PubMedCrossRefGoogle Scholar
  47. Merchant, T.E., Haida, T., Wang, M.H., Finlay, J.L., and Leibel, S.A. 1997. Anaplastic ependymoma: treatment of pediatric patients with or without craniospinal radiation therapy. J Neurosurg 86: 943–949.PubMedCrossRefGoogle Scholar
  48. Merchant, T.E., Mulhern, R.K., Krasin, M.J., Kun, L.E., Williams, T., Li, C., Xiong, X., Khan, R.B., Lustig, R.H., Boop, F.A., et al. 2004. Preliminary results from a phase II trial of conformal radiation therapy and evaluation of radiation-related CNS effects for pediatric patients with localized ependymoma. J Clin Oncol 22: 3156–3162.PubMedCrossRefGoogle Scholar
  49. Metzger, A.K., Sheffield, V.C., Duyk, G., Daneshvar, L., Edwards, M.S., and Cogen, P.H. 1991. Identification of a germ-line mutation in the p53 gene in a patient with an intracranial ependymoma. Proc Natl Acad Sci U S A 88: 7825–7829.PubMedCrossRefGoogle Scholar
  50. Modena, P., Lualdi, E., Facchinetti, F., Veltman, J., Reid, J.F., Minardi, S., Janssen, I., Giangaspero, F., Forni, M., Finocchiaro, G., et al. 2006. Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 24: 5223–5233.PubMedCrossRefGoogle Scholar
  51. Moynihan, T.J. 2003. Ependymal tumors. Curr Treat Options Oncol 4: 517–523.PubMedCrossRefGoogle Scholar
  52. Mullins, K.J., Rubio, A., Myers, S.P., Korones, D.N., and Pilcher, W.H. 1998. Malignant ependymomas in a patient with Turcot’s syndrome: case report and management guidelines. Surg Neurol 49: 290–294.PubMedCrossRefGoogle Scholar
  53. Needle, M.N., Molloy, P.T., Geyer, J.R., Herman-Liu, A., Belasco, J.B., Goldwein, J.W., Sutton, L., and Phillips, P.C. 1997. Phase II study of daily oral etoposide in children with recurrent brain tumors and other solid tumors. Med Pediatr Oncol 29: 28–32.PubMedCrossRefGoogle Scholar
  54. Ohgaki, H., Eibl, R.H., Wiestler, O.D., Yasargil, M.G., Newcomb, E.W., and Kleihues, P. 1991. p53 mutations in nonastrocytic human brain tumors. Cancer Res 51: 6202–6205.PubMedGoogle Scholar
  55. Onilude, O.E., Lusher, M.E., Lindsey, J.C., Pearson, A.D., Ellison, D.W., and Clifford, S.C. 2006. APC and CTNNB1 mutations are rare in sporadic ependymomas. Cancer Genet Cytogenet 168: 158–161.PubMedCrossRefGoogle Scholar
  56. Paez, J.G., Janne, P.A., Lee, J.C., Tracy, S., Greulich, H., Gabriel, S., Herman, P., Kaye, F.J., Lindeman, N., Boggon, T.J., et al. 2004. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 29: 29.Google Scholar
  57. Paulino, A.C., Wen, B.C., Buatti, J.M., Hussey, D.H., Zhen, W.K., Mayr, N.A., and Menezes, A.H. 2002. Intracranial ependymomas: an analysis of prognostic factors and patterns of failure. Am J Clin Oncol 25: 117–122.PubMedCrossRefGoogle Scholar
  58. Radtke, F., and Raj, K. 2003. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3: 756–767.PubMedCrossRefGoogle Scholar
  59. Reardon, D.A., Entrekin, R.E., Sublett, J., Ragsdale, S., Li, H., Boyett, J., Kepner, J.L., and Look, A.T. 1999. Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromosomes Cancer 24: 230–237.PubMedCrossRefGoogle Scholar
  60. Riquelme, P.A., Drapeau, E., and Doetsch, F. 2007. Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond B Biol Sci 23: 23.Google Scholar
  61. Robertson, P.L., Zeltzer, P.M., Boyett, J.M., Rorke, L.B., Allen, J.C., Geyer, J.R., Stanley, P., Li, H., Albright, A.L., McGuire-Cullen, P., et al. 1998. Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J Neurosurg 88: 695–703.PubMedCrossRefGoogle Scholar
  62. Romer, J.T., Kimura, H., Magdaleno, S., Sasai, K., Fuller, C., Baines, H., Connelly, M., Stewart, C.F., Gould, S., Rubin, L.L., et al. 2004. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6: 229–240.PubMedCrossRefGoogle Scholar
  63. Rouleau, G.A., Merel, P., Lutchman, M., Sanson, M., Zucman, J., Marineau, C., Hoang-Xuan, K., Demczuk, S., Desmaze, C., Plougastel, B., et al. 1993. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature 363: 515.PubMedCrossRefGoogle Scholar
  64. Rousseau, P., Habrand, J.L., Sarrazin, D., Kalifa, C., Terrier-Lacombe, M.J., Rekacewicz, C., and Rey, A. 1994. Treatment of intracranial ependymomas of children: review of a 15-year experience. Int J Radiat Oncol Biol Phys 28: 381–386.PubMedCrossRefGoogle Scholar
  65. Rubio, M.P., Correa, K.M., Ramesh, V., MacCollin, M.M., Jacoby, L.B., von Deimling, A., Gusella, J.F., and Louis, D.N. 1994. Analysis of the neurofibromatosis 2 gene in human ependymomas and astrocytomas. Cancer Res 54: 45–47.PubMedGoogle Scholar
  66. Scheres, B. 2007. Stem-cell niches: nursery rhymes across kingdoms. Nat Rev Mol Cell Biol 8: 345–354.PubMedCrossRefGoogle Scholar
  67. Sexauer, C.L., Khan, A., Burger, P.C., Krischer, J.P., van Eys, J., Vats, T., and Ragab, A.H. 1985. Cisplatin in recurrent pediatric brain tumors. A POG Phase II study. A Pediatric Oncology Group Study. Cancer 56: 1497–1501.PubMedCrossRefGoogle Scholar
  68. Sharma, M.K., Mansur, D.B., Reifenberger, G., Perry, A., Leonard, J.R., Aldape, K.D., Albin, M.G., Emnett, R.J., Loeser, S., Watson, M.A., et al. 2007. Distinct genetic signatures among pilocytic astrocytomas relate to their brain region origin. Cancer Res 67: 890–900.PubMedCrossRefGoogle Scholar
  69. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. 2004. Identification of human brain tumour initiating cells. Nature 432: 396–401.PubMedCrossRefGoogle Scholar
  70. Tabori, U., Ma, J., Carter, M., Zielenska, M., Rutka, J., Bouffet, E., Bartels, U., Malkin, D., and Hawkins, C. 2006. Human telomere reverse transcriptase expression predicts progression and survival in pediatric intracranial ependymoma. J Clin Oncol 24: 1522–1528.PubMedCrossRefGoogle Scholar
  71. Taylor, M.D., Poppleton, H., Fuller, C., Su, X., Liu, Y., Jensen, P., Magdaleno, S., Dalton, J., Calabrese, C., Board, J., et al. 2005. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8: 323–335.PubMedCrossRefGoogle Scholar
  72. Timmermann, B., Kortmann, R.D., Kuhl, J., Meisner, C., Slavc, I., Pietsch, T., and Bamberg, M. 2000. Combined postoperative irradiation and chemotherapy for anaplastic ependymomas in childhood: results of the German prospective trials HIT 88/89 and HIT 91. Int J Radiat Oncol Biol Phys 46: 287–295.PubMedCrossRefGoogle Scholar
  73. Torres, C.F., Korones, D.N., and Pilcher, W. 1997. Multiple ependymomas in a patient with Turcot’s syndrome. Med Pediatr Oncol 28: 59–61.PubMedCrossRefGoogle Scholar
  74. Vogel, C.L., Cobleigh, M.A., Tripathy, D., Gutheil, J.C., Harris, L.N., Fehrenbacher, L., Slamon, D.J., Murphy, M., Novotny, W.F., Burchmore, M., et al. 2002. Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20: 719–726.PubMedCrossRefGoogle Scholar
  75. Vredenburgh, J.J., Desjardins, A., Herndon, J.E., II, Dowell, J.M., Reardon, D.A., Quinn, J.A., Rich, J.N., Sathornsumetee, S., Gururangan, S., Wagner, M., et al. 2007. Phase II Trial of Bevacizumab and Irinotecan in Recurrent Malignant Glioma, pp. 1253–1259.Google Scholar
  76. Walker, R.W., and Allen, J.C. 1988. Cisplatin in the treatment of recurrent childhood primary brain tumors. J Clin Oncol 6: 62–66.PubMedGoogle Scholar
  77. Ward, S., Harding, B., Wilkins, P., Harkness, W., Hayward, R., Darling, J.L., Thomas, D.G., and Warr, T. 2001. Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridisation in paediatric ependymoma. Genes Chromosomes Cancer 32: 59–66.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Neurobiology and Brain Tumor ProgramSt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations