Advertisement

Molecular Targeting of Post-transplant Lymphoproliferative Disorders

  • Michael Wang
  • Thomas G. Gross
Chapter

Abstract

Post-transplant lymphoproliferative disorders (PTLD) represent a heterogeneous group of life-threatening lymphoproliferative disorders that can be observed in a transplant recipient. PTLD can occur in patients after solid organ transplantation (SOT) because of immunosuppression to prevent graft rejection (Penn et al. 1969), and continues to be a major cause of morbidity and mortality seen in about 10% of pediatric SOT recipients. There is a higher incidence in children following SOT than in adults (Ho et al. 1988; Swerdlow et al. 2000), with highest incidence of 20% following heart-lung transplant. PTLD occurs in hematopoietic stem cell transplantation (HSCT) recipients secondary to the immunosuppression of pre-HSCT preparative regimens, and the post-HSCT immunosuppression to prevent graft vs host disease (GVHD). PTLD in HSCT occurs at a lower rate than following SOT (approximately 1%), with the vast majority occurring within 6 months following HSCT (Bhatia et al. 1996; Curtis et al. 1999). Accordingly, few cases of PTLD have been reported after autologous HSCT (Lones et al. 2000; Nash et al. 2003). PTLD is associated with Epstein–Barr virus (EBV) and inadequate EBV immunity in the majority of cases. PTLD following HSCT is essentially all EBV-associated. EBV-negative PTLD occurs following SOT in as many as 30% of cases. (Leblond et al. 2001). The pathogenesis, treatment strategies and outcome differ from EBV-positive PTLD, as EBV-negative disease tends to require more aggressive therapy and portends a worse prognosis. This chapter will focus on EBV positive PTLD and molecularly targeted therapies in its prevention and treatment.

Keywords

Hematopoietic Stem Cell Transplantation Solid Organ Transplantation Graft Versus Host Disease Autologous Hematopoietic Stem Cell Transplantation Graft Versus Host Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Baker, K. S., T. E. DeFor, et al. (2003). “New malignancies after blood or marrow stem-cell transplantation in children and adults: incidence and risk factors.” J Clin Oncol 21(7): 1352–8.PubMedCrossRefGoogle Scholar
  2. Bejarano, M. T. and M. G. Masucci (1998). “Interleukin-10 abrogates the inhibition of Epstein-Barr virus-induced B-cell transformation by memory T-cell responses.” Blood 92(11): 4256–62.PubMedGoogle Scholar
  3. Bhatia, S., N. K. Ramsay, et al. (1996). “Malignant neoplasms following bone marrow transplantation.” Blood 87(9): 3633–9.PubMedGoogle Scholar
  4. Boeckh, M., W. G. Nichols, et al. (2003). “Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies.” Biol Blood Marrow Transplant 9(9): 543–58.PubMedCrossRefGoogle Scholar
  5. Bollard, C. M., B. Savoldo, et al. (2003). “Adoptive T-cell therapy for EBV-associated post-transplant lymphoproliferative disease.” Acta Haematol 110(2–3): 139–48.PubMedCrossRefGoogle Scholar
  6. Callan, M. F., N. Steven, et al. (1996). “Large clonal expansions of CD8+ T cells in acute infectious mononucleosis.” Nat Med 2(8): 906–11.PubMedCrossRefGoogle Scholar
  7. Callan, M. F., L. Tan, et al. (1998). “Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo.” J Exp Med 187(9): 1395–402.PubMedCrossRefGoogle Scholar
  8. Catalina, M. D., J. L. Sullivan, et al. (2001). “Differential evolution and stability of epitope-specific CD8(+) T cell responses in EBV infection.” J Immunol 167(8): 4450–7.PubMedGoogle Scholar
  9. Choquet, S., V. Leblond, et al. (2006). “Efficacy and safety of rituximab in B-cell post-transplantation lymphoproliferative disorders: results of a prospective multicenter phase 2 study.” Blood 107(8): 3053–7.PubMedCrossRefGoogle Scholar
  10. Cohen, J. I. and K. Lekstrom (1999). “Epstein-Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells.” J Virol 73(9): 7627–32.PubMedGoogle Scholar
  11. Collins, M. H., K. T. Montone, et al. (2001). “Autopsy pathology of pediatric posttransplant lymphoproliferative disorder.” Pediatrics 107(6): E89.PubMedCrossRefGoogle Scholar
  12. Curtis, R. E., L. B. Travis, et al. (1999). “Risk of lymphoproliferative disorders after bone marrow transplantation: a multi-institutional study.” Blood 94(7): 2208–16.PubMedGoogle Scholar
  13. Daibata, M., K. Bandobashi, et al. (2005). “Induction of lytic Epstein-Barr virus (EBV) infection by synergistic action of rituximab and dexamethasone renders EBV-positive lymphoma cells more susceptible to ganciclovir cytotoxicity in vitro and in vivo.” J Virol 79(9): 5875–9.PubMedCrossRefGoogle Scholar
  14. Demidem, A., T. Lam, et al. (1997). “Chimeric anti-CD20 (IDEC-C2B8) monoclonal antibody sensitizes a B cell lymphoma cell line to cell killing by cytotoxic drugs.” Cancer Biother Radiopharm 12(3): 177–86.PubMedCrossRefGoogle Scholar
  15. Dolcetti, R. and M. G. Masucci (2003). “Epstein-Barr virus: induction and control of cell transformation.” J Cell Physiol 196(2): 207–18.PubMedCrossRefGoogle Scholar
  16. Dykstra, M. L., R. Longnecker, et al. (2001). “Epstein-Barr virus coopts lipid rafts to block the signaling and antigen transport functions of the BCR.” Immunity 14(1): 57–67.PubMedCrossRefGoogle Scholar
  17. El-Salem, M., P. N. Raghunath, et al. (2007). “Constitutive activation of mTOR signaling pathway in post-transplant lymphoproliferative disorders.” Lab Invest 87(1): 29–39.PubMedCrossRefGoogle Scholar
  18. Feng, W. H., G. Hong, et al. (2004). “Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas.” J Virol 78(4): 1893–902.PubMedCrossRefGoogle Scholar
  19. Feng, W. H. and S. C. Kenney (2006). “Valproic acid enhances the efficacy of chemotherapy in EBV-positive tumors by increasing lytic viral gene expression.” Cancer Res 66(17): 8762–9.PubMedCrossRefGoogle Scholar
  20. Fujita, Y., C. M. Rooney, et al. (2008). “Adoptive cellular immunotherapy for viral diseases.” Bone Marrow Transplant 41(2): 193–8.PubMedCrossRefGoogle Scholar
  21. Greenfield, H. M., M. I. Gharib, et al. (2006). “The impact of monitoring Epstein-Barr virus PCR in paediatric bone marrow transplant patients: can it successfully predict outcome and guide intervention?” Pediatr Blood Cancer 47(2): 200–5.PubMedCrossRefGoogle Scholar
  22. Gregory, C. D., C. Dive, et al. (1991). “Activation of Epstein-Barr virus latent genes protects human B cells from death by apoptosis.” Nature 349(6310): 612–4.PubMedCrossRefGoogle Scholar
  23. Gross, T. G. (2007). “Post-transplant lymphoproliferative disease in children following solid organ transplant and rituximab – the final answer?” Pediatr Transplant 11(6): 575–7.PubMedCrossRefGoogle Scholar
  24. Gross, T. G., J. C. Bucuvalas, et al. (2005). “Low-dose chemotherapy for Epstein-Barr virus-positive post-transplantation lymphoproliferative disease in children after solid organ transplantation.” J Clin Oncol 23(27): 6481–8.PubMedCrossRefGoogle Scholar
  25. Gross, T. G., M. Steinbuch, et al. (1999). “B cell lymphoproliferative disorders following hematopoietic stem cell transplantation: risk factors, treatment and outcome.” Bone Marrow Transplant 23(3): 251–8.PubMedCrossRefGoogle Scholar
  26. Haque, T., G. M. Wilkie, et al. (2007). “Allogeneic cytotoxic T-cell therapy for EBV-positive posttransplantation lymphoproliferative disease: results of a phase 2 multicenter clinical trial.” Blood 110(4): 1123–31.PubMedCrossRefGoogle Scholar
  27. Harris, N. L., E. S. Jaffe, et al. (1999). “World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting-Airlie House, Virginia, November 1997.” J Clin Oncol 17(12): 3835–49.PubMedGoogle Scholar
  28. Henderson, S., M. Rowe, et al. (1991). “Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death.” Cell 65(7): 1107–15.PubMedCrossRefGoogle Scholar
  29. Hislop, A. D., N. E. Annels, et al. (2002). “Epitope-specific evolution of human CD8(+) T cell responses from primary to persistent phases of Epstein-Barr virus infection.” J Exp Med 195(7): 893–905.PubMedCrossRefGoogle Scholar
  30. Hislop, A. D., G. S. Taylor, et al. (2007). “Cellular responses to viral infection in humans: lessons from Epstein-Barr virus.” Annu Rev Immunol 25: 587–617.PubMedCrossRefGoogle Scholar
  31. Ho, M., R. Jaffe, et al. (1988). “The frequency of Epstein-Barr virus infection and associated lymphoproliferative syndrome after transplantation and its manifestations in children.” Transplantation 45(4): 719–27.PubMedCrossRefGoogle Scholar
  32. Hofelmayr, H., L. J. Strobl, et al. (2001). “Activated Notch1 can transiently substitute for EBNA2 in the maintenance of proliferation of LMP1-expressing immortalized B cells.” J Virol 75(5): 2033–40.PubMedCrossRefGoogle Scholar
  33. Holmes, R. D., K. Orban-Eller, et al. (2002). “Response of elevated Epstein-Barr virus DNA levels to therapeutic changes in pediatric liver transplant patients: 56-month follow up and outcome.” Transplantation 74(3): 367–72.PubMedCrossRefGoogle Scholar
  34. Kawanishi, M., S. Tada-Oikawa, et al. (2002). “Epstein-Barr virus BHRF1 functions downstream of Bid cleavage and upstream of mitochondrial dysfunction to inhibit TRAIL-induced apoptosis in BJAB cells.” Biochem Biophys Res Commun 297(3): 682–7.PubMedCrossRefGoogle Scholar
  35. Kilger, E., A. Kieser, et al. (1998). “Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor.” EMBO J 17(6): 1700–9.PubMedCrossRefGoogle Scholar
  36. Lambert, S. L. and O. M. Martinez (2007). “Latent membrane protein 1 of EBV activates phosphatidylinositol 3-kinase to induce production of IL-10.” J Immunol 179(12): 8225–34.PubMedGoogle Scholar
  37. Leblond, V., N. Dhedin, et al. (2001). “Identification of prognostic factors in 61 patients with posttransplantation lymphoproliferative disorders.” J Clin Oncol 19(3): 772–8.PubMedGoogle Scholar
  38. Lee, J. J., M. S. Lam, et al. (2007). “Role of chemotherapy and rituximab for treatment of posttransplant lymphoproliferative disorder in solid organ transplantation.” Ann Pharmacother 41(10): 1648–59.PubMedCrossRefGoogle Scholar
  39. Lee, J. M., K. H. Lee, et al. (2002). “Epstein-Barr virus EBNA2 blocks Nur77- mediated apoptosis.” Proc Natl Acad Sci USA 99(18): 11878–83.PubMedCrossRefGoogle Scholar
  40. Lones, M. A., I. Kirov, et al. (2000). “Post-transplant lymphoproliferative disorder after autologous peripheral stem cell transplantation in a pediatric patient.” Bone Marrow Transplant 26(9): 1021–4.PubMedCrossRefGoogle Scholar
  41. Maini, M. K., N. Gudgeon, et al. (2000). “Clonal expansions in acute EBV infection are detectable in the CD8 and not the CD4 subset and persist with a variable CD45 phenotype.” J Immunol 165(10): 5729–37.PubMedGoogle Scholar
  42. Majewski, M., M. Korecka, et al. (2003). “Immunosuppressive TOR kinase inhibitor everolimus (RAD) suppresses growth of cells derived from posttransplant lymphoproliferative disorder at allograft-protecting doses.” Transplantation 75(10): 1710–7.PubMedCrossRefGoogle Scholar
  43. Majewski, M., M. Korecka, et al. (2000). “The immunosuppressive macrolide RAD inhibits growth of human Epstein-Barr virus-transformed B lymphocytes in vitro and in vivo: a potential approach to prevention and treatment of posttransplant lymphoproliferative disorders.” Proc Natl Acad Sci USA 97(8): 4285–90.PubMedCrossRefGoogle Scholar
  44. Meij, P., J. W. van Esser, et al. (2003). “Impaired recovery of Epstein-Barr virus (EBV) – specific CD8+ T lymphocytes after partially T-depleted allogeneic stem cell transplantation may identify patients at very high risk for progressive EBV reactivation and lymphoproliferative disease.” Blood 101(11): 4290–7.PubMedCrossRefGoogle Scholar
  45. Mentzer, S. J., S. P. Perrine, et al. (2001). “Epstein-Barr virus post-transplant lymphoproliferative disease and virus-specific therapy: pharmacological re-activation of viral target genes with arginine butyrate.” Transpl Infect Dis 3(3): 177–85.PubMedCrossRefGoogle Scholar
  46. Moore, K. W., R. de Waal Malefyt, et al. (2001). “Interleukin-10 and the interleukin-10 receptor.” Annu Rev Immunol 19: 683–765.PubMedCrossRefGoogle Scholar
  47. Nash, R. A., R. Dansey, et al. (2003). “Epstein-Barr virus-associated posttransplantation lymphoproliferative disorder after high-dose immunosuppressive therapy and autologous CD34-selected hematopoietic stem cell transplantation for severe autoimmune diseases.” Biol Blood Marrow Transplant 9(9): 583–91.PubMedCrossRefGoogle Scholar
  48. Nemerow, G. R., C. Mold, et al. (1987). “Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d.” J Virol 61(5): 1416–20.PubMedGoogle Scholar
  49. Nepomuceno, R. R., C. E. Balatoni, et al. (2003). “Rapamycin inhibits the interleukin 10 signal transduction pathway and the growth of Epstein Barr virus B-cell lymphomas.” Cancer Res 63(15): 4472–80.PubMedGoogle Scholar
  50. Oertel, S. H., E. Verschuuren, et al. (2005). “Effect of anti-CD 20 antibody rituximab in patients with post-transplant lymphoproliferative disorder (PTLD).” Am J Transplant 5(12): 2901–6.PubMedCrossRefGoogle Scholar
  51. Opelz, G. and B. Dohler (2004). “Lymphomas after solid organ transplantation: a collaborative transplant study report.” Am J Transplant 4(2): 222–30.PubMedCrossRefGoogle Scholar
  52. Pascual, J. (2007). “Post-transplant lymphoproliferative disorder – the potential of proliferation signal inhibitors.” Nephrol Dial Transplant 22(Suppl 1): i27–35.PubMedCrossRefGoogle Scholar
  53. Pedneault, L., N. Lapointe, et al. (1998). “Natural history of Epstein-Barr virus infection in a prospective pediatric cohort born to human immunodeficiency virus-infected mothers.” J Infect Dis 177(4): 1087–90.PubMedCrossRefGoogle Scholar
  54. Penn, I., W. Hammond, et al. (1969). “Malignant lymphomas in transplantation patients.” Transplant Proc 1(1): 106–12.PubMedGoogle Scholar
  55. Perrine, S. P., O. Hermine, et al. (2007). “A phase 1/2 trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies.” Blood 109(6): 2571–8.PubMedCrossRefGoogle Scholar
  56. Reff, M. E., K. Carner, et al. (1994). “Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20.” Blood 83(2): 435–45.PubMedGoogle Scholar
  57. Rickinson, A. B., M. F. Callan, et al. (2000). “T-cell memory: lessons from Epstein-Barr virus infection in man.” Philos Trans R Soc Lond B Biol Sci 355(1395): 391–400.PubMedCrossRefGoogle Scholar
  58. Rickinson, A. B. and E., Kieff (2007). Epstein-Barr Virus. Fields Virology. In: D. M. Knipe, P.M., Howley (eds). Philadelphia, Lippencott Williams & Wilkens. 2: 2655–700.Google Scholar
  59. Rigaud, S., M. C. Fondaneche, et al. (2006). “XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome.” Nature 444(7115): 110–4.PubMedCrossRefGoogle Scholar
  60. Saridakis, V., Y. Sheng, et al. (2005). “Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization.” Mol Cell 18(1): 25–36.PubMedCrossRefGoogle Scholar
  61. Savoldo, B., J. A. Goss, et al. (2006). “Treatment of solid organ transplant recipients with autologous Epstein Barr virus-specific cytotoxic T lymphocytes (CTLs).” Blood 108(9): 2942–9.PubMedCrossRefGoogle Scholar
  62. Sindhi, R., S. Webber, et al. (2001). “Sirolimus for rescue and primary immunosuppression in transplanted children receiving tacrolimus.” Transplantation 72(5): 851–5.PubMedCrossRefGoogle Scholar
  63. Smets, F., D. Latinne, et al. (2002). “Ratio between Epstein-Barr viral load and anti-Epstein-Barr virus specific T-cell response as a predictive marker of posttransplant lymphoproliferative disease.” Transplantation 73(10): 1603–10.PubMedCrossRefGoogle Scholar
  64. Snow, A. L., S. L. Lambert, et al. (2006). “EBV can protect latently infected B cell lymphomas from death receptor-induced apoptosis.” J Immunol 177(5): 3283–93.PubMedGoogle Scholar
  65. Sokal, E. M., K. Hoppenbrouwers, et al. (2007). “Recombinant gp350 vaccine for infectious mononucleosis: a phase 2, randomized, double-blind, placebo-controlled trial to evaluate the safety, immunogenicity, and efficacy of an Epstein-Barr virus vaccine in healthy young adults.” J Infect Dis 196(12): 1749–53.PubMedCrossRefGoogle Scholar
  66. Stevens, S. J., E. A. Verschuuren, et al. (2001). “Frequent monitoring of Epstein-Barr virus DNA load in unfractionated whole blood is essential for early detection of posttransplant lymphoproliferative disease in high-risk patients.” Blood 97(5): 1165–71.PubMedCrossRefGoogle Scholar
  67. Swerdlow, A. J., C. D. Higgins, et al. (2000). “Risk of lymphoid neoplasia after cardiothoracic transplantation. a cohort study of the relation to Epstein-Barr virus.” Transplantation 69(5): 897–904.PubMedCrossRefGoogle Scholar
  68. Swerdlow, S. H. (1992). “Post-transplant lymphoproliferative disorders: a morphologic, phenotypic and genotypic spectrum of disease.” Histopathology 20(5): 373–85.PubMedCrossRefGoogle Scholar
  69. Thorley-Lawson, D. A. (2001). “Epstein-Barr virus: exploiting the immune system.” Nat Rev Immunol 1(1): 75–82.PubMedCrossRefGoogle Scholar
  70. Veillette, A., Z. Dong, et al. (2007). “Consequence of the SLAM-SAP signaling pathway in innate-like and conventional lymphocytes.” Immunity 27(5): 698–710.PubMedCrossRefGoogle Scholar
  71. Wagner, H. J., Y. C. Cheng, et al. (2004). “Prompt versus preemptive intervention for EBV lymphoproliferative disease.” Blood 103(10): 3979–81.PubMedCrossRefGoogle Scholar
  72. Williams, H., K. McAulay, et al. (2005). “The immune response to primary EBV infection: a role for natural killer cells.” Br J Haematol 129(2): 266–74.PubMedCrossRefGoogle Scholar
  73. Woodberry, T., T. J. Suscovich, et al. (2005). “Differential targeting and shifts in the immunodominance of Epstein-Barr virus-specific CD8 and CD4 T cell responses during acute and persistent infection.” J Infect Dis 192(9): 1513–24.PubMedCrossRefGoogle Scholar
  74. Young, L. S., C. W. Dawson, et al. (1999). “Epstein-Barr virus and apoptosis: viral mimicry of cellular pathways.” Biochem Soc Trans 27(6): 807–12.PubMedGoogle Scholar
  75. Young, L. S. and A. B. Rickinson (2004). “Epstein-Barr virus: 40 years on.” Nat Rev Cancer 4(10): 757–68.PubMedCrossRefGoogle Scholar
  76. Zeidler, R., G. Eissner, et al. (1997). “Downregulation of TAP1 in B lymphocytes by cellular and Epstein-Barr virus-encoded interleukin-10.” Blood 90(6): 2390–7.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Hematology/Oncology/BMTThe Ohio State University College of MedicineColumbusUSA

Personalised recommendations