Skip to main content

The Emerging Era of Targeted Therapy in Childhood Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Book cover Molecularly Targeted Therapy for Childhood Cancer
  • 635 Accesses

Abstract

One of the most fundamental goals of modern cancer research is to develop more effective therapies that specifically target the cancer cell while sparing normal cells from the collateral damage that is common to conventional therapies. The cornerstone of current cancer treatment depends on drugs associated with a very narrow therapeutic index in that the effective dose and the toxic dose frequently overlap. While progress in pediatric oncology, specifically, improved cure rates for the most common childhood malignancy, acute lymphoblastic leukemia (ALL), has outpaced improvements in other cancer subtypes, treatment for ALL still relies on conventional cytotoxic agents thereby exposing children to considerable short- and long-term side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnes, F., B. Shamoon, et al. (1994). “Genomic structure of the downstream part of the human FLT3 gene: exon/intron structure conservation among genes encoding receptor tyrosine kinases (RTK) of subclass III.” Gene 145(2): 283–8.

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj, M., M. S. Wicha, et al. (2003). “Prospective identification of tumorigenic breast cancer cells.” Proc Natl Acad Sci USA 100(7): 3983–8.

    Article  PubMed  CAS  Google Scholar 

  • Arico, M., M. G. Valsecchi, et al. (2000). “Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia.” N Engl J Med 342(14): 998–1006.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, S. A., A. L. Kung, et al. (2003). “Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification.” Cancer Cell 3(2): 173–83.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, S. A., M. E. Mabon, et al. (2004). “FLT3 mutations in childhood acute lymphoblastic leukemia.” Blood 103(9): 3544–6.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong, S. A., J. E. Staunton, et al. (2002). “MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia.” Nat Genet 30(1): 41–7.

    Article  PubMed  CAS  Google Scholar 

  • Balduzzi, A., V. Rossi, et al. (2003). “Molecular remission induced by gemtuzumab ozogamicin associated with donor lymphocyte infusions in t(4;11) acute lymphoblastic leukemia relapsed after transplantation.” Leukemia 17(11): 2247–8.

    Article  PubMed  CAS  Google Scholar 

  • Bargou, R., E. Leo, et al. (2008). “Tumor regression in cancer patients by very low doses of a T cell-engaging antibody.” Science 321(5891): 974–7.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet, D. and J. E. Dick (1997). “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.” Nat Med 3(7): 730–7.

    Article  PubMed  CAS  Google Scholar 

  • Branford, S., Z. Rudzki, et al. (2003). “Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis.” Blood 102(1): 276–83.

    Article  PubMed  CAS  Google Scholar 

  • Brasel, K., S. Escobar, et al. (1995). “Expression of the flt3 receptor and its ligand on hematopoietic cells.” Leukemia 9(7): 1212­–8.

    PubMed  CAS  Google Scholar 

  • Brown, P., M. Levis, et al. (2006). “Combinations of the FLT3 inhibitor CEP-701 and chemotherapy synergistically kill infant and childhood MLL-rearranged ALL cells in a sequence-dependent manner.” Leukemia 20(8): 1368–76.

    Article  PubMed  CAS  Google Scholar 

  • Brown, P., M. Levis, et al. (2005). “FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression.” Blood 105(2): 812–20.

    Article  PubMed  CAS  Google Scholar 

  • Carnahan, J., P. Wang, et al. (2003). “Epratuzumab, a humanized monoclonal antibody targeting CD22: characterization of in vitro properties.” Clin Cancer Res 9(10 Pt 2): 3982S–90S.

    PubMed  CAS  Google Scholar 

  • Carow, C. E., M. Levenstein, et al. (1996). “Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias.” Blood 87(3): 1089–96.

    PubMed  CAS  Google Scholar 

  • Castor, A., L. Nilsson, et al. (2005). “Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia.” Nat Med 11(6): 630–7.

    Article  PubMed  CAS  Google Scholar 

  • Chan, L. C., K. K. Karhi, et al. (1987). “A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia.” Nature 325(6105): 635–7.

    Article  PubMed  CAS  Google Scholar 

  • Chan, S. M., A. P. Weng, et al. (2007). “Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia.” Blood 110(1): 278–86.

    Article  PubMed  CAS  Google Scholar 

  • Clark, S. S., J. McLaughlin, et al. (1988). “Expression of a distinctive BCR-ABL oncogene in Ph1-positive acute lymphocytic leukemia (ALL).” Science 239(4841 Pt 1): 775–7.

    Article  PubMed  CAS  Google Scholar 

  • Claviez, A., C. Eckert, et al. (2006). “Rituximab plus chemotherapy in children with relapsed or refractory CD20-positive B-cell precursor acute lymphoblastic leukemia.” Haematologica 91(2): 272–3.

    PubMed  Google Scholar 

  • Cobaleda, C., N. Gutierrez-Cianca, et al. (2000). “A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia.” Blood 95(3): 1007–13.

    PubMed  CAS  Google Scholar 

  • Cotter, M., S. Rooney, et al. (2003). “Successful use of gemtuzumab ozogamicin in a child with relapsed CD33-positive acute lymphoblastic leukaemia.” Br J Haematol 122(4): 687–8.

    Article  PubMed  Google Scholar 

  • Cox, C. V., P. Diamanti, et al. (2009). “Expression of CD133 on leukemia initiating cells in childhood ALL.” Blood 113(14): 3287–96.

    Article  PubMed  CAS  Google Scholar 

  • Cox, C. V., R. S. Evely, et al. (2004). “Characterization of acute lymphoblastic leukemia progenitor cells.” Blood 104(9): 2919–25.

    Article  PubMed  CAS  Google Scholar 

  • Demarest, R. M., F. Ratti, et al. (2008). “It’s T-ALL about Notch.” Oncogene 27(38): 5082–91.

    Article  PubMed  CAS  Google Scholar 

  • Drexler, H. G. (1996). “Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells.” Leukemia 10(4): 588–99.

    PubMed  CAS  Google Scholar 

  • Druker, B. J., F. Guilhot, et al. (2006). “Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia.” N Engl J Med 355(23): 2408–17.

    Article  PubMed  CAS  Google Scholar 

  • Druker, B. J., C. L. Sawyers, et al. (2001). “Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome.” N Engl J Med 344(14): 1038–42.

    Article  PubMed  CAS  Google Scholar 

  • Druker, B. J., S. Tamura, et al. (1996). “Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells.” Nat Med 2(5): 561–6.

    Article  PubMed  CAS  Google Scholar 

  • Dworzak, M. N., A. Schumich, et al. (2008). “CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy.” Blood 112(10): 3982–8.

    Article  PubMed  CAS  Google Scholar 

  • Ellisen, L. W., J. Bird, et al. (1991). “TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms.” Cell 66(4): 649–61.

    Article  PubMed  CAS  Google Scholar 

  • Feugier, P., A. Van Hoof, et al. (2005). “Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte.” J Clin Oncol 23(18): 4117–26.

    Article  PubMed  CAS  Google Scholar 

  • Fortini, M. E. and S. Artavanis-Tsakonas (1994). “The suppressor of hairless protein participates in notch receptor signaling.” Cell 79(2): 273–82.

    Article  PubMed  CAS  Google Scholar 

  • Frampton, J. E. and A. J. Wagstaff (2003). “Alemtuzumab.” Drugs 63(12): 1229–43; discussion 1245–6.

    Article  PubMed  CAS  Google Scholar 

  • Frohling, S., C. Scholl, et al. (2007). “Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles.” Cancer Cell 12(6): 501–13.

    Article  PubMed  CAS  Google Scholar 

  • Fryer, C. J., J. B. White, et al. (2004). “Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover.” Mol Cell 16(4): 509–20.

    Article  PubMed  CAS  Google Scholar 

  • Golay, J., N. Di Gaetano, et al. (2005). “Gemtuzumab ozogamicin (Mylotarg) has therapeutic activity against CD33 acute lymphoblastic leukaemias in vitro and in vivo.” Br J Haematol 128(3): 310–7.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, W. R., D. Vardar-Ulu, et al. (2007). “Structural basis for autoinhibition of Notch.” Nat Struct Mol Biol 14(4): 295–300.

    Article  PubMed  CAS  Google Scholar 

  • Griffin, T. C., S. Weitzman, et al. (2009). “A study of rituximab and ifosfamide, carboplatin, and etoposide chemotherapy in children with recurrent/refractory B-cell (CD20+) non-Hodgkin lymphoma and mature B-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group.” Pediatr Blood Cancer 52(2): 177–81.

    Article  PubMed  Google Scholar 

  • Grossbard, M. L., J. M. Lambert, et al. (1993). “Anti-B4-blocked ricin: a phase I trial of 7-day continuous infusion in patients with B-cell neoplasms.” J Clin Oncol 11(4): 726–37.

    PubMed  CAS  Google Scholar 

  • Harris, M. (2004). “Monoclonal antibodies as therapeutic agents for cancer.” Lancet Oncol 5(5): 292–302.

    Article  PubMed  CAS  Google Scholar 

  • Hekman, A., A. Honselaar, et al. (1991). “Initial experience with treatment of human B cell lymphoma with anti-CD19 monoclonal antibody.” Cancer Immunol Immunother 32(6): 364–72.

    Article  PubMed  CAS  Google Scholar 

  • Hilden, J. M., P. A. Dinndorf, et al. (2006). “Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children’s Oncology Group.” Blood 108(2): 441–51.

    Article  PubMed  CAS  Google Scholar 

  • Hong, D., R. Gupta, et al. (2008). “Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia.” Science 319(5861): 336–9.

    Article  PubMed  CAS  Google Scholar 

  • Horton, H. M., M. J. Bernett, et al. (2008). “Potent in vitro and in vivo activity of an Fc-engineered anti-CD19 monoclonal antibody against lymphoma and leukemia.” Cancer Res 68(19): 8049–57.

    Article  PubMed  CAS  Google Scholar 

  • Jeha, S., F. Behm, et al. (2006). “Prognostic significance of CD20 expression in childhood B-cell precursor acute lymphoblastic leukemia.” Blood 108(10): 3302–4.

    Article  PubMed  CAS  Google Scholar 

  • Leonard, J. P., M. Coleman, et al. (2005). “Combination antibody therapy with epratuzumab and rituximab in relapsed or refractory non-Hodgkins lymphoma.” J Clin Oncol 23(22): 5044–51.

    Article  PubMed  CAS  Google Scholar 

  • Lleo, A. (2008). “Activity of gamma-secretase on substrates other than APP.” Curr Top Med Chem 8(1): 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Malecki, M. J., C. Sanchez-Irizarry, et al. (2006). “Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes.” Mol Cell Biol 26(12): 4642–51.

    Article  PubMed  CAS  Google Scholar 

  • Meshinchi, S., W. G. Woods, et al. (2001). “Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia.” Blood 97(1): 89–94.

    Article  PubMed  CAS  Google Scholar 

  • Molhoj, M., S. Crommer, et al. (2007). “CD19-/CD3-bispecific antibody of the BiTE class is far superior to tandem diabody with respect to redirected tumor cell lysis.” Mol Immunol 44(8): 1935–43.

    Article  PubMed  CAS  Google Scholar 

  • Moorman, A. V., C. J. Harrison, et al. (2007). “Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the Medical Research Council (MRC) UKALLXII/Eastern Cooperative Oncology Group (ECOG) 2993 trial.” Blood 109(8): 3189–97.

    Article  PubMed  CAS  Google Scholar 

  • Morris, E. S. and A. Vora (2007). “Remission induction with single agent Rituximab in a child with multiply relapsed precursor-B ALL.” Br J Haematol 139(2): 344–5.

    Article  PubMed  Google Scholar 

  • Nakao, M., S. Yokota, et al. (1996). “Internal tandem duplication of the flt3 gene found in acute myeloid leukemia.” Leukemia 10(12): 1911–8.

    PubMed  CAS  Google Scholar 

  • Nefedova, Y. and D. Gabrilovich (2008). “Mechanisms and clinical prospects of Notch inhibitors in the therapy of hematological malignancies.” Drug Resist Updat 11(6): 210–8.

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, C. A., A. Pollett, et al. (2007). “A human colon cancer cell capable of initiating tumour growth in immunodeficient mice.” Nature 445(7123): 106–10.

    Article  PubMed  CAS  Google Scholar 

  • O’Hare, T., C. A. Eide, et al. (2007). “Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia.” Blood 110(7): 2242–9.

    Article  PubMed  CAS  Google Scholar 

  • Oberg, C., J. Li, et al. (2001). “The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog.” J Biol Chem 276(38): 35847–53.

    Article  PubMed  CAS  Google Scholar 

  • Ottmann, O. G., B. J. Druker, et al. (2002). “A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias.” Blood 100(6): 1965–71.

    Article  PubMed  CAS  Google Scholar 

  • Palomero, T. and A. Ferrando (2008). “Oncogenic NOTCH1 control of MYC and PI3K: challenges and opportunities for anti-NOTCH1 therapy in T-cell acute lymphoblastic leukemias and lymphomas.” Clin Cancer Res 14(17): 5314–7.

    Article  PubMed  CAS  Google Scholar 

  • Palomero, T., W. K. Lim, et al. (2006). “NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth.” Proc Natl Acad Sci USA 103(48): 18261–6.

    Article  PubMed  CAS  Google Scholar 

  • Palomero, T., M. L. Sulis, et al. (2007). “Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia.” Nat Med 13(10): 1203–10.

    Article  PubMed  CAS  Google Scholar 

  • Pear, W. S., J. C. Aster, et al. (1996). “Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles.” J Exp Med 183(5): 2283–91.

    Article  PubMed  CAS  Google Scholar 

  • Pfreundschuh, M., L. Trumper, et al. (2006). “CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group.” Lancet Oncol 7(5): 379–91.

    Article  PubMed  CAS  Google Scholar 

  • Pieters, R., M. Schrappe, et al. (2007). “A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial.” Lancet 370(9583): 240–50.

    Article  PubMed  CAS  Google Scholar 

  • Pui, C. H., P. S. Gaynon, et al. (2002). “Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region.” Lancet 359(9321): 1909–15.

    Article  PubMed  Google Scholar 

  • Putti, M. C., R. Rondelli, et al. (1998). “Expression of myeloid markers lacks prognostic impact in children treated for acute lymphoblastic leukemia: Italian experience in AIEOP-ALL 88-91 studies.” Blood 92(3): 795–801.

    PubMed  CAS  Google Scholar 

  • Raetz, E. A., M. S. Cairo, et al. (2008). “Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group Pilot Study.” J Clin Oncol 26(22): 3756–62.

    Article  PubMed  CAS  Google Scholar 

  • Real, P. J., V. Tosello, et al. (2009). “Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia.” Nat Med 15(1): 50–8.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro, R. C., A. Broniscer, et al. (1997). “Philadelphia chromosome-positive acute lymphoblastic leukemia in children: durable responses to chemotherapy associated with low initial white blood cell counts.” Leukemia 11(9): 1493–6.

    Article  PubMed  CAS  Google Scholar 

  • Rosnet, O., H. J. Buhring, et al. (1996). “Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells.” Leukemia 10(2): 238–48.

    PubMed  CAS  Google Scholar 

  • Rowland, A. J., G. A. Pietersz, et al. (1993). “Preclinical investigation of the antitumour effects of anti-CD19-idarubicin immunoconjugates.” Cancer Immunol Immunother 37(3): 195–202.

    Article  PubMed  CAS  Google Scholar 

  • Schnittger, S., C. Schoch, et al. (2002). “Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease.” Blood 100(1): 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Schrappe, M., M. Arico, et al. (1998). “Philadelphia chromosome-positive (Ph+) childhood acute lymphoblastic leukemia: good initial steroid response allows early prediction of a favorable treatment outcome.” Blood 92(8): 2730–41.

    PubMed  CAS  Google Scholar 

  • Schroeter, E. H., J. A. Kisslinger, et al. (1998). “Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain.” Nature 393(6683): 382–6.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, K. R., D. J. Pullen, et al. (2007). “Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG).” Blood 109(3): 926–35.

    Article  PubMed  CAS  Google Scholar 

  • Secker-Walker, L. M., H. G. Prentice, et al. (1997). “Cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukaemia on MRC trial UKALL XA. MRC Adult Leukaemia Working Party.” Br J Haematol 96(3): 601–10.

    Article  PubMed  CAS  Google Scholar 

  • Shah, N. P., C. Tran, et al. (2004). “Overriding imatinib resistance with a novel ABL kinase inhibitor.” Science 305(5682): 399–401.

    Article  PubMed  CAS  Google Scholar 

  • Sievers, E. L., R. A. Larson, et al. (2001). “Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse.” J Clin Oncol 19(13): 3244–54.

    PubMed  CAS  Google Scholar 

  • Silverman, L. B. (2007). “Acute lymphoblastic leukemia in infancy.” Pediatr Blood Cancer 49(7 Suppl): 1070–3.

    Article  PubMed  Google Scholar 

  • Smith, B. D., M. Levis, et al. (2004). “Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia.” Blood 103(10): 3669–76.

    Article  PubMed  CAS  Google Scholar 

  • Stam, R. W., M. L. den Boer, et al. (2007a). “D-HPLC analysis of the entire FLT3 gene in MLL rearranged and hyperdiploid acute lymphoblastic leukemia.” Haematologica 92(11): 1565–8.

    Article  PubMed  CAS  Google Scholar 

  • Stam, R. W., M. L. den Boer, et al. (2005). “Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia.” Blood 106(7): 2484–90.

    Article  PubMed  CAS  Google Scholar 

  • Stam, R. W., P. Schneider, et al. (2007b). “Prognostic significance of high-level FLT3 expression in MLL-rearranged infant acute lymphoblastic leukemia.” Blood 110(7): 2774–5.

    Article  PubMed  CAS  Google Scholar 

  • Stirewalt, D. L. and J. P. Radich (2003). “The role of FLT3 in haematopoietic malignancies.” Nat Rev Cancer 3(9): 650–65.

    Article  PubMed  CAS  Google Scholar 

  • Stone, R. M., D. J. DeAngelo, et al. (2005). “Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412.” Blood 105(1): 54–60.

    Article  PubMed  CAS  Google Scholar 

  • Taketani, T., T. Taki, et al. (2004). “FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy.” Blood 103(3): 1085–8.

    Article  PubMed  CAS  Google Scholar 

  • Talpaz, M., N. P. Shah, et al. (2006). “Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias.” N Engl J Med 354(24): 2531–41.

    Article  PubMed  CAS  Google Scholar 

  • Thiede, C., C. Steudel, et al. (2002). “Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis.” Blood 99(12): 4326–35.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. A., S. Faderl, et al. (2004). “Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate.” Blood 103(12): 4396–407.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. A., S. Faderl, et al. (2006). “Chemoimmunotherapy with hyper-CVAD plus rituximab for the treatment of adult Burkitt and Burkitt-type lymphoma or acute lymphoblastic leukemia.” Cancer 106(7): 1569–80.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, D. A., S. O’Brien, et al. (2008). “Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia.” Blood 113: 6330–37.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, B. J., S. Buonamici, et al. (2007). “The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia.” J Exp Med 204(8): 1825–35.

    Article  PubMed  CAS  Google Scholar 

  • Tibes, R., M. J. Keating, et al. (2006). “Activity of alemtuzumab in patients with CD52-positive acute leukemia.” Cancer 106(12): 2645–51.

    Article  PubMed  CAS  Google Scholar 

  • Wang, J. C., T. Lapidot, et al. (1998). “High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase.” Blood 91(7): 2406–14.

    PubMed  CAS  Google Scholar 

  • Weisberg, E., C. Boulton, et al. (2002). “Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412.” Cancer Cell 1(5): 433–43.

    Article  PubMed  CAS  Google Scholar 

  • Weisberg, E., P. W. Manley, et al. (2005). “Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl.” Cancer Cell 7(2): 129–41.

    Article  PubMed  CAS  Google Scholar 

  • Weng, A. P., A. A. Ferrando, et al. (2004). “Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia.” Science 306(5694): 269–71.

    Article  PubMed  CAS  Google Scholar 

  • Xia, M. Q., G. Hale, et al. (1993). “Structure of the CAMPATH-1 antigen, a glycosylphosphatidylinositol-anchored glycoprotein which is an exceptionally good target for complement lysis.” Biochem J 293(Pt 3): 633–40.

    PubMed  CAS  Google Scholar 

  • Yeoh, E. J., M. E. Ross, et al. (2002). “Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling.” Cancer Cell 1(2): 133–43.

    Article  PubMed  CAS  Google Scholar 

  • Zwaan, C. M., V. H. J. van der Velden et al. (2008). “Dasatinib in children and adolescents with relapsed or refractory leukemia: interim results of the CA180-018 phase I study from the ITCC consortium.” Blood 112: 3241.

    Google Scholar 

  • Zwaan, C. M., D. Reinhardt, et al. (2003). “Gemtuzumab ozogamicin in pediatric CD33-positive acute lymphoblastic leukemia: first clinical experiences and relation with cellular sensitivity to single agent calicheamicin.” Leukemia 17(2): 468–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Penelope London Foundation, the Friedman Fund for Childhood Leukemia, and the Walter Family Pediatric Leukemia Fund. The authors thank Drs. Teena Bhatla and Elizabeth Raetz for review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William L. Carroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carroll, W.L., Pieters, R. (2010). The Emerging Era of Targeted Therapy in Childhood Acute Lymphoblastic Leukemia. In: Houghton, P., Arceci, R. (eds) Molecularly Targeted Therapy for Childhood Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69062-9_1

Download citation

Publish with us

Policies and ethics