New Therapeutic Frontiers for Childhood Non-Hodgkin Lymphoma

  • Megan S. Lim
  • Mitchell S. Cairo


Childhood non-Hodgkin lymphoma (NHL) accounts for approximately 6 to 7% of all childhood cancers diagnosed below the age of 15 in the United States and consists of four major histological subtypes of both intermediate and high-grade NHL including Burkitt lymphoma (BL), lymphoblastic lymphoma (LL), diffuse large B-cell lymphoma (DLBCL), and anaplastic large cell lymphoma (ALCL) (Cairo et al. 2005). While there are a large number of other histological subtypes of NHL that may occur in children, they only account for <5% of all cases of NHL diagnosed in the United States and Western Europe. Posttransplant lymphoproliferative disease (PTLD) may also occur in children following either solid organ transplantation or mismatched or T-cell depleted allogeneic stem cell transplantation and will be the subject of a separate chapter in this monograph. We will focus our discussion on the four major histological subtypes that account for >95% of all NHL in children (Cairo et al. 2005; Pinkerton 2005).


Anaplastic Lymphoma Kinase Burkitt Lymphoma Anaplastic Large Cell Lymphoma Lymphoblastic Lymphoma Denileukin Diftitox 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Erin Morris for her assistance in the development of this manuscript and Sean Park for his preparation of the ALCL figures. Supported in part by grants from the Pediatric Cancer Research Foundation, Andrew Gargiso Foundation, Sonia Scaramella Fund and National Institutes of Health.


  1. Cairo, M. S., Raetz, E. and Perkins, S. L. 2005. Non-Hodgkin’s lymphoma in children. In Cancer Medicine, ed. D. W. Kufe, R. C. Bast, W. N. Hait, W. K. Hong, R. Pollock, R. R. Weichselbaum, T. Gansler, J. F. Holland & E. Frei, pp. 1962–1976. Ontario: BC DeckerGoogle Scholar
  2. Pinkerton, R. 2005. Continuing challenges in childhood non-Hodgkin’s lymphoma. Br J Haematol 130:480–488.PubMedCrossRefGoogle Scholar
  3. Cairo, M. S., Gerrard, M., Sposto, R., et al. 2007. Results of a randomized international study of high-risk central nervous system B non-Hodgkin lymphoma and B acute lymphoblastic leukemia in children and adolescents. Blood 109:2736–2743.PubMedGoogle Scholar
  4. Patte, C., Auperin, A., Gerrard, M., et al. 2007. Results of the randomized international FAB/LMB96 trial for intermediate risk B-cell non-Hodgkin lymphoma in children and adolescents: it is possible to reduce treatment for the early responding patients. Blood 109:2773–2780.PubMedGoogle Scholar
  5. Rosenwald, A., Wright, G., Chan, W. C., et al. 2002. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346:1937–1947.PubMedCrossRefGoogle Scholar
  6. Miles, R. R., Cairo, M. S., Satwani, P., Zwick, D. L., et al. 2007. Immunophenotypic identification of possible therapeutic targets in pediatric non-Hodgkin lymphomas: A Children’s Oncology Group report. Br J Haematol 138:506–512PubMedCrossRefGoogle Scholar
  7. Rosenwald, A., Wright, G., Leroy, K., et al. 2003. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198:851–862.PubMedCrossRefGoogle Scholar
  8. Savage, K. J., Monti, S., Kutok, J. L., et al. 2003. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102:3871–3879.PubMedCrossRefGoogle Scholar
  9. Abramson, J. S. and Shipp, M. A. 2005. Advances in the biology and therapy of diffuse large B-cell lymphoma: moving toward a molecularly targeted approach. Blood 106:1164–1174.PubMedCrossRefGoogle Scholar
  10. Ye, B. H., Rao, P. H., Chaganti, R. S., et al. 1993. Cloning of bcl-6, the locus involved in chromosome translocations affecting band 3q27 in B-cell lymphoma. Cancer Res 53:2732–2735.PubMedGoogle Scholar
  11. Lo Coco, F., Ye, B. H., Lista, F., et al. 1994. Rearrangements of the BCL6 gene in diffuse large cell non-Hodgkin’s lymphoma. Blood 83:1757–1759.PubMedGoogle Scholar
  12. Chang, C. C., Ye, B. H., Chaganti, R. S., et al. 1996. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc Natl Acad Sci U S A 93:6947–6952.PubMedCrossRefGoogle Scholar
  13. Cattoretti, G., Pasqualucci, L., Ballon, G., et al. 2005. Deregulated BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 7:445–455.PubMedCrossRefGoogle Scholar
  14. Allman, D., Jain, A., Dent, A., et al. 1996. BCL-6 expression during B-cell activation. Blood 87:5257–5268.PubMedGoogle Scholar
  15. Migliazza, A., Martinotti, S., Chen, W., et al. 1995. Frequent somatic hypermutation of the 5′ noncoding region of the BCL6 gene in B-cell lymphoma. Proc Natl Acad Sci U S A 92:12520–12524.PubMedCrossRefGoogle Scholar
  16. Pasqualucci, L., Migliazza, A., Fracchiolla, N., et al. 1998. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc Natl Acad Sci U S A 95:11816–11821.PubMedCrossRefGoogle Scholar
  17. Ye, B. H., Chaganti, S., Chang, C. C., et al. 1995. Chromosomal translocations cause deregulated BCL6 expression by promoter substitution in B cell lymphoma. Embo J 14:6209–6217.PubMedGoogle Scholar
  18. Harris, M. B., Chang, C. C., Berton, M. T., et al. 1999. Transcriptional repression of Stat6-dependent interleukin-4-induced genes by BCL-6: specific regulation of iepsilon transcription and immunoglobulin E switching. Mol Cell Biol 19:7264–7275.PubMedGoogle Scholar
  19. Baron, B. W., Anastasi, J., Thirman, M. J., et al. 2002. The human programmed cell death-2 (PDCD2) gene is a target of BCL6 repression: implications for a role of BCL6 in the down-regulation of apoptosis. Proc Natl Acad Sci U S A 99:2860–2865.PubMedCrossRefGoogle Scholar
  20. Niu, H., Cattoretti, G. and Dalla-Favera, R. 2003. BCL6 controls the expression of the B7-1/CD80 costimulatory receptor in germinal center B cells. J Exp Med 198:211–221.PubMedCrossRefGoogle Scholar
  21. Miles, R. R., Crockett, D. K., Lim, M. S., et al. 2005. Analysis of BCL6-interacting proteins by tandem mass spectrometry. Mol Cell Proteomics 4:1898–1909.PubMedCrossRefGoogle Scholar
  22. O’Connor, O. A. 2005. Targeting histones and proteasomes: new strategies for the treatment of lymphoma. J Clin Oncol 23:6429–6436.PubMedCrossRefGoogle Scholar
  23. Bereshchenko, O. R., Gu, W. and Dalla-Favera, R. 2002. Acetylation inactivates the transcriptional repressor BCL6. Nat Genet 32:606–613.PubMedCrossRefGoogle Scholar
  24. Piekarz, R. L., Robey, R., Sandor, V., et al. 2001. Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report. Blood 98:2865–2868.PubMedCrossRefGoogle Scholar
  25. Kelly, W. K., Richon, V. M., O’Connor, O., et al. 2003a. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 9:3578–3588.PubMedGoogle Scholar
  26. Prince, H. M., George, D., Patnaik, A., et al. 2007. Phase 1 study of oral LBH589, a novel deacetylase (DAC) inhibitor in advanced solid tumors and non-Hodgkin’s lymphoma (abstract). J Clin Oncol 25:3500.Google Scholar
  27. Fouladi, M., Furman, W. L., Chin, T., et al. 2006. Phase I study of depsipeptide in pediatric patients with refractory solid tumors: a Children’s Oncology Group report. J Clin Oncol 24:3678–3685.PubMedCrossRefGoogle Scholar
  28. Fouladi, M., Park, J., Sun, J., et al. 2007. A Phase 1 trial of vorinostat in children with refractory solid tumors: A children’s oncology group study (abstract). J Clin Oncol 25:9569.CrossRefGoogle Scholar
  29. Polo, J. M., Dell’Oso, T., Ranuncolo, S. M., et al. 2004. Specific peptide interference reveals BCL6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat Med 10:1329–1335.PubMedCrossRefGoogle Scholar
  30. Miles, R., Raphael, M., McCarthy, K., et al. 2005. Diffuse large B-cell lymphomas in pediatric patients demonstrate a marked predominance of germinal center cell phenotype (abstract). Ann Oncol 16:v61.CrossRefGoogle Scholar
  31. Ngo, V. N., Davis, R. E., Lamy, L., et al. 2006. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441:106–110.PubMedCrossRefGoogle Scholar
  32. Thome, M. 2004. CARMA1, BCL-10 and MALT1 in lymphocyte development and activation. Nat Rev Immunol 4:348–359.PubMedCrossRefGoogle Scholar
  33. Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436.PubMedCrossRefGoogle Scholar
  34. Van Waes, C. 2007. Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res 13:1076–1082.PubMedCrossRefGoogle Scholar
  35. Lam, L. T., Davis, R. E., Pierce, J., et al. 2005. Small molecule inhibitors of IkappaB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 11:28–40.PubMedCrossRefGoogle Scholar
  36. Voorhees, P. M. and Orlowski, R. Z. 2006. The proteasome and proteasome inhibitors in cancer therapy. Annu Rev Pharmacol Toxicol 46:189–213.PubMedCrossRefGoogle Scholar
  37. Adams, J., Palombella, V. J., Sausville, E. A., et al. 1999. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622.PubMedGoogle Scholar
  38. Traenckner, E. B., Wilk, S. and Baeuerle, P. A. 1994. A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. Embo J 13:5433–5441.PubMedGoogle Scholar
  39. Goy, A., Younes, A., McLaughlin, P., et al. 2005. Phase II study of proteasome inhibitor bortezomib in relapsed or refractory B-cell non-Hodgkin’s lymphoma. J Clin Oncol 23:667–675.PubMedCrossRefGoogle Scholar
  40. O’Connor, O. A., Wright, J., Moskowitz, C., et al. 2005. Phase II clinical experience with the novel proteasome inhibitor bortezomib in patients with indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J Clin Oncol 23:676–684.PubMedCrossRefGoogle Scholar
  41. Mounier, N., Ribrag, V., Haioun, C., et al. 2007. Efficacy and toxicity of two schedules of R-CHOP plus bortezomib in front-line B lymphoma patients: A randomized phase II trial from the Groupe d’Etude des Lymphomes de l’Adulte (GELA) (abstract). J Clin Oncol 25:8010.Google Scholar
  42. Jazirehi, A. R., Huerta-Yepez, S., Cheng, G., et al. 2005. Rituximab (chimeric anti-CD20 monoclonal antibody) inhibits the constitutive nuclear factor-{kappa}B signaling pathway in non-Hodgkin’s lymphoma B-cell lines: role in sensitization to chemotherapeutic drug-induced apoptosis. Cancer Res 65:264–276.PubMedGoogle Scholar
  43. Turner, C. A., Jr., Mack, D. H. and Davis, M. M. 1994. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77:297–306.PubMedCrossRefGoogle Scholar
  44. Angelin-Duclos, C., Cattoretti, G., Lin, K. I., et al. 2000. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J Immunol 165:5462–5471.PubMedGoogle Scholar
  45. Pasqualucci, L., Compagno, M., Houldsworth, J., et al. 2006. Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 203:311–317.PubMedCrossRefGoogle Scholar
  46. Feuerhake, F., Kutok, J. L., Monti, S., et al. 2005. NFkappaB activity, function, and target-gene signatures in primary mediastinal large B-cell lymphoma and diffuse large B-cell lymphoma subtypes. Blood 106:1392–1399.PubMedCrossRefGoogle Scholar
  47. Cairo, M. S., Sposto, R., Perkins, S. L., et al. 2003. Burkitt’s and Burkitt-like lymphoma in children and adolescents: a review of the Children’s Cancer Group experience. Br J Haematol 120:660–670.PubMedCrossRefGoogle Scholar
  48. Poirel, H., Heerema, N., Swansbury, J., et al. 2003. Prognostic value of recurrent chromosomal alterations in pediatric B-cell non-Hodgkin lymphoma (NHL): A report of 238 cases from the international FAB/LMB96 study (abstract). Blood 102:1420.Google Scholar
  49. Dave, S. S., Fu, K., Wright, G. W., et al. 2006. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354:2431–2442.PubMedCrossRefGoogle Scholar
  50. Basso, K., Margolin, A. A., Stolovitzky, G., et al. 2005. Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390.PubMedCrossRefGoogle Scholar
  51. Blatt, N. B., Bednarski, J. J., Warner, R. E., et al. 2002. Benzodiazepine-induced superoxide signals B cell apoptosis: mechanistic insight and potential therapeutic utility. J Clin Invest 110:1123–1132.PubMedGoogle Scholar
  52. Boitano, A., Ellman, J. A., Glick, G. D., et al. 2003. The proapoptotic benzodiazepine Bz-423 affects the growth and survival of malignant B cells. Cancer Res 63:6870–6876.PubMedGoogle Scholar
  53. Bednarski, J. J., Warner, R. E., Rao, T., et al. 2003. Attenuation of autoimmune disease in Fas-deficient mice by treatment with a cytotoxic benzodiazepine. Arthritis Rheum 48:757–766.PubMedCrossRefGoogle Scholar
  54. Sundberg, T. B., Ney, G. M., Subramanian, C., et al. 2006. The immunomodulatory benzodiazepine Bz-423 inhibits B-cell proliferation by targeting C-MYC protein for rapid and specific degradation. Cancer Res 66:1775–1782.PubMedCrossRefGoogle Scholar
  55. Allman, D., Aster, J. C. and Pear, W. S. 2002. Notch signaling in hematopoiesis and early lymphocyte development. Immunol Rev 187:75–86.PubMedCrossRefGoogle Scholar
  56. Weng, A. P., Ferrando, A. A., Lee, W., et al. 2004. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306:269–271.PubMedCrossRefGoogle Scholar
  57. O’Neil, J., Calvo, J., McKenna, K., et al. 2006. Activating Notch1 mutations in mouse models of T-ALL. Blood 107:781–785.PubMedCrossRefGoogle Scholar
  58. Palomero, T., Lim, W. K., Odom, D. T., et al. 2006. NOTCH1 directly regulates C-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A 103:18261–18266.PubMedCrossRefGoogle Scholar
  59. Williams, S. A., Gillan, E. R., Knoppel, E., et al. 1997. Effects of phosphodiester and phosphorothioate antisense oligodeoxynucleotides on cell lines which overexpress C-MYC: implications for the treatment of Burkitt’s lymphoma. Ann Oncol 8 Suppl 1:25–30.PubMedCrossRefGoogle Scholar
  60. Williams, S. A., Chang, L., Buzby, J. S., et al. 1996. Cationic lipids reduce time and dose of C-MYC antisense oligodeoxynucleotides required to specifically inhibit Burkitt’s lymphoma cell growth. Leukemia 10:1980–1989.PubMedGoogle Scholar
  61. Drexler, H. G., Gignac, S. M., von Wasielewski, R., et al. 2000. Pathobiology of NPM-ALK and variant fusion genes in anaplastic large cell lymphoma and other lymphomas. Leukemia 14:1533–1559.PubMedCrossRefGoogle Scholar
  62. Perkins, S. L. 2000. Work-up and diagnosis of pediatric non-Hodgkin’s lymphomas. Pediatr Dev Pathol 3:374–390.PubMedCrossRefGoogle Scholar
  63. Greenland, C., Dastugue, N., Touriol, C., et al. 2001. Anaplastic large cell lymphoma with the t(2;5)(p23;q35) NPM/ALK chromosomal translocation and duplication of the short arm of the non-translocated chromosome 2 involving the full length of the ALK gene. J Clin Pathol 54:152–154.PubMedCrossRefGoogle Scholar
  64. Kadin, M. E. and Carpenter, C. 2003. Systemic and primary cutaneous anaplastic large cell lymphomas. Semin Hematol 40:244–256.PubMedCrossRefGoogle Scholar
  65. Falini, B. 2001. Anaplastic large cell lymphoma: pathological, molecular and clinical features. Br J Haematol 114:741–760.PubMedCrossRefGoogle Scholar
  66. Tomaszewski, M. M., Moad, J. C. and Lupton, G. P. 1999. Primary cutaneous Ki-1(CD30) positive anaplastic large cell lymphoma in childhood. J Am Acad Dermatol 40:857–861.PubMedCrossRefGoogle Scholar
  67. Kutok, J. L. and Aster, J. C. 2002. Molecular biology of anaplastic lymphoma kinase-positive anaplastic large-cell lymphoma. J Clin Oncol 20:3691–3702.PubMedCrossRefGoogle Scholar
  68. Pulford, K., Morris, S. W. and Turturro, F. 2004. Anaplastic lymphoma kinase proteins in growth control and cancer. J Cell Physiol 199:330–358.PubMedCrossRefGoogle Scholar
  69. Bridge, J. A., Kanamori, M., Ma, Z., et al. 2001. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 159:411–415.PubMedCrossRefGoogle Scholar
  70. Lamant, L., Dastugue, N., Pulford, K., et al. 1999. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 93:3088–3095.PubMedGoogle Scholar
  71. Meech, S. J., McGavran, L., Odom, L. F., et al. 2001. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4 – anaplastic lymphoma kinase gene fusion. Blood 98:1209–1216.PubMedCrossRefGoogle Scholar
  72. Tort, F., Pinyol, M., Pulford, K., et al. 2001. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 81:419–426.PubMedCrossRefGoogle Scholar
  73. Hernandez, L., Pinyol, M., Hernandez, S., et al. 1999. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG-ALK translocations. Blood 94:3265–3268.PubMedGoogle Scholar
  74. Cools, J., Wlodarska, I., Somers, R., et al. 2002. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 34:354–362.PubMedCrossRefGoogle Scholar
  75. Lamant, L., Gascoyne, R. D., Duplantier, M. M., et al. 2003. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 37:427–432.PubMedCrossRefGoogle Scholar
  76. Ma, Z., Hill, D. A., Collins, M. H., et al. 2003. Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 37:98–105.PubMedCrossRefGoogle Scholar
  77. Ma, Z., Cools, J., Marynen, P., et al. 2000. Inv(2)(p23q35) in anaplastic large-cell lymphoma induces constitutive anaplastic lymphoma kinase (ALK) tyrosine kinase activation by fusion to ATIC, an enzyme involved in purine nucleotide biosynthesis. Blood 95:2144–2149.PubMedGoogle Scholar
  78. Bohling, S. D., Jenson, S., Crockett, D. K., et al. 2008. Analysis of gene expression profiling of TPM3-ALK positive anaplastic large cell lymphoma reveals overlapping and unique patterns with that of NPM-ALK positive anaplastic large cell lymphoma. Leuk Res 32:383–393PubMedCrossRefGoogle Scholar
  79. Pulford, K., Morris, S. W. and Mason, D. Y. 2001. Anaplastic lymphoma kinase proteins and malignancy. Curr Opin Hematol 8:231–236.PubMedCrossRefGoogle Scholar
  80. Hubinger, G., Wehnes, E., Xue, L., et al. 2003. Hammerhead ribozyme-mediated cleavage of the fusion transcript NPM-ALK associated with anaplastic large-cell lymphoma. Exp Hematol 31:226–233.PubMedCrossRefGoogle Scholar
  81. Ritter, U., Damm-Welk, C., Fuchs, U., et al. 2003. Design and evaluation of chemically synthesized siRNA targeting the NPM-ALK fusion site in anaplastic large cell lymphoma (ALCL). Oligonucleotides 13:365–373.PubMedCrossRefGoogle Scholar
  82. Piva, R., Chiarle, R., Manazza, A. D., et al. 2006. Ablation of oncogenic ALK is a viable therapeutic approach for anaplastic large-cell lymphomas. Blood 107:689–697.PubMedCrossRefGoogle Scholar
  83. Hsu, F. Y., Zhao, Y., Anderson, W. F., et al. 2007. Downregulation of NPM-ALK by siRNA causes anaplastic large cell lymphoma cell growth inhibition and augments the anti cancer effects of chemotherapy in vitro. Cancer Invest 25:240–248.PubMedCrossRefGoogle Scholar
  84. Wan, W., Albom, M. S., Lu, L., et al. 2006. Anaplastic lymphoma kinase activity is essential for the proliferation and survival of anaplastic large-cell lymphoma cells. Blood 107:1617–1623.PubMedCrossRefGoogle Scholar
  85. Galkin, A. V., Melnick, J. S., Kim, S., et al. 2007. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci U S A 104:270–275.PubMedCrossRefGoogle Scholar
  86. Marzec, M., Kasprzycka, M., Ptasznik, A., et al. 2005. Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3. Lab Invest 85:1544–1554.PubMedGoogle Scholar
  87. Bai, R. Y., Ouyang, T., Miething, C., et al. 2000. Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96:4319–4327.PubMedGoogle Scholar
  88. Zamo, A., Chiarle, R., Piva, R., et al. 2002. Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 21:1038–1047.PubMedCrossRefGoogle Scholar
  89. Amin, H. M., Medeiros, L. J., Ma, Y., et al. 2003. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene 22:5399–5407.PubMedCrossRefGoogle Scholar
  90. Khoury, J. D., Medeiros, L. J., Rassidakis, G. Z., et al. 2003. Differential expression and clinical significance of tyrosine-phosphorylated STAT3 in ALK+ and ALK- anaplastic large cell lymphoma. Clin Cancer Res 9:3692–3699.PubMedGoogle Scholar
  91. Vega, F., Medeiros, L. J., Leventaki, V., et al. 2006. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 66:6589–6597.PubMedCrossRefGoogle Scholar
  92. Marzec, M., Kasprzycka, M., Liu, X., et al. 2007a. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 26:5606–5614.PubMedCrossRefGoogle Scholar
  93. Marzec, M., Kasprzycka, M., Liu, X., et al. 2007b. Oncogenic tyrosine kinase NPM/ALK induces activation of the MEK/ERK signaling pathway independently of c-Raf. Oncogene 26:813–821.PubMedCrossRefGoogle Scholar
  94. Bonvini, P., Gastaldi, T., Falini, B., et al. 2002. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK(+) CD30(+) lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res 62:1559–1566.PubMedGoogle Scholar
  95. Amin, H. M., McDonnell, T. J., Ma, Y., et al. 2004. Selective inhibition of STAT3 induces apoptosis and G(1) cell cycle arrest in ALK-positive anaplastic large cell lymphoma. Oncogene 23:5426–5434.PubMedCrossRefGoogle Scholar
  96. Shi, X., Franko, B., Frantz, C., et al. 2006. JSI-124 (cucurbitacin I) inhibits Janus kinase-3/signal transducer and activator of transcription-3 signalling, downregulates nucleophosmin-anaplastic lymphoma kinase (ALK), and induces apoptosis in ALK-positive anaplastic large cell lymphoma cells. Br J Haematol 135:26–32.PubMedCrossRefGoogle Scholar
  97. Chiarle, R., Simmons, W. J., Cai, H., et al. 2005. Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 11:623–629.PubMedCrossRefGoogle Scholar
  98. Bonvini, P., Dalla Rosa, H., Vignes, N., et al. 2004. Ubiquitination and proteasomal degradation of nucleophosmin-anaplastic lymphoma kinase induced by 17-allylamino-demethoxygeldanamycin: role of the co-chaperone carboxyl heat shock protein 70-interacting protein. Cancer Res 64:3256–3264.PubMedCrossRefGoogle Scholar
  99. Schumacher, J. A., Crockett, D. K., Elenitoba-Johnson, K. S., et al. 2007. Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics 7:2603–2616.PubMedCrossRefGoogle Scholar
  100. Ambrogio, C., Voena, C., Manazza, A. D., et al. 2005. p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood 106:3907–3916.PubMedCrossRefGoogle Scholar
  101. Cussac, D., Greenland, C., Roche, S., et al. 2004. Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity. Blood 103:1464–1471.PubMedCrossRefGoogle Scholar
  102. Gruss, H. J. and Dower, S. K. 1995. Tumor necrosis factor ligand superfamily: involvement in the pathology of malignant lymphomas. Blood 85:3378–3404.PubMedGoogle Scholar
  103. Schneider, C. andHubinger, G. 2002. Pleiotropic signal transduction mediated by human CD30: a member of the tumor necrosis factor receptor (TNFR) family. Leuk Lymphoma 43:1355–1366.PubMedCrossRefGoogle Scholar
  104. Horie, R., Gattei, V., Ito, K., et al. 1999. Frequent expression of the variant CD30 in human malignant myeloid and lymphoid neoplasms. Am J Pathol 155:2029–2041.PubMedCrossRefGoogle Scholar
  105. Mir, S. S., Richter, B. W. and Duckett, C. S. 2000. Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood 96:4307–4312.PubMedGoogle Scholar
  106. Gause, A., Jung, W., Schmits, R., et al. 1992. Soluble CD8, CD25 and CD30 antigens as prognostic markers in patients with untreated Hodgkin’s lymphoma. Ann Oncol 3 Suppl 4:49–52.PubMedCrossRefGoogle Scholar
  107. Nadali, G., Vinante, F., Stein, H., et al. 1995. Serum levels of the soluble form of CD30 molecule as a tumor marker in CD30+ anaplastic large-cell lymphoma. J Clin Oncol 13:1355–1360.PubMedGoogle Scholar
  108. Hansen, H. P., Kisseleva, T., Kobarg, J., et al. 1995. A zinc metalloproteinase is responsible for the release of CD30 on human tumor cell lines. Int J Cancer 63:750–756.PubMedCrossRefGoogle Scholar
  109. Zinzani, P. L., Pileri, S., Bendandi, M., et al. 1998. Clinical implications of serum levels of soluble CD30 in 70 adult anaplastic large-cell lymphoma patients. J Clin Oncol 16:1532–1537.PubMedGoogle Scholar
  110. Tian, Z. G., Longo, D. L., Funakoshi, S., et al. 1995. In vivo antitumor effects of unconjugated CD30 monoclonal antibodies on human anaplastic large-cell lymphoma xenografts. Cancer Res 55:5335–5341.PubMedGoogle Scholar
  111. Borchmann, P., Treml, J. F., Hansen, H., et al. 2003. The human anti-CD30 antibody 5F11 shows in vitro and in vivo activity against malignant lymphoma. Blood 102:3737–3742.PubMedCrossRefGoogle Scholar
  112. Perkins, S. L., Lones, M. A., Davenport, V., et al. 2004. CD52 is highly expressed and may provide an excellent target for monoclonal antibody (alemtuzumab) therapy in childhood non-Hodgkin’s lymphoma: a report from the Children’s Oncology Group (abstract). Pediatr Blood Cancer 43:366.Google Scholar
  113. Fillmore, G. C., Lin, Z., Bohling, S. D., et al. 2002. Gene expression profiling of cell lines derived from T-cell malignancies. FEBS Lett 522:183–188.PubMedCrossRefGoogle Scholar
  114. Lim, M. S., Elenitoba-Johnson, K. S. 2006. Mass spectrometry-based proteomic studies of human anaplastic large cell lymphoma. Mol Cell Proteomics 5:1787–1798.PubMedCrossRefGoogle Scholar
  115. Lim, M. S., Tygeson, J., Seiler, C., Crockett, D. K., Satwani, P., Perkins, S. L., Cairo, M. S., Elenitoba-Johnson, K. S. J. 2006. Aberrant expression of IL-2R in pediatric anaplastic large cell lymphoma: cellular and proteomic analysis of denileukin difititox (ONTAK) as a potential therapeutic agent. American Society of Hematology Annual Meeting, 2006. Blood 108 (11):2051.Google Scholar
  116. Janik, J. E., Morris, J. C., Pittaluga, S., et al. 2004. Elevated serum-soluble interleukin-2 receptor levels in patients with anaplastic large cell lymphoma. Blood 104:3355–3357.PubMedCrossRefGoogle Scholar
  117. Crist, W. M., Shuster, J. J., Falletta, J., et al. 1988. Clinical features and outcome in childhood T-cell leukemia-lymphoma according to stage of thymocyte differentiation: a Pediatric Oncology Group Study. Blood 72:1891–1897.PubMedGoogle Scholar
  118. Uckun, F. M., Gaynon, P. S., Sensel, M. G., et al. 1997. Clinical features and treatment outcome of childhood T-lineage acute lymphoblastic leukemia according to the apparent maturational stage of T-lineage leukemic blasts: a Children’s Cancer Group study. J Clin Oncol 15: 2214–2221.PubMedGoogle Scholar
  119. Soslow, R. A., Baergen, R. N. and Warnke, R. A. 1999. B-lineage lymphoblastic lymphoma is a clinicopathologic entity distinct from other histologically similar aggressive lymphomas with blastic morphology. Cancer 85:2648–2654.PubMedCrossRefGoogle Scholar
  120. Lin, P., Jones, D., Dorfman, D. M., et al. 2000. Precursor B-cell lymphoblastic lymphoma: a predominantly extranodal tumor with low propensity for leukemic involvement. Am J Surg Pathol 24:1480–1490.PubMedCrossRefGoogle Scholar
  121. Neth, O., Seidemann, K., Jansen, P., et al. 2000. Precursor B-cell lymphoblastic lymphoma in childhood and adolescence: clinical features, treatment, and results in trials NHL-BFM 86 and 90. Med Pediatr Oncol 35:20–27.PubMedCrossRefGoogle Scholar
  122. Maitra, A., McKenna, R. W., Weinberg, A. G., et al. 2001. Precursor B-cell lymphoblastic lymphoma. A study of nine cases lacking blood and bone marrow involvement and review of the literature. Am J Clin Pathol 115:868–875.PubMedCrossRefGoogle Scholar
  123. Harris, N. L., Jaffe, E. S., Stein, H., et al. 1994. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84:1361–1392.PubMedGoogle Scholar
  124. Jaffe, E. 2001. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. In World Health Organization Classification of Tumors, ed. E. Jaffe, N. L. Harris, H. Stein & J. W. Vardiman, pp. 1–351. Washington, DC: IARC Press.Google Scholar
  125. Reiter, A., Schrappe, M., Ludwig, W. D., et al. 2000. Intensive ALL-type therapy without local radiotherapy provides a 90% event-free survival for children with T-cell lymphoblastic lymphoma: a BFM group report. Blood 95:416–421.PubMedGoogle Scholar
  126. Hoelzer, D., Gokbuget, N., Digel, W., et al. 2002. Outcome of adult patients with T-lymphoblastic lymphoma treated according to protocols for acute lymphoblastic leukemia. Blood 99:4379–4385.PubMedCrossRefGoogle Scholar
  127. Goldberg, J. M., Silverman, L. B., Levy, D. E., et al. 2003. Childhood T-cell acute lymphoblastic leukemia: the Dana-Farber Cancer Institute acute lymphoblastic leukemia consortium experience. J Clin Oncol 21:3616–3622.PubMedCrossRefGoogle Scholar
  128. Link, M. P., Shuster, J. J., Donaldson, S. S., et al. 1997. Treatment of children and young adults with early-stage non-Hodgkin’s lymphoma. N Engl J Med 337:1259–1266.PubMedCrossRefGoogle Scholar
  129. Patte, C., Auperin, A., Michon, J., et al. 2001. The Societe Francaise d’Oncologie Pediatrique LMB89 protocol: highly effective multiagent chemotherapy tailored to the tumor burden and initial response in 561 unselected children with B-cell lymphomas and L3 leukemia. Blood 97:3370–3379.PubMedCrossRefGoogle Scholar
  130. Asselin, B. 2001. Improved event-free survival (EFS) with high dose methotrexate (HDM) in T-cell lymphoblastic leukemia (T-ALL) and advanced lymphoblastic lymphoma (T-NHL): a Pediatric Oncology Group (POG) study (abstract). Proc ASCO 1464.Google Scholar
  131. Thomas, D. A., O’Brien, S., Cortes, J., et al. 2004. Outcome with the hyper-CVAD regimens in lymphoblastic lymphoma. Blood 104:1624–1630.PubMedCrossRefGoogle Scholar
  132. Thomas, D. A. and Kantarjian, H. M. 2001. Lymphoblastic lymphoma. Hematol Oncol Clin North Am 15:51–95, vi.PubMedCrossRefGoogle Scholar
  133. Sandlund, J. T., Downing, J. R. and Crist, W. M. 1996. Non-Hodgkin’s lymphoma in childhood. N Engl J Med 334:1238–1248.PubMedCrossRefGoogle Scholar
  134. Goldsby, R. E. and Carroll, W. L. 1998. The molecular biology of pediatric lymphomas. J Pediatr Hematol Oncol 20:282–296.PubMedCrossRefGoogle Scholar
  135. Heerema, N. A., Sather, H. N., Sensel, M. G., et al. 1998. Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lymphoblastic leukemia: a report from the Children’s Cancer Group. J Clin Oncol 16:1270–1278.PubMedGoogle Scholar
  136. Ferrando, A. A., Neuberg, D. S., Staunton, J., et al. 2002. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1:75–87.PubMedCrossRefGoogle Scholar
  137. Ferrando, A. A. and Look, A. T. 2003. Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol 40:274–280.PubMedCrossRefGoogle Scholar
  138. Raetz, E. A., Perkins, S. L., Bhojwani, D., et al. 2006. Gene expression profiling reveals intrinsic differences between T-cell acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma. Pediatr Blood Cancer 47:130–140.PubMedCrossRefGoogle Scholar
  139. Okuda, T., Shurtleff, S. A., Valentine, M. B., et al. 1995. Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood 85:2321–2330.PubMedGoogle Scholar
  140. Cayuela, J. M., Madani, A., Sanhes, L., et al. 1996. Multiple tumor-suppressor gene 1 inactivation is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia. Blood 87:2180–2186.PubMedGoogle Scholar
  141. Baer, R. 1993. TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. Semin Cancer Biol 4:341–347.PubMedGoogle Scholar
  142. Bash, R. O., Hall, S., Timmons, C. F., et al. 1995. Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. Blood 86:666–676.PubMedGoogle Scholar
  143. Brown, L., Cheng, J. T., Chen, Q., et al. 1990. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. Embo J 9:3343–3351.PubMedGoogle Scholar
  144. Janssen, J. W., Ludwig, W. D., Sterry, W., et al. 1993. SIL-TAL1 deletion in T-cell acute lymphoblastic leukemia. Leukemia 7:1204–1210.PubMedGoogle Scholar
  145. Delabesse, E., Bernard, M., Landman-Parker, J., et al. 1997. Simultaneous SIL-TAL1 RT-PCR detection of all tal(d) deletions and identification of novel tal(d) variants. Br J Haematol 99:901–907.PubMedCrossRefGoogle Scholar
  146. Hall, M. A., Curtis, D. J., Metcalf, D., et al. 2003. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc Natl Acad Sci U S A 100:992–997.PubMedCrossRefGoogle Scholar
  147. O’Neil, J., Shank, J., Cusson, N., et al. 2004. TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 5:587–596.PubMedCrossRefGoogle Scholar
  148. Hansson, A., Manetopoulos, C., Jonsson, J. I., et al. 2003. The basic helix-loop-helix transcription factor TAL1/SCL inhibits the expression of the p16INK4A and pTalpha genes. Biochem Biophys Res Commun 312:1073–1081.PubMedCrossRefGoogle Scholar
  149. Kawabe, T., Muslin, A. J. and Korsmeyer, S. J. 1997. HOX11 interacts with protein phosphatases PP2A and PP1 and disrupts a G2/M cell-cycle checkpoint. Nature 385:454–458.PubMedCrossRefGoogle Scholar
  150. Fahraeus, R., Paramio, J. M., Ball, K. L., et al. 1996. Inhibition of pRb phosphorylation and cell-cycle progression by a 20-residue peptide derived from p16CDKN2/INK4A. Curr Biol 6:84–91.PubMedCrossRefGoogle Scholar
  151. Paietta, E., Ferrando, A. A., Neuberg, D., et al. 2004. Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. Blood 104:558–560.PubMedCrossRefGoogle Scholar
  152. Griesinger, F., Janke, A., Podleschny, M., et al. 2002. Identification of an ETV6-ABL2 fusion transcript in combination with an ETV6 point mutation in a T-cell acute lymphoblastic leukaemia cell line. Br J Haematol 119:454–458.PubMedCrossRefGoogle Scholar
  153. Chan, S. M., Weng, A. P., Tibshirani, R., et al. 2007. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 110:278–286.PubMedCrossRefGoogle Scholar
  154. Barata, J. T., Silva, A., Brandao, J. G., et al. 2004. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med 200:659–669.PubMedCrossRefGoogle Scholar
  155. Sade, H., Krishna, S. and Sarin, A. 2004. The anti-apoptotic effect of Notch-1 requires p56lck-dependent, Akt/PKB-mediated signaling in T cells. J Biol Chem 279:2937–2944.PubMedCrossRefGoogle Scholar
  156. Talora, C., Campese, A. F., Bellavia, D., et al. 2003. Pre-TCR-triggered ERK signalling-dependent downregulation of E2A activity in Notch3-induced T-cell lymphoma. EMBO Rep 4:1067–1072.PubMedCrossRefGoogle Scholar
  157. Kelly, J. A., Spolski, R., Kovanen, P. E., et al. 2003b. Stat5 synergizes with T cell receptor/antigen stimulation in the development of lymphoblastic lymphoma. J Exp Med 198:79–89.PubMedCrossRefGoogle Scholar
  158. Bellavia, D., Campese, A. F., Alesse, E., et al. 2000. Constitutive activation of NF-kappaB and T-cell leukemia/lymphoma in Notch3 transgenic mice. Embo J 19:3337–3348.PubMedCrossRefGoogle Scholar
  159. Head, D. R. and Behm, F. G. 1995. Acute lymphoblastic leukemia and the lymphoblastic lymphomas of childhood. Semin Diagn Pathol 12:325–334.PubMedGoogle Scholar
  160. Hojo, H., Sasaki, Y., Nakamura, N., et al. 2001. Absence of somatic hypermutation of immunoglobulin heavy chain variable region genes in precursor B-lymphoblastic lymphoma: a study of four cases in childhood and adolescence. Am J Clin Pathol 116:673–682.PubMedCrossRefGoogle Scholar
  161. Edwards H, Xie C, LaFiura KM, Dombkowski A, Buck S, Boerner J, Taub JW, Matherly LH, Ge Y. 2009. RUNX1 regulates phosphoinositide 3-kinase/AKT pathway: role in chemotherapy sensitivity in acute megakaryocytic leukemia. Blood 114:2744–2752.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of Pediatric Blood and Marrow Transplantation, New York-Presbyterian Morgan Stanley Children’s HospitalColumbia UniversityNew YorkUSA

Personalised recommendations