The first part of this chapter describes examples of NMOS, CMOS and BiCMOS logic units. The presence of both NMOS and PMOS in an integrated bulk1 CMOS process makes the circuit susceptible to a parasitic effect known as latch-up. A CMOS inverter will be used to describe the latch-up mechanism and methods to prevent it. The second part of the chapter covers different types of memory cells, including dynamic random-access memory, DRAM; static random-access memory, SRAM; and nonvolatile memory, NVM. The chapter concludes with a summary of BiCMOS features that are important for analog/RF applications


Threshold Voltage Gate Oxide Nonvolatile Memory Soft Error Static Random Access Memory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. H. E. Weste and K. Eshraghian, Principles of CMOS VLSI Design, Addison Wesley Publishing Company, 1993.Google Scholar
  2. 2.
    C. F. Hill, “Definitions of noise margins in logic systems,” Mullard Tech. Commun. 89,239–245, Sept. 1967.Google Scholar
  3. 3.
    C. F. Hill, “Noise margin and noise immunity in logic circuits,” Microelectronics 1 (5),16–21, 1968.Google Scholar
  4. 4.
    J. R. Hauser, “Noise margin criteria for digital logic circuits,” IEEE Trans Edu. 36 (4),363–368, 1993.CrossRefGoogle Scholar
  5. 5.
    J. S. Yuan and L. Yang, “Teaching digital noise and noise margin issues in engineering education,” IEEE Trans Edu. 48 (1), 162–168, 2005.CrossRefGoogle Scholar
  6. 6.
    DeWitt G. Ong, Modern MOS Technology, Process, Devices,&Design, McGraw-Hill Book Company,1984.Google Scholar
  7. 7.
    W. J. Dennehy, A. G. Holmes-Siedle, and W. F. Leopold, “Transient radiation response of complementary-symmetry MOS integrated circuits,” IEEE Trans. Nucl. Sci. NS-16 (6), 114–119, 1969.CrossRefGoogle Scholar
  8. 8.
    B. L. Gregory and B. D. Shafer, “Latchup in CMOS integrated circuits,” IEEE Trans. Nucl. Sci. NS-20 (6), 293–299, 1973.CrossRefGoogle Scholar
  9. 9.
    D. B. Estreich, “The physics and modeling of latch-up and CMOS integrated circuits,” Tech. Rept. No. G-201-9, Nov. 1980, Stanford University, Stanford, California.Google Scholar
  10. 10.
    J. J. Ebers, “Four-terminal p-n-p-n transistors,” Proc. IRE 40 (11), 1361–1364, 1952.CrossRefGoogle Scholar
  11. 11.
    J. L. Moll, M. Tanenbaum, J. M. Goldley, and N. Holonyak, “P-N-P-N transistor switches,” Proce. IRE 44 (9), 1174–1182, 1956.CrossRefGoogle Scholar
  12. 12.
    W. D. Raburn, “A model for the parasitic SCR in bulk CMOS,” IEEE IEDM Tech. Digest. 252–255, 1980.Google Scholar
  13. 13.
    R. D. Rung and H. Momose, “DC holding and dynamic triggering characteristics of bulk CMOS latchup,” IEEE Trans. Electron Dev. ED-30 (12), 1647–1655, 1983.CrossRefGoogle Scholar
  14. 14.
    R. C.-Y. Fang and J. L. Moll, “Latch-up model for the parasitic p-n-p-n path in bulk CMOS,” IEEE Trans. Electron Dev. ED-31 (1), 113–120, 1984.CrossRefGoogle Scholar
  15. 15.
    G. J. Hu, “A better understanding of CMOS latch-up,” IEEE Trans. Electron Dev. ED-31 (1), 62–67, 1984.CrossRefGoogle Scholar
  16. 16.
    R. R. Troutman, Latch-up in CMOS Technology, Kluwer Academic Publishers, 1986.Google Scholar
  17. 17.
    D. B. Estreich, A. Ochoa, Jr., and R. W. Dutton, “An analysis of latch-up prevention in CMOSIC's using an epitaxial-buried layer process,” IEEE IEDM Tech. Digest. 230–234, 1978.Google Scholar
  18. 18.
    H.-Y. Lin and C. H. Ting, “Improvement of CMOS latch-up immunity using a high energyimplanted buried layer,” Nucl. Instrum. Methods Phys. Res., B37/38, 960–964, 1989.Google Scholar
  19. 19.
    M.-J. Chen and C.-Y. Wu, “A simplified computer analysis for n-well guard ring efficiencyin CMOS circuits,” Solid-State Electron. 30 (8), 879–882, 1987.CrossRefGoogle Scholar
  20. 20.
    D. Tremouilles, M. I. Natarajan, M. Scholz, N. Azilah, M. Bafleur, M. Sawada, T. Hasebe, and G. Groeseneken, “A novel method for guard ring efficiency assessment and its applications for ESD protection, design and optimization,” IEEE IRPS 606–607, 2007.Google Scholar
  21. 21.
    L. J. McDaid, S. Hall, W. Eccleston, and J. C. Alderman, “Suppression of latch up in SOI MOSFETs by silicidation of source,” Electron. Lett. 27 (11), 1003–1005, 1991.CrossRefGoogle Scholar
  22. 22.
    R. Alvarez, BiCMOS Technology and Applications, Kluwer Academic Publishers, 1993.Google Scholar
  23. 23.
    S. H. K. Embabi, A. Bellaouar, and M. I. Elmasry, Digital BiCMOS Integrated Circuits Kluwer Academic Publishers, 1993.Google Scholar
  24. 24.
    R. H. Dennard, “Field-effect transistor memory,” US Patent 3, 387, 286, June 4, 1968.Google Scholar
  25. 25.
    V. L. Rideout, “One-device cells for dynamic random-access memories: a tutorial,” IEEE Trans. Electron. Dev. ED-26 (6), 839–852, 1979.CrossRefGoogle Scholar
  26. 26.
    D. S. Yaney, C. Y. Lu, R. A. Kohler, M. J. Kelly, and J. T. Nelson, “A meta-stable leakage phenomenon in DRAM charge storage: variable hold time,” IEEE IEDM Tech. Digest.336–339, 1987.Google Scholar
  27. 27.
    P. J. Restle, J. W. Park, and B. F. Lloyd, “DRAM variable retention time,” IEEE IEDM Tech. Digest. 807–810, 1992.Google Scholar
  28. 28.
    Y. Mori, K. Ohyu, K. Okonogi, and R.-I. Yamada, “The origin of variable retention time in DRAM,” IEEE IEDM Tech. Digest. 1034–1037, 2005.Google Scholar
  29. 29.
    T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories,” IEEE Trans. Electron. Dev. ED-26 (1), 2–9, 1979.CrossRefGoogle Scholar
  30. 30.
    J. F. Ziegler and W. A. Lanford, “The effect of sea-level cosmic rays on electronic devices,” J. Appl. Phys. 62 (6), 4205–4215, 1981.Google Scholar
  31. 31.
    Y. Tosaka, S. Satoh, T. Itakura, H. Ehara, T. Ueda, G. A. Woffinden, and S. A. Wender, “Measurement and analysis of neutron-induced soft errors in sub-half-micron CMOS circuits,” IEEE Trans. Electron. Dev. 45 (7), 1453–1458, 1998.CrossRefGoogle Scholar
  32. 32.
    P. Hazucha, T. Kamik, J. Maiz, S. Walstra, B. Bloechel, J. Tschanz, G. Dermer, S. Hareland,P. Armstrong, and S. Borkar, “Neutron soft error rate measurements in a 90-nm CMOS process and scaling trends in SRAM from 0.25-μm to 90-nm generation,” IEEE IEDM Tech. Digest. 523–526, 2003.Google Scholar
  33. 33.
    L. Nebit, J. Alsmeier, B. Chen, J. DeBrosse, P. Fahey, M. Gall, J. Gambino, S. Gernhardt, H. Ishiuchit, R. Kleinhenz, J. Mandelman, T. Mii, M. Morikado, A. Nitayama, S. Parke, H. Wong, and G. Bronner, “A 0.6+Cm2 256Mb trench DRAM cell with self-aligned buried strap (BEST),” IEEE IEDM Tech. Digest. 627–630, 1993.Google Scholar
  34. 34.
    W. F. Richardson, D. M Bordelon, G. P. Pollack, A. H. Shah., S. D. S. Malhi, H. Shichijo,S. K. Brlnerjee, M. Elahy, R. H. Womack, C.-P. Wang, J. Gallia, H. E. Davis, and P.K. Chattarjee, “A Trench transistor cross-point DRAM cell,” IEEE IEDM Tech. Digest. 714–717, 1985.Google Scholar
  35. 35.
    U. Gruening, C. J. Radens. J. A. Mandelman, A. Michaelis, M. Seitz, N. Arnold, D. Lea, D. Casarotto, A. Knorr, S. Halle, T. H. Ivers, L. Economikos, S. Kudelka, S. Rahn, H. Tews, H. Lee, R. Divakaruni, J. J. Welser, T. Furukawa, T. S. Kanarsky, J. Alsmeier, and G. B. Bronner, “A novel trench DRAM cell with a VERtIcal access transistor and BuriEd STrap (VERI BEST) for 4Gb/l6Gb,” IEEE IEDM Tech. Digest. 25–28, 1999.Google Scholar
  36. 36.
    R. Weis, K. Hummler, H. Akatsu, S. Kudelka, T. Dyer, M. Seitz, A. Scholtz, B. Kim,M. Wise, R. Malik, J. Strane, Th. Goebel, K. McStay, J. Beintner, N. Arnold, R. Gerber,B. Liegl, A. Knorr, L. Economikos, A. Simpson, W. Yan, D. Dobuzinski, J. Mandelman, L. Nesbit, C. J. Radens, R. Divakaruni, W. Bergner, G. Bronner, and W. Mueller, “A highly cost efficient 8F2 DRAM cell with a double gate vertical transistor device for 100 nm and beyond,” IEEE IEDM Tech. Digest. 415–418, 2001.Google Scholar
  37. 37.
    T. Schlosser, D. Manger, R. Weis, S. Slesazeck, F. Lau, S. Tegen, M. Sesterhenn, K. Meummler, J. Nuetzel, D. Temmler, B. Kowalski, U. Scheler, M. Stavrev, and D. Koehler “Highly scalable sub-50 nm vertical double gate trench DRAM cell,” IEEE IEDM Tech. Digest. 57–60, 2004.Google Scholar
  38. 38.
    C. J. Radens, U. Gruening, J. A. Mandelman, M. Seitz, T. Dyer, D. Lea, D. Casarotto L. Clevenger, L. Nesbit, R. Malik, S. Halle, S. Kudelka, H. Tews, R. Divakaruni, J. Sim, A. Strong, D. Tibbel, N. Arnold, S. Bukofsky, J. Preuninger, G. Kunkel, and G. Bronner, “A 0.135μm2 6F2 trench-sidewall vertical device cell for 4Gb/16Gb DRAM,” IEEE Symp. VLSI Tech. Digest. 81–82, 2000.Google Scholar
  39. 39.
    J. Y. Kim, C. S. Lee, S. E. Kim, I. B. Chung, Y. M. Choi, B. J. Park, J. W. Lee, D. I. Kim, Y. S. Hwang, D. S. Hwang, H. K. Hwang, J. M. Park, D. H. Kim, N. J. Kang, M. H. Cho, M. Y. Jeong, H. J. Kim, J. N. Han, S. Y. Kim, B.Y. Nam, H.S. Park, S.H. Chung, J. H. Lee, J. S. Park, H. S. Kim, Y. J. Park, and K. Kim, “The breakthrough in data retention time of DRAM using recess-channel-array transistor (RCAT) for 88 nm feature size and beyond,” IEEE Symp. VLSI Tech. Digest. 11–12, 2003.Google Scholar
  40. 40.
    I.-G. Kim, S.-H. Park, J.-S. Yoon, D.-J. Kim, J.-Y. Noh, J.-H. Lee, Y.-S. Kim, M.-W. Hwang, K.-H. Yang, J. Park, and K. Oh, “Overcoming DRAM scaling limitations by employing straight recessed channel array transistors with <100= uni-axial and {100} uni-plane channels,” IEEE IEDM Tech. Digest. 319–322, 2005.Google Scholar
  41. 41.
    D.-H. Lee, B.-C. Lee, I.-S. Jung, T.-J. Kim, Y.-H. Son, S.-G. Lee, Y.-P. Kim, S. Choi, U.-I. Chung, and J.-T. Moon, Fin-channel-array transistor (FCAT) featuring sub-70 nm low power and high performance DRAM,” IEEE IEDM Tech. Digest. 407–410, 2003.Google Scholar
  42. 42.
    M. J. Lee, S. Jin, C.-K. Baek, S.-M. Hong, S.-Y. Park, H.-H. Park, S.-D. Lee, S.-W. Chung, J.-G. Jeong, S.-J. Hong, S.-W. Park, I.-Y. Chung, Y. J. Park, and H. S. Min, “A proposal on an optimized device structure with experimental studies on recent devices for the DRAM cell transistor,” IEEE Trans. Electron Dev. 54 (12) 3325–3335, 2007.CrossRefGoogle Scholar
  43. 43.
    P. S. Parkinson, K. Settlemyer, L. McStay, D.-G. Park, R. Ramachandran, M. Chudzik, K. Cheng, C.-Y. Sung, F. Chen, A. Strong, P. Papworth, and R. Jammy, “Novel techniques for scaling deep trench DRAM capacitor technology to 0.11μm and beyond,” IEEE Symp. VLSI Tech. Digest. 21–22, 2003.Google Scholar
  44. 44.
    J. Amon, A Kieslich, L. Heineck, T. Schuster, J. Faul, J. Luetzen, C. Fan, C.-C. Huang B. Fischer, G. Enders, S. Kudelka, U. Schroeder, K.-H. Kuesters, G. Lange, and J. Alsmeier, “A highly manufacturable deep trench based DRAM cell layout with a planar array device in a 70 nm technology,” IEEE IEDM Tech. Digest. 73–76, 2004.Google Scholar
  45. 45.
    H. Watanabe, T. Tatsumi, S. Ohnisihi, T. Hamada, I. Honma, and T. Kikkawa, “A new cylindrical capacitor using hemispherical grained Si (HSG-Si) for 256 Mb DRAMS,” IEEE IEDM Tech. Digest. 259–262, 1992.Google Scholar
  46. 46.
    T. Sanuki, Y. Sogo, A. Oishi, Y. Okayama, R. Hasumi, Y. Morimasa, T. Kinoshita, T. Komoda, H. Tanaka, K. Hiyama, T. Komoguchi, T. Matsumoto, K. Oota, T. Yokoyama, K. Fukasaku, R. Katsumata1, M. Kido1, M. Tamura, Y. Takegawa, H. Yoshimura, K. Kasai, K. Ohno, M. Saito, H. Aochi, M. Iwai, N. Nagashima, F. Matsuoka, Y. Okamoto, and T. Noguchi, “High density and fully compatible embedded DRAM cell with 45nm CMOS Technology (CMOS6),” IEEE VLSI Tech. Digest. 14–15, 2005.Google Scholar
  47. 47.
    Y.-H. Wu, C.-M. Chang, C.-Y. Wang, C.-K. Kao, C.-M. Kuo, A. Ku, and T. Huang, “Augmented cell performance of NO-based storage dielectric by N2O-treated nitride film for trench DRAM,” IEEE Electron Dev. Lett. 29 (2), 149–152, 2008.CrossRefGoogle Scholar
  48. 48.
    J. Lützen, A. Birner, M. Goldbach, M. Gutsche, T. Hecht, S. Jakschik, A. Orth, A. Saänger, U. Schroöder, H. Seidl, B. Sell, and D. Schumann,“Integration of capacitor for sub-100-nm DRAM trench technology,” IEEE VLSI Tech. Digest. 178–179, 2002.Google Scholar
  49. 49.
    G. Aichmayr, A. Avellaán, G. S. Duesberg, F. Kreupl, S. Kudelka, M. Liebau, A. Orth, A. Saänger, J. Schumann, and O. Storbeck, “Carbon/high-k trench capacitor for the 40nm DRAM generation,” IEEE VLSI Tech. Digest. 186–187, 2007.Google Scholar
  50. 50.
    M. Koyanagi, H. Sunami, N. Hashimoto, and M. Ashikawa, “Novel high density, stacked capacitor MOS RAM,” IEEE IEDM Tech. Digest. 348–351, 1978.Google Scholar
  51. 51.
    Sakai and T. Tatsumi, “Novel seeding method for the growth of polycrystalline Si films with hemispherical grains,” Appl. Phys. Lett. 61 (2), 159–161, 1992.CrossRefGoogle Scholar
  52. 52.
    H. Watanabe, N. Aoto, S. Adachi, and T. Kikkawa, “Device application and structure observation for hemispherical-grained Si,” J. Appl. Phys. 71, 3538–3543, 1992.CrossRefGoogle Scholar
  53. 53.
    S. Yamamichi, P.-Y. Lesaicherre, H. Yamaguchi, K. Takemura, S. Sone, H. Yabuta, K. Sato, T. Tamura, K. Nakajima, S. Ohnishi, K. Tokashiki, Y. Hayashi, Y. Kato, Y. Miyasaka, M. Yoshida, and H. Ono, “A stacked capacitor technology with ECR plasma MOCVD (Ba,Sr)TiO and RuO/Ru/TiN/TiSi storage nodes for Gb-scale DRAMs,” IEEE Trans. Electron. Dev. 44 (7) 1076–1083, 1997.CrossRefGoogle Scholar
  54. 54.
    K. N. Kim, H. S. Jeong, W. S. Yang, Y. S. Hwang, C. H. Cho, M. M. Jeong, S. Park, S. J. Ahn, Y. S. Chun, S. H. Shin, J. S. Park, S. H. Song, J. Y. Lee, S. M. Jang, C. H. Lee, J. H. Jeong, M. H. Cho, H. I. Yoon, and J. S. Jeon, “Highly manufacturable and high performance SDR/DDR 4 Gb DRAM,” IEEE VLSI Tech. Digest 7–8, 2001.Google Scholar
  55. 55.
    J. M. Park, Y. S. Hwang, H. K. Hwang, S. H. Lee, G. Y. Kim, M. Y. Jeong, B. J. Park, S. E. Kim, M. H. Cho, D. I. Kim, J.-H. Chung, I. S. Park, C.-Y. Yoo, J. H. Lee, B. Y. Nam, Y. R. Park, C.-S. Kim, M.-C. Sun, J.-H. Ku, S. Choi, H. S. Kim, Y. G. Park, and K. Kim, “A novel robust TiN/AHO/TiN capacitor CoSi2 cell pad structure for 70 nm stand-alone and embedded DRAM technology and beyond,” IEEE IEDM Tech. Digest. 823–836, 2002.Google Scholar
  56. 56.
    Berthelot, C. Caillat, V. Huard, S. Barnola, B. Boeck, H. Del-Puppo, N. Emonet, and F. Lalanne, “Highly reliable TiN/ZrO2/TiN 3D stacked capacitors for 45 nm embedded DRAM technologies,” Device Res. Conf. (DRC) 343–346, 2006.Google Scholar
  57. 57.
    Y. Fukaura, K. Kasai, Y. Okayama, H. Kawasaki, K. Isobe, M. Kanda, K. Ishimaru, and H. Ishiuchi, “A highly manufacturable high density embedded SRAM technology for 90 nm CMOS,” IEEE IEDM Tech. Digest. 515–418, 2002.Google Scholar
  58. 58.
    Z. Guo, S. Balasubramanian, R. Zlatanovici, T.-J. King, and B. Nikolicć, “FinFET-based SRAM design,” International Symposium on Low Power Electronics and Design (ISLPED) 2–7, 2005.Google Scholar
  59. 59.
    B. H. Calhoun and A. P. Chandrakasan, “Static noise margin variation for sub-threshold SRAM in 65-nm CMOS,” IEEE J. Solid-State Circuits 41 (7), 1673–1679, 2006.CrossRefGoogle Scholar
  60. 60.
    E. Seevinck, F. List, and J. Lohstroh, “Static noise margin analysis of MOS SRAM cells,” IEEE J. Solid-State Circuits SC-22 (5), 748–754, 1987.CrossRefGoogle Scholar
  61. 61.
    J. Lohstroh, E. Seevinck, and J. De Groot, “Worst-case static noise margin criteria for logic circuits and their mathematical equivalence,” IEEE J. Solid-State Circuits SC-18 (6), 803–807, 1983.CrossRefGoogle Scholar
  62. 62.
    X. Wu, P. C. H. Chan, S. Zhang, C. Feng, and M. Chan, “A three-dimensional stacked Fin-CMOS technology for high-density ULSI circuits,” IEEE Trans. Electron Dev. 52 (9), 1998–2003, 2005.CrossRefGoogle Scholar
  63. 63.
    K.-L. Cheng, C. C. Wu, Y. P. Wang, D. W. Lin, C. M. Chu, Y. Y. Tamg, S. Y. Lu, S. J. Yang, M. H. Hsieh, C. M. Liu, S. P. Fu, J. H. Chen, C. T. Lin, W. Y. Lien, H. Y. Huang, P. W. Wang, H. H. Lin, D. Y. Lee, M. J. Huang, C. F. Nieh, L. T. Lin, C. C. Chen, W. Chang, Y. H. Chiu, M. Y. Wang, C. H. Yeh, F. C. Chen, C. M. Wu, Y. H. Chang, S. C. Wang, H. C. Hsieh, M. D. Lei, K. Goto H. J. Tao, M. Cao, H. C. Tuan, C. H. Diaz, and Y. J. Mii “A highly scaled, high performance 45 nm bulk logic CMOS technology with 0.242μm2 SRAM cell,” IEEE IEDM Tech. Digest. 243–246, 2007.Google Scholar
  64. 64.
    K. Zhang, F. Hamzaoglu, and Y. Wang, “Low-power SRAMs in nanoscale CMOS technologies,” IEEE Trans. Electron Dev. 55 (1), 145–151, 2008.CrossRefGoogle Scholar
  65. 65.
    T. Miyashita, K. Ikeda, Y S. Kim, T. Yamamoto, Y. Sambonsugi, H. Ochimizu, T. Sakoda, M. Okuno, H. Minakata, H. Ohta, Y Hayami, K. Ookoshi, Y Shimamune, M. Fukuda, A. Hatada, K. Okabe, T. Kubo, M. Tajima, T. Yamamoto, E. Motoh, T. Owada, M. Nakamura, H. Kudo, T. Sawada, J. Nagayama, A. Satoh, T. Mori, A. Hasegawa, H. Kurata, K. Sukegawa, A. Tsukune, S. Yamaguchi, K. Ikeda, M. Kase, T. Futatsugi, S. Satoh, and T. Sugii, “High-performance and low-power bulk logic platform utilizing FET specific multiple-stressors with highly enhanced strain and full-porous low-k interconnects for 45-nm CMOS technology,” IEEE VLSI Tech. Digest. 251–252, 2007.Google Scholar
  66. 66.
    S. Inaba, H. Kawasaki, K. Okano, T. Izumida, A. Yagishita, A. Kaneko, K. Ishimaru, N. Aoki, and Y. Toyoshima, “Direct evaluation of DC characteristic variability in FinFET SRAM cell for 32 nm node and beyond,” IEEE IEDM Tech. Digest. 487–490, 2007.Google Scholar
  67. 67.
    S.-M. Jung, H. Lim, W. Cho, H. Cho, H. Hong, J. Jeong, S. Jung H. Park, B. Son, Y. Jang, and K. Kim, “Soft error immune 0.46+Cm2SRAM cell with MIM node capacitor by 65nm CMOS,” IEEE IEDM Tech. Digest. 280–292, 2003.Google Scholar
  68. 68.
    E. Ootsuka, M. Nakamura, T. Miyake, S. Iwahashi, Y. Ohira, T. Tamaru, K. Kikushima, and K. Yamaguchi, “A novel 0.2μm full CMOS SRAM cell using stacked cross couple with enhanced soft error immunity,” IEEE IEDM Tech. Digest. 205–208, 1998.Google Scholar
  69. 69.
    M. Hashimoto, N. Nagashima, Y. Miyazawa, M. Shimanoe, H. Satoh, and T. Matsushita “Small geometry SO1 CMOS cell technology for high density SRAMs,” IEEE IEDM Tech Digest. 973–976, 1991.Google Scholar
  70. 70.
    T.-S. Park, H. J. Cho, J. D. Choe, S. Y. Han, D. Park, K. Kim, E. Yoon, and J.-H. Lee, “Characteristics of the full CMOS SRAM cell using body-tied TG MOSFETs (Bulk FinFETs),” IEEE Trans. Electron Dev. 53 (3), 481–487, 2006.CrossRefGoogle Scholar
  71. 71.
    R. Baumann, “The impact of technology scaling on soft error rate performance and limits to the efficacy of error correction,” IEEE IEDM Tech. Digest. 329–332, 2002.Google Scholar
  72. 72.
    P. E. Dodd and L. W. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelectronics,” IEEE Trans. Nucl. Sci. 50 (3), 583–602, 2003.CrossRefGoogle Scholar
  73. 73.
    Y. Tosaka, H. Kanata, S. Satoh, and T. Itakura, “Simple method for estimating neutron-soft error rates based on modified BGR model,” IEEE Electron Dev. Lett. 20 (2), 89–91, 1999.CrossRefGoogle Scholar
  74. 74.
    K. Takeuchi, R. Koh, and T. Mogami, “A study of the threshold voltage variation for ultra-small bulk and SOI CMOS,” IEEE Trans. Electron. Dev. 48 (9), 1995–2000, 2001.CrossRefGoogle Scholar
  75. 75.
    F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, “A new flash E2PROM cell using triple polysilicon technology,” IEEE IEDM Tech. Digest. 464–467, 1984.Google Scholar
  76. 76.
    D. Khang and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J. 46, 1283–1286, 1967.Google Scholar
  77. 77.
    J. R. Yeargain and C. Kuo, “High density floating-gate EEPROM cell,” IEEE IEDM Tech. Digest. 24–27, 1981.Google Scholar
  78. 78.
    D. C. Guterman, I. H. Rimawi, T.-L. Chiu, R. D. Halvorson, and D. J. McElroy, “An electrically alterable nonvolatile memory cell using a floating-gate structure,” IEEE Trans. Electron. Dev. ED-26 (4), 576–586, 1979.CrossRefGoogle Scholar
  79. 79.
    F. Masuoka, M. Momodomi, Y. Iwata, and R. Shirota, “New high-density EPROM and flash EEPROM cell with NAND structure cell,” IEEE IEDM Tech. Dig. 552–555, 1987.Google Scholar
  80. 80.
    R. Kirisawa, S. Aritome, R. Nakayama, T. Endoh, R. Shirota, and F. Masuoka, “ANAND structures cell with new programming technology for highly reliable 5 V only flash EEP- ROM,” IEEE VLSI Tech. Digest. 129–130, 1990.Google Scholar
  81. 81.
    W. D. Brown and J. E. Brewer, Eds.,Nonvolatile Semiconductor Memory Technology, IEEE Press, New York, 1998.Google Scholar
  82. 82.
    B. Ricco`. G. Torelli, M. Lanzoni, A. Manstretta, H. E. Maes, D. Montarani, and A. Modelli, “Nonvolatile memories for digital applications,” Proc. IEEE 86 (12), 2399–2420, 1998.CrossRefGoogle Scholar
  83. 83.
    F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, “A new flash E2PROM cell using triple polysilicon technology,” IEEE IEDM Tech. Digest. 464–467, 1984.Google Scholar
  84. 84.
    G. Samachisa, C.-S. Su, Y.-S. Kao, G. Samarandoiu, C.-Y. M. Wong, and C. Hu, “A 128 K flash EEPROM using double-polysilicon technology,” IEEE J. Solid-State Technol. 22 (5) 676–683, 1987.CrossRefGoogle Scholar
  85. 85.
    R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to flash memory,” Proc. IEEE 91 (4), 489–502, 2003.CrossRefGoogle Scholar
  86. 86.
    S. Mori, Y. Kaneko, N. Arai, Y. Ohshima, H. Araki, K. Narita, E. Sakagami, and K. Yoshikawa, “Reliability study of thin inter-poly dielectric for nonvolatile memory applications,” IEEE IRPS 132–144, 1990.Google Scholar
  87. 87.
    S. Mori, E. Sakagami, H. Araki, Y. Kaneko, K. Narita, Y. Ohshima, N. Arai, and K. Yoshikawa, “ONO inter-poly dielectric scaling for nonvolatile memory applications,” IEEE Trans. Electron. Dev. 38 (2), 386–391, 1991.CrossRefGoogle Scholar
  88. 88.
    K. Naruke, S. Taguchi, and M. Wada, “Stress induced leakage current limiting to scale down EEPROM tunnel oxide thickness,” IEEE IEDM Tech. Digest. 424–427, 1988.Google Scholar
  89. 89.
    S. Takagi, N. Yasuda, and A. Toriumi, “Experimental evidence of inelastic tunneling and new I-V model for stress-induces leakage current,” IEEE IEDM Tech. Digest. 323–326, 1996.Google Scholar
  90. 90.
    N.-K. Zous, Y.-J. Chen, C.-Y. Chin, W.-J. Tsai, T.-C. Lu, M.-S. Chen, W.-P. Lu, T. Wang, S. C. Pan, and C.-Y. Lu, “An endurance evaluation method for flash EEPROM,” IEEE Trans. Electron. Dev. 51 (5), 720–725, 2004.CrossRefGoogle Scholar
  91. 91.
    M. Suhail, T. Harp, J. Bridwell, and P. J. Kuhn, “Effects of Fowler-Nordheim tunneling stress vs. channel hot electron stress on data retention characteristics of floating gate non-volatile EEPROM,” IEEE IRPS Proc. 439–440, 2002.Google Scholar
  92. 92.
    C. Bleiker and H. Melchior, “A four-state EEPROM using floating-gate memory cells,” IEEE J. Solid-State Circuits SC22 (3), 460–463, 1987.Google Scholar
  93. 93.
    M. Bauer, R. Alexis, G. Atwood, B. Baltar, A. Fazio, K. Frary, M. Hensel, M. Ishac, J. Javanifard, M. Landgraf, D. Leak, K. Loe, D. Mills, P. Ruby, R. Rozman, S. Sweha, S. Talreja, and K. Wojciechowski, “A multilevel-cell 32Mb flash memory” IEEE ISSCC 132–133, 1995.Google Scholar
  94. 94.
    J.-H. Park, S.-H. Hur, J.-H. Lee, J.-T. Park, J.-S. Sel, J.-W. Kim, S.-B. Song, J.-Y. Lee, J.-H. Lee, S.-J. Son, Y.-S. Kim, M.-C. Park, S.-J. Chai, J.-D. Choi, U.-I. Chung, J.-T. Moon, K.-T. Kim, K. Kim, and B.-I. Ryu, “8 Gb MLC (Multi-Level Cell) NAND flash memory using 63 nm process technology,” IEEE IEDM Tech. Digest. 873–876, 2004.Google Scholar
  95. 95.
    J. De Blauwe, J. Van Houdt, D. Wellekens, R. Degraeve, Ph. Roussel, L. Haspeslagh, L. Deferm, G. Groeseneken, and H.E. Maes, “A new quantitative model to predict SILC-related disturb characteristics in Flash E2PROM devices,” IEEE IEDM Tech. Digest. 343–346, 1996.Google Scholar
  96. 96.
    S. Lai, “Flash memories: where we were and where we are going”, IEEE IEDM Tech. Digest. 971–973, 1998.Google Scholar
  97. 97.
    Ghetti, L. Bortesi, and L. Vendrame, “3D simulation study of gate coupling and gate cross- interference in advanced floating-gate non-volatile memories,” Solid-State Electron. 49 (11), 1805–1812, 2005.CrossRefGoogle Scholar
  98. 98.
    P. C. Y. Chen, “Threshold-alterable Si-gate devices,” IEEE Trans. Electron. Dev. ED-24 (5), 584–585, 1977.CrossRefGoogle Scholar
  99. 99.
    H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O'Connell, R. E. Oleksiak, and H. Law, “The variable threshold transistor, a new electrically alterable, non-destructive read-only storage device,” IEEE IEDM Tech. Digest. 70, 1967.Google Scholar
  100. 100.
    K.-T. Chang, W.-M. Chen, C. Swift, J. M. Higman, W. M. Paulson, and KM Chang, “A New SONOS memory using source-side injection for programming,” IEEE Electron. Dev. Lett. 19 (7), 253–255, 1998.CrossRefGoogle Scholar
  101. 101.
    B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: a novel localized trapping, 2-bit nonvolatile memory cell,” IEEE Electron. Dev. Lett. 21 (11), 543–545, 2000.CrossRefGoogle Scholar
  102. 102.
    C. T. Swift, G. L. Chindalore, K. Harber, T. S. Harp, A. Hoefler, C. M. Hong, P. A. Ingersoll, C. B. Li, E. J. Prinz, and J. A. Yater, “An embedded 90nm SONOS nonvolatile memory utilizing hot electron programming and uniform tunnel erase,” IEEE IEDM Tech. Digest. 927–930, 2002.Google Scholar
  103. 103.
    T. Y. Chan, K. K. Young, and C. Hu, “A true single-transistor oxide-nitride-oxide EEPROM device,” IEEE Electron. Dev. Lett. EDL-8 (3), 93–95, 1987.CrossRefGoogle Scholar
  104. 104.
    C. W. Oh, S. H. Kim, N. Y. Kim, Y. L. Choi, K. H. Lee, B. S. Kim, N. M. Cho, S. B. Kim, D. W. Kim, D. Park, and B. I. Ryu, “A 4-Bit double SONOS memory (DSM) with 4 storage nodes per cell for ultimate multi-bit operation,” IEEE VLSI Tech. Digest. 40–41, 2006.Google Scholar
  105. 105.
    S. R. Ovshinski, “Reversible electrical switching phenomena in disordered structures,” Phys. Rev. Lett. 21 (20), 1450–1453, 1968.CrossRefGoogle Scholar
  106. 106.
    N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te 3 pseudobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 69 (5), 2849–2856, 1991.CrossRefGoogle Scholar
  107. 107.
    G. Wicker, “Nonvolatile, high density, high performance phase change memory,” SPIE 3891, 2–9, 1999.Google Scholar
  108. 108.
    S. Lai and T. Lowrey, “OUM – a 180 nm nonvolatile memory cell element technology for stand alone and embedded applications,” IEEE IEDM Tech. Digest. 803–806, 2001.Google Scholar
  109. 109.
    S. Lai, “Current status of the phase change memory and its future,” IEEE IEDM Tech. Digest. 255–258, 2003.Google Scholar
  110. 110.
    Y. N. Hwang, S. H. Lee, S. J. Ahn, S. Y. Ryoo, H. S. Hoong, H. C. Koo, F. Yeung, J. H. Oh, H. J. Kim, W. C. Jeong, J. H. Park, H. Horii, Y. Ha, J. H. Yi, G. H. Koh, G. T. Jeong, H. S. Jeong, and K. Kim, “Writing current reduction for high-density phase-change RAM,” IEEE IEDM Tech. Digest. 893–896, 2003.Google Scholar
  111. 111.
    Y. Matsui, K. Kurotsuchi, O. Tonomura, T. Morikawa, M. Kinoshita, Y. Fujisaki, N. Matsuzaki, S. Hansawa, M. Terao, N. Takaura, H. Moriya, T. Iwasaki, M. Moniwa, and T. Ko ga, “ Ta2O3 interfacial layer between GST and W plug enabling low power operation of phase change memories,” IEEE IEDM Tech. Digest. 1–4, 2006.Google Scholar
  112. 112.
    L. Lacaita, A. Radaelli, D. Ielmini, F. Pellizzer, A. Pirovano, A. Benvenuti, and R. Bez, “Electrothermal and phase-change dynamics in chalcogenide-based memories,” IEEE IEDM Tech. Digest. 911–914, 2004.Google Scholar
  113. 113.
    D. L. Kencke, I. V. Karpov, B. G. Johnson, S. J. Lee, D.C. Kau, S. J. Hudgens, J. P. Reifenberg, S. D. Savransky, J. Zhang, M. T. Giles, and G. Spadini, “The role of interfaces in damascene phase-change memory,” IEEE IEDM Tech. Digest. 323–326, 2007.Google Scholar
  114. 114.
    Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, and R. Bez, “Scaling analysis of phase-change memory technology,” IEEE IEDM Tech. Digest. 699–672, 2003.Google Scholar
  115. 115.
    F. Pellizzer, A. Benvenuti, B. Gleixner, Y. Kim, B. Johnson, M. Magistretti, T. Marangon, A. Pirovano, R. Bez, and G. Atwood, “A 90 nm phase change memory technology for standalone non-volatile memory applications,” IEEE Symp. VLSI Tech. Digest. 122–123, 2006.Google Scholar
  116. 116.
    G. Mueller, T. Harp, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, “Status and outlook of emerging memory technologies,” IEEE IEDM Tech. Digest. 567–570, 2004.Google Scholar
  117. 117.
    F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. Buda, F. Pellizzer, D. Chow, A. Cabrini, G. M. A. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills, R. Gastaldi, and G. Casagrande, “A multi-level-cell bipolar-selected phase-change memory,” IEEE ISSCC 428–429, 625, 2008.Google Scholar
  118. 118.
    K. Nordquist, S. Pendharkar, M. Durlam, D. Resnick, S. Tehrani, D. Mancini, T. Zhu, and J. Shi, “Process development of sub-0.5 mm nonvolatile magnetoresistive random access memory arrays,” J. Vac. Sci. Technol. B, 15 (6), 2274–2278, 1997.CrossRefGoogle Scholar
  119. 119.
    J.-G. Zhu and Y. Zheng, “Ultrahigh density vertical magnetoresistive random access memory, ” J. Appl. Phys. 87 (9), 6668–6673, 2000.CrossRefGoogle Scholar
  120. 120.
    N. Nishimura, T. Hirai, A. Koganei, T. Ikeda, K. Okano, Y. Sekiguchi, and Y. Osada, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory,” J. Appl. Phys. 91 (8), 5246–5249, 2002.CrossRefGoogle Scholar
  121. 121.
    S. Tehrani, J. M. Slaughter, M. Deherrera, B. N. Engel, N. D. Rizoo, J. Salter, M. Durlam, R. W. Dave, J. Janesky, B. Butcher, K. Smith, and G. Grynkewich, “Magnetoresistive random access memory using magnetic tunnel junctions,” Proc. IEEE 91 (5), 703–712, 2003.CrossRefGoogle Scholar
  122. 122.
    B. F. Cockburn, “Tutorial on magnetic tunnel junction magnetoresistive random-access memory, ” Memory Technol Design. Test 46–51, 2004.Google Scholar
  123. 123.
    J. DeBrosse, D. Gogl, A. Bette, H. Hoenigschmid, R. Robertazzi, C. Arndt, D. Braun, D. Casarotto, R. Havreluk, S. Lammers, W. Obermaier, W. R. Reohr, H. Viehmann, W. J. Gallanger, and G. Müller, “A high-speed 128-kb MRAM core for future universal memory applications,” IEEE J. Solid-State Circuits 39 (4), 678–682, 2004.CrossRefGoogle Scholar
  124. 124.
    C.-C. Hung, M.-J. Kao, Y.-S. Chen, Y.-H. Wang, Y.-J. Lee, W.-C. Chen, W.-C. Lin, K.-H. Shen, K.-L. Chen, S. Chao, D.-L. Tang, and M.-J. Tsai, A 6-F2 bit cell design based on one transistor and two uneven magnetic tunnel junctions structure and low power design for MRAM,” IEEE Trans. Electron. Dev. 53 (7), 1530–1538, 2006.CrossRefGoogle Scholar
  125. 125.
    M. A. Hollis and R. A. Murphy, “Homogeneous Field-Effect Transistors,” High-Speed Semiconductor Devices, S. M. Sze, Ed., John Wiley and Sons, 1990.Google Scholar
  126. 126.
    T. H. Ning, “Why BiCMOS and SOI BiCMOS,” IBM J. Res. Dev. 46 (2/3), 181–186, 2002.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations