Advertisement

Targeted Therapy in Medulloblastoma in Molecularly Targeted Therapy for Childhood Cancer

  • Yoon-Jae Cho
  • Scott L. Pomeroy
Chapter

Abstract

Medulloblastomas are primitive embryonal tumors of the central nervous system arising exclusively in the cerebellum. They have a tendency to disseminate via CSF spaces throughout the brain and spine and are the most common malignant brain tumors in children (CBTRUS 2005). There has been considerable progress in our understanding of the mechanisms driving these tumors through the study of normal cerebellar development, familial cancer syndromes, genome-based analyses of human primary tumor samples (Table 1) and genetic mouse models. These studies have provided a framework for the development of several targeted therapies. This chapter focuses on our current molecular understanding of medulloblastoma and the targeted therapies in development and clinical trials.

Keywords

Adenomatous Polyposis Coli Medulloblastoma Cell Adenomatous Polyposis Coli Gene Nijmegen Breakage Syndrome External Granular Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adesina, A.M., Nalbantoglu, J., and Cavenee, W.K. 1994. p53 gene mutation and mdm2 gene amplification are uncommon in medulloblastoma. Cancer Res 54: 5649–5651.PubMedGoogle Scholar
  2. Alder, J., Cho, N.K., and Hatten, M.E. 1996. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17: 389–399.PubMedCrossRefGoogle Scholar
  3. Aldosari, N., Wiltshire, R.N., Dutra, A., Schrock, E., McLendon, R.E., Friedman, H.S., Bigner, D.D., and Bigner, S.H. 2002. Comprehensive molecular cytogenetic investigation of chromosomal abnormalities in human medulloblastoma cell lines and xenograft. Neuro Oncol 4: 75–85.PubMedGoogle Scholar
  4. Androutsellis-Theotokis, A., Leker, R.R., Soldner, F., Hoeppner, D.J., Ravin, R., Poser, S.W., Rueger, M.A., Bae, S.K., Kittappa, R., and McKay, R.D. 2006. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442: 823–826.PubMedCrossRefGoogle Scholar
  5. Araki, K., Sangai, T., Miyamoto, S., Maeda, H., Zhang, S.C., Nakamura, M., Ishii, G., Hasebe, T., Kusaka, H., Akiyama, T., et al. 2006. Inhibition of bone-derived insulin-like growth factors by a ligand-specific antibody suppresses the growth of human multiple myeloma in the human adult bone explanted in NOD/SCID mouse. Int J Cancer 118: 2602–2608.PubMedCrossRefGoogle Scholar
  6. Badiali, M., Iolascon, A., Loda, M., Scheithauer, B.W., Basso, G., Trentini, G.P., and Giangaspero, F. 1993. p53 gene mutations in medulloblastoma. Immunohistochemistry, gel shift analysis, and sequencing. Diagn Mol Pathol 2: 23–28.PubMedGoogle Scholar
  7. Baeza, N., Masuoka, J., Kleihues, P., and Ohgaki, H. 2003. AXIN1 mutations but not deletions in cerebellar medulloblastomas. Oncogene 22: 632–636.PubMedCrossRefGoogle Scholar
  8. Bakhshi, S., Cerosaletti, K.M., Concannon, P., Bawle, E.V., Fontanesi, J., Gatti, R.A., and Bhambhani, K. 2003. Medulloblastoma with adverse reaction to radiation therapy in nijmegen breakage syndrome. J Pediatr Hematol Oncol 25: 248–251.PubMedCrossRefGoogle Scholar
  9. Barel, D., Avigad, S., Mor, C., Fogel, M., Cohen, I.J., and Zaizov, R. 1998. A novel germ-line mutation in the noncoding region of the p53 gene in a Li-Fraumeni family. Cancer Genet Cytogenet 103: 1–6.PubMedCrossRefGoogle Scholar
  10. Barker, N., and Clevers, H. 2006. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5: 997–1014.PubMedCrossRefGoogle Scholar
  11. Baserga, R., Sell, C., Porcu, P., and Rubini, M. 1994. The role of the IGF-I receptor in the growth and transformation of mammalian cells. Cell Prolif 27: 63–71.PubMedCrossRefGoogle Scholar
  12. Bayani, J., Zielenska, M., Marrano, P., Kwan Ng, Y., Taylor, M.D., Jay, V., Rutka, J.T., and Squire, J.A. 2000. Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. J Neurosurg 93: 437–448.PubMedCrossRefGoogle Scholar
  13. Berman, D.M., Karhadkar, S.S., Hallahan, A.R., Pritchard, J.I., Eberhart, C.G., Watkins, D.N., Chen, J.K., Cooper, M.K., Taipale, J., Olson, J.M., et al. 2002. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297: 1559–1561.PubMedCrossRefGoogle Scholar
  14. Beuvink, I., Boulay, A., Fumagalli, S., Zilbermann, F., Ruetz, S., O’Reilly, T., Natt, F., Hall, J., Lane, H.A., and Thomas, G. 2005. The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120: 747–759.PubMedCrossRefGoogle Scholar
  15. Bjornsti, M.A., and Houghton, P.J. 2004. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4: 335–348.PubMedCrossRefGoogle Scholar
  16. Bruggeman, S.W., Valk-Lingbeek, M.E., van der Stoop, P.P., Jacobs, J.J., Kieboom, K., Tanger, E., Hulsman, D., Leung, C., Arsenijevic, Y., Marino, S., et al. 2005. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 19: 1438–1443.PubMedCrossRefGoogle Scholar
  17. CBTRUS. 2005. Central Brain Tumor Registry of the United States, 2005.Google Scholar
  18. Chang, S.M., Wen, P., Cloughesy, T., Greenberg, H., Schiff, D., Conrad, C., Fink, K., Robins, H.I., De Angelis, L., Raizer, J., et al. 2005. Phase II study of CCI-779 in patients with recurrent glioblastoma multiforme. Invest New Drugs 23: 357–361.PubMedCrossRefGoogle Scholar
  19. Chin, L.S., Yung, W.K., and Raffel, C. 1996. Two primitive neuroectodermal tumor cell lines require an activated insulin-like growth factor I receptor for growth in vitro. Neurosurgery 39: 1183–1190.PubMedCrossRefGoogle Scholar
  20. Ciardiello, F. 2005. Epidermal growth factor receptor inhibitors in cancer treatment. Future Oncol 1: 221–234.PubMedCrossRefGoogle Scholar
  21. Clifford, S.C., Lusher, M.E., Lindsey, J.C., Langdon, J.A., Gilbertson, R.J., Straughton, D., and Ellison, D.W. 2006. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5: 2666–2670.PubMedCrossRefGoogle Scholar
  22. Cooper, M.K., Porter, J.A., Young, K.E., and Beachy, P.A. 1998. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280: 1603–1607.PubMedCrossRefGoogle Scholar
  23. Crawford, J.R., MacDonald, T.J., and Packer, R.J. 2007. Medulloblastoma in childhood: new biological advances. Lancet Neurol 6: 1073–1085.PubMedCrossRefGoogle Scholar
  24. Dahmen, R.P., Koch, A., Denkhaus, D., Tonn, J.C., Sorensen, N., Berthold, F., Behrens, J., Birchmeier, W., Wiestler, O.D., and Pietsch, T. 2001. Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas. Cancer Res 61: 7039–7043.PubMedGoogle Scholar
  25. Dakubo, G.D., Mazerolle, C.J., and Wallace, V.A. 2006. Expression of Notch and Wnt pathway components and activation of Notch signaling in medulloblastomas from heterozygous patched mice. J Neurooncol 79: 221–227.PubMedCrossRefGoogle Scholar
  26. Dancey, J. 2004. Epidermal growth factor receptor inhibitors in clinical development. Int J Radiat Oncol Biol Phys 58: 1003–1007.PubMedCrossRefGoogle Scholar
  27. De Bortoli, M., Castellino, R.C., Lu, X.Y., Deyo, J., Sturla, L.M., Adesina, A.M., Perlaky, L., Pomeroy, S.L., Lau, C.C., Man, T.K., et al. 2006. Medulloblastoma outcome is adversely associated with overexpression of EEF1D, RPL30, and RPS20 on the long arm of chromosome 8. BMC Cancer 6: 223.PubMedCrossRefGoogle Scholar
  28. de Chadarevian, J.P., Vekemans, M., and Bernstein, M. 1985. Fanconi’s anemia, medulloblastoma, Wilms’ tumor, horseshoe kidney, and gonadal dysgenesis. Arch Pathol Lab Med 109: 367–369.PubMedGoogle Scholar
  29. Del Valle, L., Enam, S., Lassak, A., Wang, J.Y., Croul, S., Khalili, K., and Reiss, K. 2002. Insulin-like growth factor I receptor activity in human medulloblastomas. Clin Cancer Res 8: 1822–1830.PubMedGoogle Scholar
  30. Distel, L., Neubauer, S., Varon, R., Holter, W., and Grabenbauer, G. 2003. Fatal toxicity following radio- and chemotherapy of medulloblastoma in a child with unrecognized Nijmegen breakage syndrome. Med Pediatr Oncol 41: 44–48.PubMedCrossRefGoogle Scholar
  31. Dovey, H.F., John, V., Anderson, J.P., Chen, L.Z., de Saint Andrieu, P., Fang, L.Y., Freedman, S.B., Folmer, B., Goldbach, E., Holsztynska, E.J., et al. 2001. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76: 173–181.PubMedCrossRefGoogle Scholar
  32. Dreesen, O., and Brivanlou, A.H. 2007. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 3: 7–17.PubMedCrossRefGoogle Scholar
  33. Dunn, S.E., Ehrlich, M., Sharp, N.J., Reiss, K., Solomon, G., Hawkins, R., Baserga, R., and Barrett, J.C. 1998. A dominant negative mutant of the insulin-like growth factor-I receptor inhibits the adhesion, invasion, and metastasis of breast cancer. Cancer Res 58: 3353–3361.PubMedGoogle Scholar
  34. Eberhart, C.G., Kratz, J., Wang, Y., Summers, K., Stearns, D., Cohen, K., Dang, C.V., and Burger, P.C. 2004. Histopathological and molecular prognostic markers in medulloblastoma: c-myc, N-myc, TrkC, and anaplasia. J Neuropathol Exp Neurol 63: 441–449.PubMedGoogle Scholar
  35. Eberhart, C.G., Tihan, T., and Burger, P.C. 2000. Nuclear localization and mutation of beta-catenin in medulloblastomas. J Neuropathol Exp Neurol 59: 333–337.PubMedGoogle Scholar
  36. Ebinger, M., Senf, L., and Scheurlen, W. 2006. Risk stratification in medulloblastoma: screening for molecular markers. Klin Padiatr 218: 139–142.PubMedCrossRefGoogle Scholar
  37. Ellison, D.W., Onilude, O.E., Lindsey, J.C., Lusher, M.E., Weston, C.L., Taylor, R.E., Pearson, A.D., and Clifford, S.C. 2005. beta-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children’s Cancer Study Group Brain Tumour Committee. J Clin Oncol 23: 7951–7957.PubMedCrossRefGoogle Scholar
  38. Erez, A., Ilan, T., Amariglio, N., Muler, I., Brok-Simoni, F., Rechavi, G., and Izraeli, S. 2002. GLI3 is not mutated commonly in sporadic medulloblastomas. Cancer 95: 28–31.PubMedCrossRefGoogle Scholar
  39. Evans, D.G., Birch, J.M., and Orton, C.I. 1991a. Brain tumours and the occurrence of severe invasive basal cell carcinoma in first degree relatives with Gorlin syndrome. Br J Neurosurg 5: 643–646.PubMedCrossRefGoogle Scholar
  40. Evans, D.G., Farndon, P.A., Burnell, L.D., Gattamaneni, H.R., and Birch, J.M. 1991b. The incidence of Gorlin syndrome in 173 consecutive cases of medulloblastoma. Br J Cancer 64: 959–961.PubMedCrossRefGoogle Scholar
  41. Frappart, P.O., Lee, Y., Lamont, J., and McKinnon, P.J. 2007. BRCA2 is required for neurogenesis and suppression of medulloblastoma. EMBO J 26: 2732–2742.PubMedCrossRefGoogle Scholar
  42. Gajjar, A., Chintagumpala, M., Ashley, D., Kellie, S., Kun, L.E., Merchant, T.E., Woo, S., Wheeler, G., Ahern, V., Krasin, M.J., et al. 2006. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7: 813–820.PubMedCrossRefGoogle Scholar
  43. Galanis, E., Buckner, J.C., Maurer, M.J., Kreisberg, J.I., Ballman, K., Boni, J., Peralba, J.M., Jenkins, R.B., Dakhil, S.R., Morton, R.F., et al. 2005. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23: 5294–5304.PubMedCrossRefGoogle Scholar
  44. Garcia-Echeverria, C., Pearson, M.A., Marti, A., Meyer, T., Mestan, J., Zimmermann, J., Gao, J., Brueggen, J., Capraro, H.G., Cozens, R., et al. 2004. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 5: 231–239.PubMedCrossRefGoogle Scholar
  45. Geoerger, B., Kerr, K., Tang, C.B., Fung, K.M., Powell, B., Sutton, L.N., Phillips, P.C., and Janss, A.J. 2001. Antitumor activity of the rapamycin analog CCI-779 in human primitive neuroectodermal tumor/medulloblastoma models as single agent and in combination chemotherapy. Cancer Res 61: 1527–1532.PubMedGoogle Scholar
  46. Gilbertson, R.J., and Clifford, S.C. 2003. PDGFRB is overexpressed in metastatic medulloblastoma. Nat Genet 35: 197–198.PubMedCrossRefGoogle Scholar
  47. Gilbertson, R.J., Jaros, E.B., Perry, R.H., and Pearson, A.D. 1992. Prognostic factors in medulloblastoma. Lancet 340: 480.PubMedCrossRefGoogle Scholar
  48. Gilbertson, R.J., Pearson, A.D., Perry, R.H., Jaros, E., and Kelly, P.J. 1995. Prognostic significance of the c-erbB-2 oncogene product in childhood medulloblastoma. Br J Cancer 71: 473–477.PubMedCrossRefGoogle Scholar
  49. Gilbertson, R.J., Perry, R.H., Kelly, P.J., Pearson, A.D., and Lunec, J. 1997. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res 57: 3272–3280.PubMedGoogle Scholar
  50. Glick, R.P., Unterman, T.G., and Lacson, R. 1993. Identification of insulin-like growth factor (IGF) and glucose transporter-1 and -3 mRNA in CNS tumors. Regul Pept 48: 251–256.PubMedCrossRefGoogle Scholar
  51. Goldowitz, D., and Hamre, K. 1998. The cells and molecules that make a cerebellum. Trends Neurosci 21: 375–382.PubMedCrossRefGoogle Scholar
  52. Goodrich, L.V., Milenkovic, L., Higgins, K.M., and Scott, M.P. 1997. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277: 1109–1113.PubMedCrossRefGoogle Scholar
  53. Gordon, M.D., and Nusse, R. 2006. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281: 22429–22433.PubMedCrossRefGoogle Scholar
  54. Guertin, D.A., and Sabatini, D.M. 2007. Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.PubMedCrossRefGoogle Scholar
  55. Guran, S., Tunca, Y., and Imirzalioglu, N. 1999. Hereditary TP53 codon 292 and somatic P16INK4A codon 94 mutations in a Li-Fraumeni syndrome family. Cancer Genet Cytogenet 113: 145–151.PubMedCrossRefGoogle Scholar
  56. Hahn, H., Christiansen, J., Wicking, C., Zaphiropoulos, P.G., Chidambaram, A., Gerrard, B., Vorechovsky, I., Bale, A.E., Toftgard, R., Dean, M., et al. 1996. A mammalian patched homolog is expressed in target tissues of sonic hedgehog and maps to a region associated with developmental abnormalities. J Biol Chem 271: 12125–12128.PubMedCrossRefGoogle Scholar
  57. Hahn, H., Wojnowski, L., Specht, K., Kappler, R., Calzada-Wack, J., Potter, D., Zimmer, A., Muller, U., Samson, E., Quintanilla-Martinez, L., et al. 2000. Patched target Igf2 is indispensable for the formation of medulloblastoma and rhabdomyosarcoma. J Biol Chem 275: 28341–28344.PubMedCrossRefGoogle Scholar
  58. Hallahan, A.R., Pritchard, J.I., Hansen, S., Benson, M., Stoeck, J., Hatton, B.A., Russell, T.L., Ellenbogen, R.G., Bernstein, I.D., Beachy, P.A., et al. 2004. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64: 7794–7800.PubMedCrossRefGoogle Scholar
  59. Hamilton, S.R., Liu, B., Parsons, R.E., Papadopoulos, N., Jen, J., Powell, S.M., Krush, A.J., Berk, T., Cohen, Z., Tetu, B., et al. 1995. The molecular basis of Turcot’s syndrome. N Engl J Med 332: 839–847.PubMedCrossRefGoogle Scholar
  60. Hatten, M.E., Alder, J., Zimmerman, K., and Heintz, N. 1997. Genes involved in cerebellar cell specification and differentiation. Curr Opin Neurobiol 7: 40–47.PubMedCrossRefGoogle Scholar
  61. Hirsch, B., Shimamura, A., Moreau, L., Baldinger, S., Hag-alshiekh, M., Bostrom, B., Sencer, S., and D’Andrea, A.D. 2004. Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood 103: 2554–2559.PubMedCrossRefGoogle Scholar
  62. Holcomb, V.B., Vogel, H., Marple, T., Kornegay, R.W., and Hasty, P. 2006. Ku80 and p53 suppress medulloblastoma that arise independent of Rag-1-induced DSBs. Oncogene 25: 7159–7165.PubMedCrossRefGoogle Scholar
  63. Huang, H., Mahler-Araujo, B.M., Sankila, A., Chimelli, L., Yonekawa, Y., Kleihues, P., and Ohgaki, H. 2000. APC mutations in sporadic medulloblastomas. Am J Pathol 156: 433–437.PubMedCrossRefGoogle Scholar
  64. Johnson, R.L., Rothman, A.L., Xie, J., Goodrich, L.V., Bare, J.W., Bonifas, J.M., Quinn, A.G., Myers, R.M., Cox, D.R., Epstein, E.H., Jr., et al. 1996. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272: 1668–1671.PubMedCrossRefGoogle Scholar
  65. Katsetos, C.D., Krishna, L., Frankfurter, A., Karkavelas, G., Wolfe, D.E., Valsamis, M.P., Schiffer, D., Vlachos, I.N., and Urich, H. 1995. A cytomorphological scheme of differentiating neuronal phenotypes in cerebellar medulloblastomas based on immunolocalization of class III beta-tubulin isotype (beta III) and proliferating cell nuclear antigen (PCNA)/cyclin. Clin Neuropathol 14: 72–81.PubMedGoogle Scholar
  66. Keeler, R.F. 1970. Teratogenic compounds of Veratrum californicum (Durand) X. Cyclopia in rabbits produced by cyclopamine. Teratology 3: 175–180.PubMedCrossRefGoogle Scholar
  67. Keeler, R.F. 1978. Cyclopamine and related steroidal alkaloid teratogens: their occurrence, structural relationship, and biologic effects. Lipids 13: 708–715.PubMedCrossRefGoogle Scholar
  68. Kenney, A.M., Cole, M.D., and Rowitch, D.H. 2003. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 130: 15–28.PubMedCrossRefGoogle Scholar
  69. Kim, J.Y., Sutton, M.E., Lu, D.J., Cho, T.A., Goumnerova, L.C., Goritchenko, L., Kaufman, J.R., Lam, K.K., Billet, A.L., Tarbell, N.J., et al. 1999. Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res 59: 711–719.PubMedGoogle Scholar
  70. Kimura, H., Ng, J.M., and Curran, T. 2008. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13: 249–260.PubMedCrossRefGoogle Scholar
  71. Koch, A., Hrychyk, A., Hartmann, W., Waha, A., Mikeska, T., Waha, A., Schuller, U., Sorensen, N., Berthold, F., Goodyer, C.G., et al. 2007. Mutations of the Wnt antagonist AXIN2 (Conductin) result in TCF-dependent transcription in medulloblastomas. Int J Cancer 121: 284–291.PubMedCrossRefGoogle Scholar
  72. Koch, A., Waha, A., Hartmann, W., Milde, U., Goodyer, C.G., Sorensen, N., Berthold, F., Digon-Sontgerath, B., Kratzschmar, J., Wiestler, O.D., et al. 2004. No evidence for mutations or altered expression of the Suppressor of Fused gene (SUFU) in primitive neuroectodermal tumours. Neuropathol Appl Neurobiol 30: 532–539.PubMedCrossRefGoogle Scholar
  73. Koch, A., Waha, A., Tonn, J.C., Sorensen, N., Berthold, F., Wolter, M., Reifenberger, J., Hartmann, W., Friedl, W., Reifenberger, G., et al. 2001. Somatic mutations of WNT/wingless signaling pathway components in primitive neuroectodermal tumors. Int J Cancer 93: 445–449.PubMedCrossRefGoogle Scholar
  74. Lam, C.W., Xie, J., To, K.F., Ng, H.K., Lee, K.C., Yuen, N.W., Lim, P.L., Chan, L.Y., Tong, S.F., and McCormick, F. 1999. A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene 18: 833–836.PubMedCrossRefGoogle Scholar
  75. Lauth, M., Bergstrom, A., Shimokawa, T., and Toftgard, R. 2007. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. Proc Natl Acad Sci USA 104: 8455–8460.PubMedCrossRefGoogle Scholar
  76. Lee, W.H., Wang, G.M., Lo, T., Triarhou, L.C., and Ghetti, B. 1995. Altered IGFBP5 gene expression in the cerebellar external germinal layer of weaver mutant mice. Brain Res Mol Brain Res 30: 259–268.PubMedCrossRefGoogle Scholar
  77. Lee, Y., Kawagoe, R., Sasai, K., Li, Y., Russell, H.R., Curran, T., and McKinnon, P.J. 2007. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 26: 6442–6447.PubMedCrossRefGoogle Scholar
  78. Lee, Y., and McKinnon, P.J. 2002. DNA ligase IV suppresses medulloblastoma formation. Cancer Res 62: 6395–6399.PubMedGoogle Scholar
  79. LeRoith, D., Werner, H., Faria, T.N., Kato, H., Adamo, M., and Roberts, C.T., Jr. 1993. Insulin-like growth factor receptors. Implications for nervous system function. Ann N Y Acad Sci 692: 22–32.PubMedCrossRefGoogle Scholar
  80. Leung, C., Lingbeek, M., Shakhova, O., Liu, J., Tanger, E., Saremaslani, P., Van Lohuizen, M., and Marino, S. 2004. Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428: 337–341.PubMedCrossRefGoogle Scholar
  81. Li, X.N., Shu, Q., Su, J.M., Perlaky, L., Blaney, S.M., and Lau, C.C. 2005. Valproic acid induces growth arrest, apoptosis, and senescence in medulloblastomas by increasing histone hyperacetylation and regulating expression of p21Cip1, CDK4, and CMYC. Mol Cancer Ther 4: 1912–1922.PubMedCrossRefGoogle Scholar
  82. Liao, H., and Wang, J.H. 2005. Biomembrane-permeable and Ribonuclease-resistant siRNA with enhanced activity. Oligonucleotides 15: 196–205.PubMedCrossRefGoogle Scholar
  83. Lin, J.C., and Cepko, C.L. 1999. Biphasic dispersion of clones containing Purkinje cells and glia in the developing chick cerebellum. Dev Biol 211: 177–197.PubMedCrossRefGoogle Scholar
  84. Louis, D.N., Ohgaki, H., Wiestler, O.D., Cavenee, W.K., Burger, P.C., Jouvet, A., Scheithauer, B.W., and Kleihues, P. 2007. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114: 97–109.PubMedCrossRefGoogle Scholar
  85. Lun, X.Q., Zhou, H., Alain, T., Sun, B., Wang, L., Barrett, J.W., Stanford, M.M., McFadden, G., Bell, J., Senger, D.L., et al. 2007. Targeting human medulloblastoma: oncolytic virotherapy with myxoma virus is enhanced by rapamycin. Cancer Res 67: 8818–8827.PubMedCrossRefGoogle Scholar
  86. Lutolf, S., Radtke, F., Aguet, M., Suter, U., and Taylor, V. 2002. Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 129: 373–385.PubMedGoogle Scholar
  87. MacDonald, T.J., Brown, K.M., LaFleur, B., Peterson, K., Lawlor, C., Chen, Y., Packer, R.J., Cogen, P., and Stephan, D.A. 2001. Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nat Genet 29: 143–152.PubMedCrossRefGoogle Scholar
  88. Machold, R., and Fishell, G. 2005. Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48: 17–24.PubMedCrossRefGoogle Scholar
  89. Marino, S., Vooijs, M., van Der Gulden, H., Jonkers, J., and Berns, A. 2000. Induction of ­medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 14: 994–1004.PubMedGoogle Scholar
  90. McManamy, C.S., Pears, J., Weston, C.L., Hanzely, Z., Ironside, J.W., Taylor, R.E., Grundy, R.G., Clifford, S.C., and Ellison, D.W. 2007. Nodule formation and desmoplasia in medulloblastomas-defining the nodular/desmoplastic variant and its biological behavior. Brain Pathol 17: 151–164.PubMedCrossRefGoogle Scholar
  91. Michiels, E.M., Weiss, M.M., Hoovers, J.M., Baak, J.P., Voute, P.A., Baas, F., and Hermsen, M.A. 2002. Genetic alterations in childhood medulloblastoma analyzed by comparative genomic hybridization. J Pediatr Hematol Oncol 24: 205–210.PubMedCrossRefGoogle Scholar
  92. O’Reilly, K.E., Rojo, F., She, Q.B., Solit, D., Mills, G.B., Smith, D., Lane, H., Hofmann, F., Hicklin, D.J., Ludwig, D.L., et al. 2006. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66: 1500–1508.PubMedCrossRefGoogle Scholar
  93. Offit, K., Levran, O., Mullaney, B., Mah, K., Nafa, K., Batish, S.D., Diotti, R., Schneider, H., Deffenbaugh, A., Scholl, T., et al. 2003. Shared genetic susceptibility to breast cancer, brain tumors, and Fanconi anemia. J Natl Cancer Inst 95: 1548–1551.PubMedCrossRefGoogle Scholar
  94. Ohgaki, H., Eibl, R.H., Wiestler, O.D., Yasargil, M.G., Newcomb, E.W., and Kleihues, P. 1991. p53 mutations in nonastrocytic human brain tumors. Cancer Res 51: 6202–6205.PubMedGoogle Scholar
  95. Oliver, T.G., Grasfeder, L.L., Carroll, A.L., Kaiser, C., Gillingham, C.L., Lin, S.M., Wickramasinghe, R., Scott, M.P., and Wechsler-Reya, R.J. 2003. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA 100: 7331–7336.PubMedCrossRefGoogle Scholar
  96. Pearson, A.D., Craft, A.W., Ratcliffe, J.M., Birch, J.M., Morris-Jones, P., and Roberts, D.F. 1982. Two families with the Li-Fraumeni cancer family syndrome. J Med Genet 19: 362–365.PubMedCrossRefGoogle Scholar
  97. Peterson, J.K., Tucker, C., Favours, E., Cheshire, P.J., Creech, J., Billups, C.A., Smykla, R., Lee, F.Y., and Houghton, P.J. 2005. In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin Cancer Res 11: 6950–6958.PubMedCrossRefGoogle Scholar
  98. Pietsch, T., Waha, A., Koch, A., Kraus, J., Albrecht, S., Tonn, J., Sorensen, N., Berthold, F., Henk, B., Schmandt, N., et al. 1997. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 57: 2085–2088.PubMedGoogle Scholar
  99. Pomeroy, S.L., Tamayo, P., Gaasenbeek, M., Sturla, L.M., Angelo, M., McLaughlin, M.E., Kim, J.Y., Goumnerova, L.C., Black, P.M., Lau, C., et al. 2002. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415: 436–442.PubMedCrossRefGoogle Scholar
  100. Radtke, F., and Clevers, H. 2005. Self-renewal and cancer of the gut: two sides of a coin. Science 307: 1904–1909.PubMedCrossRefGoogle Scholar
  101. Raffel, C., Jenkins, R.B., Frederick, L., Hebrink, D., Alderete, B., Fults, D.W., and James, C.D. 1997. Sporadic medulloblastomas contain PTCH mutations. Cancer Res 57: 842–845.PubMedGoogle Scholar
  102. Rao, G., Pedone, C.A., Valle, L.D., Reiss, K., Holland, E.C., and Fults, D.W. 2004. Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23: 6156–6162.PubMedCrossRefGoogle Scholar
  103. Reifenberger, J., Wolter, M., Weber, R.G., Megahed, M., Ruzicka, T., Lichter, P., and Reifenberger, G. 1998. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58: 1798–1803.PubMedGoogle Scholar
  104. Reiss, K., D’Ambrosio, C., Tu, X., Tu, C., and Baserga, R. 1998. Inhibition of tumor growth by a dominant negative mutant of the insulin-like growth factor I receptor with a bystander effect. Clin Cancer Res 4: 2647–2655.PubMedGoogle Scholar
  105. Reya, T., and Clevers, H. 2005. Wnt signalling in stem cells and cancer. Nature 434: 843–850.PubMedCrossRefGoogle Scholar
  106. Romer, J.T., and Curran, T. 2004. Medulloblastoma and retinoblastoma: oncology recapitulates ontogeny. Cell Cycle 3: 917–919.PubMedCrossRefGoogle Scholar
  107. Romer, J.T., Kimura, H., Magdaleno, S., Sasai, K., Fuller, C., Baines, H., Connelly, M., Stewart, C.F., Gould, S., Rubin, L.L., et al. 2004. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/−)p53(−/−) mice. Cancer Cell 6: 229–240.PubMedCrossRefGoogle Scholar
  108. Rossi, M.R., Conroy, J., McQuaid, D., Nowak, N.J., Rutka, J.T., and Cowell, J.K. 2006. Array CGH analysis of pediatric medulloblastomas. Genes Chromosomes Cancer 45: 290–303.PubMedCrossRefGoogle Scholar
  109. Rotwein, P., Burgess, S.K., Milbrandt, J.D., and Krause, J.E. 1988. Differential expression of insulin-like growth factor genes in rat central nervous system. Proc Natl Acad Sci USA 85: 265–269.PubMedCrossRefGoogle Scholar
  110. Rubin, J.B., Kung, A.L., Klein, R.S., Chan, J.A., Sun, Y., Schmidt, K., Kieran, M.W., Luster, A.D., and Segal, R.A. 2003. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 100: 13513–13518.PubMedCrossRefGoogle Scholar
  111. Ruiz i Altaba, A., Sanchez, P., and Dahmane, N. 2002. Gli and hedgehog in cancer: tumours, embryos and stem cells. Nat Rev Cancer 2: 361–372.PubMedCrossRefGoogle Scholar
  112. Ruud, E., and Wesenberg, F. 2001. Microcephalus, medulloblastoma and excessive toxicity from chemotherapy: an unusual presentation of Fanconi anaemia. Acta Paediatr 90: 580–583.PubMedCrossRefGoogle Scholar
  113. Sabatini, D.M. 2006. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6: 729–734.PubMedCrossRefGoogle Scholar
  114. Salaroli, R., Russo, A., Ceccarelli, C., Mina, G.D., Arcella, A., Martinelli, G.N., Giangaspero, F., Capranico, G., and Cenacchi, G. 2007. Intracellular distribution of beta-catenin in human medulloblastoma cell lines with different degree of neuronal differentiation. Ultrastruct Pathol 31: 33–44.PubMedCrossRefGoogle Scholar
  115. Salsano, E., Croci, L., Maderna, E., Lupo, L., Pollo, B., Giordana, M.T., Consalez, G.G., and Finocchiaro, G. 2007. Expression of the neurogenic basic helix-loop-helix transcription factor NEUROG1 identifies a subgroup of medulloblastomas not expressing ATOH1. Neuro Oncol 9: 298–307.PubMedCrossRefGoogle Scholar
  116. Sastre, M., Steiner, H., Fuchs, K., Capell, A., Multhaup, G., Condron, M.M., Teplow, D.B., and Haass, C. 2001. Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep 2: 835–841.PubMedCrossRefGoogle Scholar
  117. Saylors, R.L., 3rd, Sidransky, D., Friedman, H.S., Bigner, S.H., Bigner, D.D., Vogelstein, B., and Brodeur, G.M. 1991. Infrequent p53 gene mutations in medulloblastomas. Cancer Res 51: 4721–4723.PubMedGoogle Scholar
  118. Schuller, U., Koch, A., Hartmann, W., Garre, M.L., Goodyer, C.G., Cama, A., Sorensen, N., Wiestler, O.D., and Pietsch, T. 2005. Subtype-specific expression and genetic alterations of the chemokinereceptor gene CXCR4 in medulloblastomas. Int J Cancer 117: 82–89.PubMedCrossRefGoogle Scholar
  119. Scotlandi, K., Manara, M.C., Nicoletti, G., Lollini, P.L., Lukas, S., Benini, S., Croci, S., Perdichizzi, S., Zambelli, D., Serra, M., et al. 2005. Antitumor activity of the insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 in musculoskeletal tumors. Cancer Res 65: 3868–3876.PubMedCrossRefGoogle Scholar
  120. Segal, R.A., Goumnerova, L.C., Kwon, Y.K., Stiles, C.D., and Pomeroy, S.L. 1994. Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91: 12867–12871.PubMedCrossRefGoogle Scholar
  121. Shih Ie, M., and Wang, T.L. 2007. Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res 67: 1879–1882.PubMedCrossRefGoogle Scholar
  122. Shu, Q., Antalffy, B., Su, J.M., Adesina, A., Ou, C.N., Pietsch, T., Blaney, S.M., Lau, C.C., and Li, X.N. 2006. Valproic Acid prolongs survival time of severe combined immunodeficient mice bearing intracerebellar orthotopic medulloblastoma xenografts. Clin Cancer Res 12: 4687–4694.PubMedCrossRefGoogle Scholar
  123. Singh, S.K., Clarke, I.D., Terasaki, M., Bonn, V.E., Hawkins, C., Squire, J., and Dirks, P.B. 2003. Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828.PubMedGoogle Scholar
  124. Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. 2004. Identification of human brain tumour initiating cells. Nature 432: 396–401.PubMedCrossRefGoogle Scholar
  125. Sottile, V., Li, M., and Scotting, P.J. 2006. Stem cell marker expression in the Bergmann glia population of the adult mouse brain. Brain Res 1099: 8–17.PubMedCrossRefGoogle Scholar
  126. Spiller, S.E., Ditzler, S.H., Pullar, B.J., and Olson, J.M. 2008. Response of preclinical medulloblastoma models to combination therapy with 13-cis retinoic acid and suberoylanilide hydroxamic acid (SAHA). J Neurooncol 87:133–141.PubMedCrossRefGoogle Scholar
  127. Spiller, S.E., Ravanpay, A.C., Hahn, A.W., and Olson, J.M. 2006. Suberoylanilide hydroxamic acid is effective in preclinical studies of medulloblastoma. J Neurooncol 79: 259–270.PubMedCrossRefGoogle Scholar
  128. Stumm, R.K., Zhou, C., Ara, T., Lazarini, F., Dubois-Dalcq, M., Nagasawa, T., Hollt, V., and Schulz, S. 2003. CXCR4 regulates interneuron migration in the developing neocortex. J Neurosci 23: 5123–5130.PubMedGoogle Scholar
  129. Taylor, M.D., Liu, L., Raffel, C., Hui, C.C., Mainprize, T.G., Zhang, X., Agatep, R., Chiappa, S., Gao, L., Lowrance, A., et al. 2002. Mutations in SUFU predispose to medulloblastoma. Nat Genet 31: 306–310.PubMedCrossRefGoogle Scholar
  130. Thompson, M.C., Fuller, C., Hogg, T.L., Dalton, J., Finkelstein, D., Lau, C.C., Chintagumpala, M., Adesina, A., Ashley, D.M., Kellie, S.J., et al. 2006. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 24: 1924–1931.PubMedCrossRefGoogle Scholar
  131. Tischkowitz, M.D., Chisholm, J., Gaze, M., Michalski, A., and Rosser, E.M. 2004. Medulloblastoma as a first presentation of fanconi anemia. J Pediatr Hematol Oncol 26: 52–55.PubMedCrossRefGoogle Scholar
  132. Tong, W.M., Ohgaki, H., Huang, H., Granier, C., Kleihues, P., and Wang, Z.Q. 2003. Null mutation of DNA strand break-binding molecule poly(ADP-ribose) polymerase causes medulloblastomas in p53(−/−) mice. Am J Pathol 162: 343–352.PubMedCrossRefGoogle Scholar
  133. Urbanska, K., Trojanek, J., Del Valle, L., Eldeen, M.B., Hofmann, F., Garcia-Echeverria, C., Khalili, K., and Reiss, K. 2007. Inhibition of IGF-I receptor in anchorage-independence attenuates GSK-3beta constitutive phosphorylation and compromises growth and survival of medulloblastoma cell lines. Oncogene 26: 2308–2317.PubMedCrossRefGoogle Scholar
  134. Uziel, T., Zindy, F., Sherr, C.J., and Roussel, M.F. 2006. The CDK inhibitor p18Ink4c is a tumor suppressor in medulloblastoma. Cell Cycle 5: 363–365.PubMedCrossRefGoogle Scholar
  135. Vilz, T.O., Moepps, B., Engele, J., Molly, S., Littman, D.R., and Schilling, K. 2005. The SDF-1/CXCR4 pathway and the development of the cerebellar system. Eur J Neurosci 22: 1831–1839.PubMedCrossRefGoogle Scholar
  136. Wallace, V.A. 1999. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9: 445–448.PubMedCrossRefGoogle Scholar
  137. Wang, V.Y., Rose, M.F., and Zoghbi, H.Y. 2005a. Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48: 31–43.PubMedCrossRefGoogle Scholar
  138. Wang, Y., Hailey, J., Williams, D., Wang, Y., Lipari, P., Malkowski, M., Wang, X., Xie, L., Li, G., Saha, D., et al. 2005b. Inhibition of insulin-like growth factor-I receptor (IGF-IR) signaling and tumor cell growth by a fully human neutralizing anti-IGF-IR antibody. Mol Cancer Ther 4: 1214–1221.PubMedCrossRefGoogle Scholar
  139. Ward, E.J., Shcherbata, H.R., Reynolds, S.H., Fischer, K.A., Hatfield, S.D., and Ruohola-Baker, H. 2006. Stem cells signal to the niche through the Notch pathway in the Drosophila ovary. Curr Biol 16: 2352–2358.PubMedCrossRefGoogle Scholar
  140. Wechsler-Reya, R.J., and Scott, M.P. 1999. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22: 103–114.PubMedCrossRefGoogle Scholar
  141. Weiner, H.L., Bakst, R., Hurlbert, M.S., Ruggiero, J., Ahn, E., Lee, W.S., Stephen, D., Zagzag, D., Joyner, A.L., and Turnbull, D.H. 2002. Induction of medulloblastomas in mice by sonic hedgehog, independent of Gli1. Cancer Res 62: 6385–6389.PubMedGoogle Scholar
  142. Wetmore, C., Eberhart, D.E., and Curran, T. 2001. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 61: 513–516.PubMedGoogle Scholar
  143. Wiederschain, D., Chen, L., Johnson, B., Bettano, K., Jackson, D., Taraszka, J., Wang, Y.K., Jones, M.D., Morrissey, M., Deeds, J., et al. 2007. Contribution of polycomb homologues Bmi-1 and Mel-18 to medulloblastoma pathogenesis. Mol Cell Biol 27: 4968–4979.PubMedCrossRefGoogle Scholar
  144. Williams, J.A., Guicherit, O.M., Zaharian, B.I., Xu, Y., Chai, L., Wichterle, H., Kon, C., Gatchalian, C., Porter, J.A., Rubin, L.L., et al. 2003. Identification of a small molecule inhibitor of the hedgehog signaling pathway: effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 100: 4616–4621.PubMedCrossRefGoogle Scholar
  145. Wlodarski, P., Grajkowska, W., Lojek, M., Rainko, K., and Jozwiak, J. 2006. Activation of Akt and Erk pathways in medulloblastoma. Folia Neuropathol 44: 214–220.PubMedGoogle Scholar
  146. Yan, C.T., Kaushal, D., Murphy, M., Zhang, Y., Datta, A., Chen, C., Monroe, B., Mostoslavsky, G., Coakley, K., Gao, Y., et al. 2006. XRCC4 suppresses medulloblastomas with recurrent translocations in p53-deficient mice. Proc Natl Acad Sci USA 103: 7378–7383.PubMedCrossRefGoogle Scholar
  147. Yang, L., Jackson, E., Woerner, B.M., Perry, A., Piwnica-Worms, D., and Rubin, J.B. 2007. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 67: 651–658.PubMedCrossRefGoogle Scholar
  148. Yee, K.W., Zeng, Z., Konopleva, M., Verstovsek, S., Ravandi, F., Ferrajoli, A., Thomas, D., Wierda, W., Apostolidou, E., Albitar, M., et al. 2006. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 12: 5165–5173.PubMedCrossRefGoogle Scholar
  149. Yokota, N., Nishizawa, S., Ohta, S., Date, H., Sugimura, H., Namba, H., and Maekawa, M. 2002. Role of Wnt pathway in medulloblastoma oncogenesis. Int J Cancer 101: 198–201.PubMedCrossRefGoogle Scholar
  150. Zurawel, R.H., Chiappa, S.A., Allen, C., and Raffel, C. 1998. Sporadic medulloblastomas contain oncogenic beta-catenin mutations. Cancer Res 58: 896–899.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yoon-Jae Cho
  • Scott L. Pomeroy
    • 1
  1. 1.Department of NeurologyChildren’s Hospital BostonBostonUSA

Personalised recommendations