Enabling Processes and Integration

Integrating a process on a chip requires a thorough and, throughout the development cycle, continuous understanding of how it will be applied. This includes the definition of a set of required components, component parameters and their tolerances, range of operating temperature, reliability expectations, set of available tools and their limitations at the time of production, and overall cost. The integration cycle begins with the definition of a full process flow. Process and device simulators are utilized to optimize the flow and ensure that it will satisfy nominal values for all parameters of the required components. Experimental short-loops are then run to evaluate individual process modules. These loops can require special test structures that may be part of a full test-die. Simulations and experiments are run in parallel to ensure the feasibility of a full process flow. A complete test die is then designed to be utilized for a full process-flow. The test-die typically contains structures that address component parameters and their tolerances, reliability structures, yield structures, process monitors, failure analysis structures, modeling structures, and sub-circuits

The chapter begins with a description of a typical CMOS logic process flow, applicable to MOSFETs of ˜0.18μm channel length. This will be referred to as the “conventional process.” A conventional BiCMOS process follows, that is applicable to analog/mixed-signal designs. The flow utilizes several unit-process concepts that are described in [1] and the references therein. Only a brief review of selected “conventional” unit processes is presented in this chapter. The second part of the chapter focuses on advanced enabling processes, applicable to structures of nanoscale dimensions


Gate Dielectric Rapid Thermal Processing Metal Gate Polysilicon Gate Rapid Thermal Oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. El-Kareh, Fundamentals of Semiconductor Processing Technologies, Kluwer Academic Publishers, Boston, 1995.Google Scholar
  2. 2.
    W. B. De Boer, M. J. J. Theunissen, and R. H. J. Van der Linden, “The necessity of RTCVD in advanced epitaxial growth of Si and SiGe,” Rapid Thermal and Integrated Processing IV. Symposium, 287–298, Mater. Res. Soc., 1995.Google Scholar
  3. 3.
    B. El-Kareh, S. Balster, W. Leitz, P. Steinmann, H. Yasuda, M. Corsi, K. Dawoodi, C. Dirnecker, P. Foglietti, A. Haeusler, P. Menz, M. Ramin, T. Scharnagl, M. Schiekofer, M. Schober, U. Schulz, L. Swanson, D. Tatman, M. Waitschull, J. W. Weijtmans, and C. Willis, “A 5V complementary-SiGe BiCMOS technology for high-speed precision analog circuits,” Proceedings Bipolar/BiCMOS Circuits and Technology Meeting, 211–214, 2003.Google Scholar
  4. 4.
    J. Crochalski, “Ein neues Verfahren zur Messung der Kristallisationsgeschwindigkeit der Metalle,” Z. Phys. Chem., 92, 219–221, 1918.Google Scholar
  5. 5.
    W. C. Dash, “Growth of silicon crystals free from dislocations,” J. Appl. Phys., 30 (4), 459–474, 1959.Google Scholar
  6. 6.
    R. B. Swaroop, “Advances in silicon technology,” Solid-State Technol., 26, 111–114, 1983.Google Scholar
  7. 7.
    B. Bergholz, Grown-in and Process-Induced Defects, Semiconductors and Semimetals, Vol. 42, 513–574, Academic Press, New York, 1994.Google Scholar
  8. 8.
    (a) K. Hoshi, N. Isawa, T. Suzuki, and Y. Ohkubo, “Czochralski silicon crystals grown in a transverse magnetic field,” J. Electrochem. Soc., 132 (3), 693–700, 1985. (b) Th. Wetzel, A. Muiznieks, A. Muhlbauer, Y. Gelfgat, L. Gorbunovc, J. Virbulisd, E. Tomzigd, and W. v. Ammond, “Numerical model of turbulent CZ melt flow in the presence of AC and CUSP magnetic fields and its verification in a laboratory facility,” J. Cryst. Growth, 230, 81–91, 2001.Google Scholar
  9. 9.
    M. Watanabe, M. Eguchi, T. Hibiya, “Silicon crystal growth by electromagnetic Czochralski (EMCZ) method,” Jpn. J. Appl. Phys., 38, L10–L13, 1999.Google Scholar
  10. 10.
    T. Y. Tan, E. E. Gardner, and W. K. Tice, “Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si,” Appl. Phys. Lett., 30 (4), 175–176, 1977.Google Scholar
  11. 11.
    C.-O. Lee and P. J. Tobin, “The effect of CMOS processing on oxygen precipitation, wafer warpage, and flatness,” J. Electrochem. Soc., 133 (10), 2147–2152, 1986.Google Scholar
  12. 12.
    H.-D. Chiou, “Criteria for choosing initial oxygen concentration in CZ wafers,” Proceeding of the 2nd Symposium on defects in silicon II, Electrochem. Soc., W. M. Bullis and U. Gosele, Eds., 577–588, 1991.Google Scholar
  13. 13.
    H. Shimizu, T. Watanabe, and Y. Kakui, “Warpage of Czochralski-grown silicon wafers as affected by oxygen precipitation,” Jpn. J. Appl. Phys., 24 (7), 815–821, 1985.Google Scholar
  14. 14.
    H. Shimizu and T. Aoshima, “Thermal warpage of large diameter Czochralski-grown silicon wafers,” Jpn. J. Appl. Phys., 27 (12), 2315–2323, 1988.Google Scholar
  15. 15.
    H.-D. Chiou, Y. Chen, R. W. Carpenter, and J. Jeong, “Warpage and oxide precipitate distributions in CZ silicon wafers,” J. Electrochem. Soc., 141 (7), 1856–1862, 1994.Google Scholar
  16. 16.
    H. Lu, D. Yang, L. Li, Z. Ye, and D. Que, “Thermal warpage of Czochralski silicon wafers grown under a nitrogen ambience,” Phys. Stat. Sol., 169, 193–198, 1998.Google Scholar
  17. 17.
    D. Yang, G. Wang, J. Xu, D. Li, D. Que, C. Funke, and H. J. Moeller, “Influence of oxygen precipitates on the warpage of annealed silicon wafers,” Microelectron. Eng., 66, 345–351, 2003.Google Scholar
  18. 18.
    J. Chen, D. Yang, X. Ma, H. Li, and D. Que, “Intrinsic gettering based on rapid-thermal annealing in germanium-doped Czochralski silicon,” J. Appl. Phys., 101 (033526), 1–4, 2007.Google Scholar
  19. 19.
    V. Savolainena, J. Heikonena, J. Ruokolainena, O. Anttilab, M. Laaksob, and J. Paloheimob, “Simulation of large-scale silicon melt flow in magnetic Czochralski growth,” J. Cryst. Growth 243, 243–260, 2002.Google Scholar
  20. 20.
    W. Kaiser, “Electrical and optical properties of heat-treated silicon,” Phys. Rev., 105 (6), 1751–1757, 1957.Google Scholar
  21. 21.
    C. A. Londos, M. J. Binns, A. R. Brown, S. A. McQuaid, and R. C. Newman, “Effect of oxygen concentration on the kinetics of thermal donor formation in silicon at temperatures between 350 and 500°C,” Appl. Phys. Lett., 62 (13), 1525–1526, 1993.Google Scholar
  22. 22.
    M. Pesola, Y. J. Lee, J. vom Boehm, M. Kaukonen, and R. M. Nieminen, “Structures of thermal double donors in silicon,” Phys. Rev. Lett., 84 (23), 5343–5346, 2000.Google Scholar
  23. 23.
    B. A. Andreev, V. V. Emstev, D. I. Kryzhkov, and V. B. Shmagin, “Study of IR absorption and photoconductivity spectra of thermal double donors in silicon,” Phys. Stat. Sol., 325 (1), 79–84, 2003.Google Scholar
  24. 24.
    M. Bruzzi, D. Menichelli, M. Scaringella, J. Härkönen, E. Tuovinen, and Z. Li, “Thermal donors formation via isothermal annealing of magnetic Czochralski high resistivity silicon,” J. Appl. Phys., 99 (093706), 1–8, 2006.Google Scholar
  25. 25.
    Y. Yamadaa, H. Yamamoto, H. Ohbaa, M. Sasaseb, F. Esakac, K. Yamaguchia, H. Udonod, S.-I. Shamotoa, A. Yokoyama, and K. Hojoue, “Local neutron transmutation doping using isotopically enriched silicon film,” J. Phys. Chem. Sol., 68 (11), 2204–2208, 2007.Google Scholar
  26. 26.
    J. Meese, Neutron Transmutation Doping, Plenum Press, New York, 1979.Google Scholar
  27. 27.
    R. D. Larrabee, Neutron Transmutation Doping of Semiconductor Materials, Plenum press, New York, 1984.Google Scholar
  28. 28.
    A. C. Reyes, S. M. El-Ghazaly, S. J. Dorn, M. Dydyk, D. K. Schroder, and H. Patterson, “Coplanar waveguides and microwave inductors on silicon substrates,” IEEE Trans. Microwave Theory Tech., 43 (9), 2016–2022, 1995.Google Scholar
  29. 29.
    M. Yoshimi, A. Nishiyama, O. Arisumi, M. Terauchi, K. Matsuzawa, and N. Shigyo, “Reduction of the floating-body effect in SOI MOSFETs by the bandgap engineering method,” Proc. 7th International. Symposium on SOI Technology and Devices, P. L.F. Hemment and S. Cristoloveanu, Eds., 231–236, 1996.Google Scholar
  30. 30.
    A. Nishiyama, O. Arisumi, M. Terauchi, S. Takeno, K. Suzuki, C. Takakuwa, and M. Yoshimi, “Formation of SiGe source/drain using Ge implantation for floating-body effect resistant SOI MOSFETs,” Jpn. J. Appl. Phys., 35 (2B), 954–959, 1996.Google Scholar
  31. 31.
    Y. Domae, N. Miura, T. Okumura, A. Kumar, and J. Ida, “Suppression of floating body effect in low leakage FD-SOI with fluorine implantation technology,” Proceedings of the IEEE International SOI Conference, 97–98, 2006.Google Scholar
  32. 32.
    R. M. Huang, T. F. Chen, S. F. Hong, Y. H. Lin, T. L. Tsai, E. C. Liu, C. W. Yang, Y. S. Hsieh, Y. T. Huang, J.-L. Pelloi, C. T. Tsai, and G. H. Ma, “Optimizing floating body effect & AC performance in 65 nm PD-SOI CMOS,” Proceedings of the IEEE International SOI Conference, 107–108, 2007.Google Scholar
  33. 33.
    M. Watanabe and A. Tooi, “Formation of SiO2 films by oxygen-ion bombardment,” Jpn. J. Appl. Phys., 5, 737–738, 1966.Google Scholar
  34. 34.
    J. Dylewski and M. C. Joshi, “Thin SiO2 films formed by oxygen ion implantation in silicon: electron microscope investigation of the Si-SiO2 interface structures and their CV characteristics,” Thin Solid Films, 37, 241–248, 1976.Google Scholar
  35. 35.
    M. H. Badawi and K. V. Anand, “A study of silicon oxides prepared by oxygen implantation into silicon,” J. Phys. D, 10, 1931–1942, 1977.Google Scholar
  36. 36.
    K. Izumi, M. Doken, and H. Ariyoshi, “C.M.O.S. devices fabricated on buried SiO2 layers formed by oxygen implantation into silicon,” Electron. Lett., 14 (18), 593–594, 1978.Google Scholar
  37. 37.
    O. W. Holland, D. Fathy, and D. K. Sadana, “Formation of ultrathin, buried oxides in Si by O+ ion implantation,” Appl. Phys. Lett., 69 (5), 474–476, 1996.Google Scholar
  38. 38.
    Y. Dong, J. Chen, X. Wang, M. Chen, and X. Wang, “Optimized implant dose and energy to fabricate high–quality patterned SIMOX SOI materials,” Solid State Commun., 130 (3–4), 275–279, 2004.Google Scholar
  39. 39.
    M. Kimura, K. Egami, and M. Kanamori, “Epitaxial film transfer technique for producing single crystal Si film on an insulating substrate,” Appl. Phys. Lett., 43 (3), 263–265, 1983.Google Scholar
  40. 40.
    T. R. Anthony, “Dielectric isolation of silicon by anodic bonding,” J. Appl. Phys., 58 (3), 1240–1247, 1985.Google Scholar
  41. 41.
    J. B. Lasky, S. R. Stiffler, F. R. White, J. R. Abernathey, “Silicon on insulator (SOI) by bonding and etch–back,” IEEE IEDM Tech. Digest, 684–687, 1985.Google Scholar
  42. 42.
    H. Muraoka, T. Ohhashi, and Y. Sumitomo, “Controlled preferential etching technology” Semiconductor Silicon, H. R. Huff and R. R. Burgess, Eds., 327–329, 1973.Google Scholar
  43. 43.
    M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology,” Nucl. Instrum. Meth. Phys. Res. B, 108, 313–319, 1996.Google Scholar
  44. 44.
    A. J. Auberton-Hervé, M. Bruel, B. Aspar, C. Maleville, and H. Moriceau, “Smart–cut®: The basic fabrication process for Unibond® SOI wafers,” IEICE Trans. Electron., E80-C (3), 358–363, 1997.Google Scholar
  45. 45.
    T. O. Sedgwick, “Short time annealing,” J. Electrochem. Soc, 130 (2), 484–493, 1983.Google Scholar
  46. 46.
    J. Kato and S. Iwamatsu, “Rapid annealing using halogen lamps,” J. Electrochem. Soc, 131 (5), 1145–1152, 1984.Google Scholar
  47. 47.
    R. Singh, “Rapid isothermal processing,” J. Appl. Phys., 63 (8), R59–R114, 1988.Google Scholar
  48. 48.
    J. M. Ranish, “Design of halogen lamps for rapid thermal processing,” 11th IEEE Conf. on Advanced Thermal Processing of Semiconductors, 195–202, 2003.Google Scholar
  49. 49.
    C. M. Osburn, D. F. Downey, S. B. Felch, and B. S. Lee, “Ultrashallow junction formation using very low energy B and BF2 + sources,” Proc. 11th Intl. Conf. on ion implantation technology, 607–610, 1997.Google Scholar
  50. 50.
    T. E. Seidel, “Rapid thermal annealing of BF2 + implanted preamorphized silicon,” IEEE Electron Dev. Lett., EDL-4 (10), 353–355, 1983.Google Scholar
  51. 51.
    F. Simard-Normandin, “Electrical characteristics and contact resistance of BF+- and BF2 +- implanted silicon diodes with furnace and rapid thermal annealing,” IEEE Trans. Electron Dev., ED-32 (7), 1354–1357, 1985.Google Scholar
  52. 52.
    S. D. Hossain, M. F. Pas, G. Miner, and C. R. Cleavelin, “Rapid thermal processing (RTP) applied to ion implant anneal for 0.25 μm technology,” IEEE/SEMI Adv. Semicon. Manuf. Conference, 5–7, 1995.Google Scholar
  53. 53.
    E. Vandenbossche, H. Jaouen, and B. Baccus, “Modeling arsenic activation and diffusion during furnace and rapid thermal annealing,” IEEE IEDM Tech. Digest, 81–85, 1995.Google Scholar
  54. 54.
    H. Takemura, t. Makiya, S. Ohi, M. Sugiyama, T. Tshiro, and M. Nakamae, “Submicron epitaxial layer and RTA technology for extremely high speed bipolar transistors,” IEEE IEDM Tech. Digest, 424–427, 1986.Google Scholar
  55. 55.
    T. Hashimoto, M. Tanemura, H. Fujii, F. Sato, T. Aoyama, H. Suzuki, H. Yoshida, and T. Yamazaki, “A CMOS-based RF SiGe BiCMOS technology featuring over-100GHz fmax SiGe HBTs and 0.13 mm CMOS,” IEEE BCTM Tech. Digest, 189–192, 2002.Google Scholar
  56. 56.
    B. El-Kareh, S. Balster, P. Steinmann, H. Yasuda, “Integration of a complementary-SiGe BiCMOS process for high-speed analog application”, The Silicon Heterostructure Handbook: Materials, Fabrication, Devices, Circuits, and Applications of SiGe and Si Strained-Layer Epitaxy, John D. Cressler, Editor, CRC Press, July 2005.Google Scholar
  57. 57.
    S. Moffatt, A. Murrell, G. de Cock, D. Armour, M. Foad, and E. Collart, “Electron-volt, high-current implant into silicon SDR (surface damage region) and the effect of anneal time to form 200 to 700 Angstrom, low leakage junctions,” IEEE Int. Conf. Ion Implant Tech., 682–685, 1999.Google Scholar
  58. 58.
    M. A. Foad, G. de Cock, D. Jenings, T.-S. Wang, and T. Cullis, “Uniform spike anneals of ultra low energy boron implants using xR LEAP and RTP Centura XEplus: ramp rate effects up to 150°C/sec,” IEEE Int. Conf. Ion Implant Tech., 732–735, 1999.Google Scholar
  59. 59.
    A. Agarwal, A. T. Fiory, H.-;J. Gossmann, C. Rafferty, S. P. Frisella, J. Hebb, and J. Jackson, “Ultra-shallow junctions and the effect of ramp-up rate during spike anneals in lamp-based and hot-walled RTP systems,” IEEE Int. Conf. Ion Implant Tech., 22–25, 1999.Google Scholar
  60. 60.
    T. Kubo, M. Hori, and M. Kase, “Formation of ultra-shallow junction by BF 2+ implantation and spike annealing,” IEEE Int. Conf. Ion Implant Tech., 195–198, 2000.Google Scholar
  61. 61.
    Y. Bykov, A. Eremeev, V. Holoptsev, I. Plotnikov, and N. Zharova, “Spike annealing of silicon wafers using millimeter wave power,” 9th Int. Conf. Advanced Therm. Proc. of Semiconductors-RTP, 232–239, 2001.Google Scholar
  62. 62.
    S. Abo, S. Ichihara, T. Lohner, J. Gyulai, F. Wakaya, and M. Takai, “Ultra shallow As profiling before and after spike annealing using medium energy ion scattering,” Ext. Abs. the 5th Int. Workshop on Jct. Tech., 49–50, 2005.Google Scholar
  63. 63.
    C. I. Li, C. C. Chien, K. T. Huang, P. Y. Chen, H. Y. Wang, S. T. Tzou, S. Chen, J. Lin, T. Fu, R. Tandjaja, S. Ramamurthy, E. Chung, J. Chuang, and W.-S. Chen, “Superior spike annealing performance in 65 nm source/drain extension engineering,” 13th Int. Conf. Advanced Therm. Proc. of Semiconductors-RTP, 163–167, 2005.Google Scholar
  64. 64.
    K. S. Jones, S. P. Crane, C. E. Ross, T. Malborg, D. Downey, E. Arevalo, S. McCoy, and J. Gelpey, “The role of pre-anneal conditions on the microstructure of Ge+ implanted Si after high temperature millisecond flash annealing,” IEEE 14th Int. Conf. Ion Implant Tech., 76–78, 2002.Google Scholar
  65. 65.
    T. Ito, T. Inuma, A. Murakoshi, H. Akutso, K. Suguro, T. Arikado, K. Okumura, M. Yoshioka, T. Owada, Y. Imaoka, H. Murayama, and T. Kusuda, “10–15 nm ultrashallow junction formation by flash-lamp annealing,” Jpn. J. Appl. Phys., 41 (4B), 2394–2398, 2002.Google Scholar
  66. 66.
    T. Ito, K. Suguro, T. Itani, K. Nishinohara, K. Matsuo, and T. Saito, “Improvement of threshold voltage roll-off by ultra-shallow junction formed by flash annealing,” Symp. VLSI Tech. Digest, 53–54, 2003.Google Scholar
  67. 67.
    K. Adachi, K. Ohuchi, N. Aoki, H. Tsujii, T. Ito, H. Itokawa, K. Matsuo, K. Suguro, Y. Honguh, N. Tamaoki, K. Ishimaru, and H. Shiuchi, “Issues and optimization of millisecond anneal process for 45 nm node and beyond,” Symp. VLSI Tech. Digest, 142–143, 2005.Google Scholar
  68. 68.
    W. Skorupa, T. Gebel, R. A. Yankov, S. Paul, W. Lerch, D. F. Downey, and E. A. Aravelo, “Advanced thermal processing of ultrashallow implanted junctions using flash lamp annealing,” J. Electrochem. Soc., 152 (6), G436–G440, 2005.Google Scholar
  69. 69.
    S. H. Jain, P. B. Griffin, J. D. Plummer, S. McCoy, J. Gelpey, T. Selinger, and D. F. Downey, “Low resistance, low-leakage ultrashallow p+-junction formation using millisecond flash anneals,” IEEE Trans. Electron Dev., 52 (7), 1610–1615, 2005.Google Scholar
  70. 70.
    C. F. Nieh, K. C. Ku, C. H. Chen, L. T. Wang, L. P. Huang, Y. M. Sheu, C. C. Wang, T. L. Leee, S. C. Chen, M. S. Liang, and J. Gong, “Millisecond anneal and short-channel effect control in Si CMOS transistor performance,” IEEE Electron Dev. Lett., 27 (12), 969– 971, 2006.Google Scholar
  71. 71.
    W. Lerch, S. Paul, J. Niess, J. Chan, S. McCoy, J. Gelpey, F. Cristiano, F. Severac, P. F. Fazzini, D. Bolze, P. Pichler, A. Martinez, A, Mineji, and S. Shishiguchi, “Experimental and theoretical results of dopant activation by a combination of spike and flash annealing,” Ext. Abs. Int. Workshop on Jct. Tech., 129–134, 2007.Google Scholar
  72. 72.
    W. Lerch, S. Paul, J. Niess, S. McCoy, J. Gelpey, D. Bolze, F. Cristiano, F. Severac, P. F. Fazzini, A. Marinez, and P. Pichler, “Advanced activation and deactivation of arsenic-implanted ultra-shallow junctions using flash and spike + flash annealing,” 15th Int. Conf. on Advanced Thermal Processing of Semiconductors, 215–220, 2007.Google Scholar
  73. 73.
    T. Feudel, M. Horstmann, L. Herrmann, M. Herden, M. Berhardt, D. Greenlaw, P. Fisher, and J. Kluth, “Process integration issues with spike, flash and laser anneal implementation for 90 and 65 nm technologies,” 14th Int. Conf. Advanced Thermal Processing of Semiconductors, 73–78 2006.Google Scholar
  74. 74.
    S. Talwar, G. Varma, K. Weiner, and C. Gelatos, “Laser thermal processing for shallow junction and silicide formation,” SPIE Conf. Microelectron. Dev. Tech., 3506, 74–81, 1988.Google Scholar
  75. 75.
    K. Tsuji, K. Takeuchi, and T. Moagami, “High performance 50-nm physical gatelength pMOSFETs by using lowtemperature activation by recrystallization scheme,” Proc. VLSI Tech. Digest, 9–10, 1999.Google Scholar
  76. 76.
    S. Talwar, G. Verma, and K. H. Weiner, “Ultra-shallow, abrupt, and highly-activated junctions by low-energy ion implantation and laser annealing,” IEEE 11th Int. Conf. Ion Implant Tech., 1171–1173, 1999.Google Scholar
  77. 77.
    K.-i. Goto, T. Yamamoto, T. Kubo, M. Kase, Y. Wang, T. Lin, S. Talwar, and T. Sugii, “Ultralow contact resistance for deca-nm MOSFETs by laser annealing,” IEEE IEDM Tech. Digest, 931–933, 1999.Google Scholar
  78. 78.
    B. Yu, Y. Wang, H. Wang, Q. Xiang, C. Riccobene, S. Talwar, and M.-R. Lin, “70nm MOS-FET with ultra-shallow, abrupt, and super-doped S/D extension implemented by laser thermal process (LTP),” IEEE IEDM Tech. Digest, 509–512, 1999.Google Scholar
  79. 79.
    R. Murto, K. Jones, M. Rendon, and S. Talwar, “An investigation of species dependence in germanium pre-amorphized and laser thermal annealed ultra-shallow abrupt junctions,” IEEE 12th Int. Conf. Ion Implant Tech., 182–185, 2000.Google Scholar
  80. 80.
    C. Park, S.-D. Kim, Y. Wang, S. Talwar, and J. C. S. Woo, “50nm SOI CMOS transistors with ultra shallow junction using laser annealing and pre-amorphization implantation,” Proc. VLSI Tech. Digest, 69–70, 2001.Google Scholar
  81. 81.
    S.-D. Kim, C.-M. Park, and J. C. S. Woo, “Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100-nm SOI CMOS,” IEEE Trans. Electron Dev., 49 (10), 1748–1754, 2002.Google Scholar
  82. 82.
    Y. F. Chong, K. L. Pey, A. T. S. Wee, T. Osipowicz, A. See, and L. Chan, “Control of transient enhanced diffusion of boron after laser thermal processing of preamorphized silicon,” J. Appl. Phys., 92 (3), 1344–1350, 2002.Google Scholar
  83. 83.
    A. Matsuno and K. Shibahara, “Effect of pulse duration on formation of ultrashallow junction by excimer laser annealing,” Jpn. J. Appl. Phys., 45 (11), 8537–8541, 2006.Google Scholar
  84. 84.
    T. Yamamoto, K.-i. Goto, T. Kubo, Y. Wang, T. Lin, S. Talwar, M. Kase, and T. Sugii, “Drive current enhancement in sub-50 nm CMOS by reduction of SDE resistance with laser thermal process,” J. Electrochem. Soc., 152 (12), G895–G899, 2004.Google Scholar
  85. 85.
    S. Earles, M. Law, R. Brindos, K. Jones, S. Talwar, and S. Corcoran, “Nonmelt laser annealing of 5-KeV and 1-KeV boron-implanted silicon,” IEEE Trans. Electron Dev., 49 (7), 1118–1123, 2002.Google Scholar
  86. 86.
    S. Earles, M. E. Law, K. S. Jones, J. Frazer, S. Talwar, D. Downey, and E. Arevalo, “Formation of ultrashallow junctions in 500 eV boron implanted silicon using nonmelt laser anneal,” 12th Int. Conf. on Advanced Thermal Processing of Semiconductors, 143–145, 2004.Google Scholar
  87. 87.
    S. K. H. Fung, H. T. Huang, S. M. Cheng, S. W. Wang, Y. P. Wang, Y. Y. Yao, C. M. Chu, S. J. Yang, W. J. Liang, Y. K. Leung, C. C. Wu, C. Y. Lin, S. J. Chang, S. Y. Wu, C. F. Nieh, C. C. Chen, T. L. Lee, Y. Jin, S. C. Chen, L. T. Lin, Y. H. Chiu, J. T. Tao, C. Y. Fu, S. M. Jang, K. F. Yu, C. H. Wang, T. C. Ong, Y. C. See, C. H. Diaz, M. S. Liang, and Y. C. Sun, “65nm CMOS high speed, general purpose and low power transistor technology for high volume foundry applications,” Symp. VLSI Tech. Digest, 92–93, 2004.Google Scholar
  88. 88.
    A. Shima, Y. Wang, S. Talwar, and A. Hiraiwa, “Ultra-shallow junction formation by non-melt laser spike annealing for 50-nm gate CMOS,” Symp. VLSI Tech. Digest, 174–175, 2004.Google Scholar
  89. 89.
    T. Yamamoto, T. Kubo, T. Sukegawa, A. Katakami, Y. Shimamune, N. Tamura, H. Ohta, T. Miyashita, S. Sato, M. Kase, and T. Sugii, “Advantages of new scheme of junction profile engineering with laser spike annealing and its integration into a 45-nm node high performance CMOS technology,” Symp. VLSI Tech. Digest, 122–123, 2007.Google Scholar
  90. 90.
    T. Yamamoto, T. Kubo, T. Sukegawa, E. Takii, Y. Shimamune, N. Tamura, T. Sakoda, M. Nakamura, H. Ohta, T. Miyashita, H. Kurata, S. Satoh, M. Kase, and T. Sugii, “Junction profile engineering with novel multiple laser spike annealing scheme for 45-nm node high performance and low leakage CMOS technology,” IEEE IEDM Tech. Digest, 143–146, 2007.Google Scholar
  91. 91.
    A. Shima, T. Mine, K. Torii, and A. Hiraiwa, “Enhancement of drain current in planar MOS-FETs by dopant profile engineering using nonmelt laser spike annealing,” IEEE Trans. Electron Dev., 54 (11), 2953–2959, 2007.Google Scholar
  92. 92.
    M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. Cullis, and N. Chew, “Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation,” Phys. Rev. Lett., 52 (26), 2360–2363, 1984.Google Scholar
  93. 93.
    P. S. Peercy and M. O. Thompson, “Kinetic and thermodynamic studies of pulsed laser irradiation,” SPIE, 668, 72–81, 1986.Google Scholar
  94. 94.
    J. M. Poate, “High speed crystal growth and solidification using laser heating,” J. Cryst. Growth, 79 (1–3), 549–561, 1986.Google Scholar
  95. 95.
    R. Murto, K. Jones, M. Rendon, and S. Talwar, “Activation and deactivation studies of laser thermal annealed boron, arsenic, phosphorus, and antimony ultra-shallow abrupt junctions,” Proc. Int. Conf. Ion Implantation Technology, 155–158, 2000.Google Scholar
  96. 96.
    H. Wakabayashi, M. Ueki, M. Narihiro, T. Fukai, N. Ikezawa, T. Matsuda, K. Yoshida, K. Takeuchi, Y. Ochiai, T. Mogami, and T. Kunio, “45-nm gate length CMOS technology and beyond using steep halo,” IEEE IEDM Tech. Digest, 49–52, 2000.Google Scholar
  97. 97.
    J. Nulmnan, J. P. Krusius, and A. Gat, “Rapid thermal processing of thin gate dielectrics. Oxidation of silicon,” IEEE Electron Dev. Lett., EDL-6 (5), 205–207, 1985.Google Scholar
  98. 98.
    S. T. Ang, J. J. Wortman, “Rapid thermal oxidation of silicon,” J. Electrochem. Soc., 133 (11), 2361–2362, 1986.Google Scholar
  99. 99.
    J. Nulman, J. Scarpulla, T. Mele, and J. P. Krusius, “Electrical characteristics of thin gate implanted MOS channels grown by rapid thermal processing,” IEEE IEDM Tech. Digest, 376–379, 1985.Google Scholar
  100. 100.
    J. Nulman, J. P. Krusius, N. Shah, A. Gat, and A. Baldwin “Ultrathin gate dielectrics on 150 mm Si wafers via rapid thermal processing,” J. Vac. Sci. Technol. A, 4 (3), 1005–1008, 1986.Google Scholar
  101. 101.
    K. X. Zhang and C. M. Osburn, “Reliability of in-situ rapid thermal gate dielectrics in deep submicrometer MOSFETs,” IEEE Trans. Electron Dev., 412 (12), 2181–2188, 1995.Google Scholar
  102. 102.
    R. Das, M. K. Bera, S. Chakraborty, S. Saha, J. F. Woitok, and C. Maiti, “Physico-chemical and electrical properties of rapid thermal oxides on Ge-rich SiGe heterolayers,” Appl. Surf. Sci., 253 (3) 1323–1329, 2006.Google Scholar
  103. 103.
    M. K. Bera, S. Chakraborty, R. Das, G. K. Dalapati, S. Chattopadhyay, S. K. Sumanta, W. J. Yoo, A. K. Chakraborty, Y. Butrnko, L. Šiller, M. R. C. Hunt, S. Saha, and C. K. Maiti, “Rapid thermal oxidation of Ge-rich Si1-xGex heterolayers,” J. Vac. Sci. Technol. A, 24 (1), 84–90, 2006.Google Scholar
  104. 104.
    A. Terrasi, S. Scalese, R. Adorno, E. Ferlito, M. Spadafora, and E. Rimini, “Rapid thermal oxidation of epitaxial SiGe thin films,” Mater. Sci. Eng. B, 89 (1–3), 269–273, 2002.Google Scholar
  105. 105.
    M.-J. Chen and C.-S. Hou, “A novel cross-coupled inter-poly-oxide capacitor for mixed-mode CMOS processes,” IEEE Electron Dev. Lett., 20 (7), 360–362, 1999.Google Scholar
  106. 106.
    S. Itoh, G. Q. Lo, D. L. Kwong, V. K. Mathews, and P. C. Fazan, “Formation of high-quality oxide/nitride stacked layers on rugged polysilicon electrodes by rapid thermal oxidation,” IEEE Trans. Electron Dev., 40 (6), 1176–1177, 1993.Google Scholar
  107. 107.
    Z. L. Chun, J. H. Jaqn, Y. H. Fei, G. Y. Zhi, N. B. Jun, and M. B. Xian, “Improvement of RCA transistor using RTA annealing after formation of interfacial oxide,” IEEE Trans. Electron Dev., 49 (6), 1075–1076, 2002.Google Scholar
  108. 108.
    A. Tilke, M. Förster, K. Schupke, A. Freigofas, C. Wagner, and C. Dahl, “As-doped polysilicon emitters with interfacial oxides and correlation to bipolar device characteristics,” J. Vac. Sci. Technol. B, 23 (5), 1877–1882, 2005.Google Scholar
  109. 109.
    R. J. Kriegler, Y. C. Cheng, and D. R. Colton, “The effect of HCl and Cl2 on the thermal oxidation of silicon,” J. Electrochem. Soc., 119 (3), 388–392, 1972.Google Scholar
  110. 110.
    R. S. Ronen and P. H. Robinson, “Hydrogen chloride and chlorine gettering: An effective technique for improving performance of silicon devices,” J. Electrochem. Soc., 119 (6), 747–752, 1972.Google Scholar
  111. 111.
    C. M. Osburn, “Dielectric breakdown properties of SiO2 films grown in halogen and hydrogen-containing environments,” J. Electrochem. Soc., 121 (6), 809–814, 1974.Google Scholar
  112. 112.
    M. Uematsu, H. Kaheshima, and K. Shiraishi, “The effect of chlorine on silicon oxidation: simulation based on the interfacial silicon emission model,” Jpn. J. Appl. Phys., 40 (4A), 2217–2218, 2001.Google Scholar
  113. 113.
    C.-C. Hao, M.-h. Chi, C.-C. Chen, H.-J. Lin, Y.-F. Lin, C. H. Hsieh, C. H. Lee, K. H. Chyang, H. T. Wu, and C.-H. Shen, “NBTI improvement for pMOS by Cl-contained 1st oxidation in 25A/65Å dual nitrided gate-oxide of 0.1 mm CMOS technology,” Proc. SPIE, 5042, 180–187, 2003.Google Scholar
  114. 114.
    M. M. Moslehi, C. Y. Fu, and K. C. Saraswat, “Thermal and microwave nitrogen plasma nitridation techniques for ultrathin gate insulators of MOS VLSI,” Proc. VLSI Tech. Digest, 14–15, 1985.Google Scholar
  115. 115.
    M. M. Moslehi, C. J. Han, K. C. Saraswat, C. R. Helms, and S. Shatas, “Compositional studies of thermally nitrided silicon dioxide (Nitroxide),” J. Electrochem. Soc., 152 (9), 2189–2197, 1985.Google Scholar
  116. 116.
    T. Hori, H. Iwasaki, and K. Tsuji, “Electrical and physical properties of ultrathin reoxidized nitrided oxides prepared by rapid thermal processing,” IEEE Trans. Electron Dev., 36 (2), 340–350, 1989.Google Scholar
  117. 117.
    H. Hwang, W. Ting, D.-L. Kwong, and J. Lee, “Electrical reliability characteristics of submicrometer nMOSFETs with oxynitride gate dielectric prepared by rapid thermal oxidation in N2O,” IEEE Trans. Electron Dev., 2712–2713, 1991.Google Scholar
  118. 118.
    H. Hwang, W. Ring, D.-L. Kwong, and J. Lee, “Improved reliability characteristics of submicrometer nMOSFETs with oxynitride gate dielectric prepared by rapid thermal oxidation in N2O,” IEEE Electron Dev. Lett., 12 (9), 495–497, 1991.Google Scholar
  119. 119.
    Z. Liu, H.-J. Wann, P. K. Ko, C. Hu, and Y. C. Cheng, “Effects of N2O anneal and reoxidation on thermal oxide characteristics,” IEEE Electron Dev. Lett., 13 (8), 402–404, 1992.Google Scholar
  120. 120.
    E. C. Carr and R. A. Buhrman, “Role of interfacial nitrogen in improving thin silicon oxides grown in N2O,” Appl. Phys. Lett., 63 (1), 54–56, 1993.Google Scholar
  121. 121.
    H. S. Momose, T. Morimoto, Y. Ozawa, K. Yamabe, and H. Iwai, “Electrical characteristics of rapid thermal nitrided-oxide gate n- and p-MOSFETs with less than 1 atom% nitrogen concentration,” IEEE Trans. Electron Dev., 41 (4), 546–551, 1994.Google Scholar
  122. 122.
    Z.-Q. Yao, H. B. Harrison, S. Dimitrijevm, D. Sweatman, and Y. T. Yeow, “High quality ultrathin dielectric films grown on silicon in a nitric oxide ambient,” Appl. Phys. Lett., 64 (26), 3584–3586, 1994.Google Scholar
  123. 123.
    Y. Okada, P. J. Tobin, K. G. Reid, R. I. Hedge, B. Maiti, and S. A. Ajuria, “Gate oxynitride grown in nitric oxide (NO),” Proc. VLSI Tech. Digest, 105–106, 1994.Google Scholar
  124. 124.
    L. K. Han, G. W. Yoon, J. Kim, J. Yan, and D. L. Kwong, “Formation of high quality ultrathin oxide/nitride (ON) stacked capacitors by in situ multiple rapid thermal processing,” IEEE Electron Dev. Lett., 16 (8), 348–350, 1995.Google Scholar
  125. 125.
    K. A. Ellis and R. A. Buhrman, “Nitrous oxide (N2O) processing for silicon oxynitride gate dielectrics,” IBM J. Res. Dev., 413 (3), 287–300, 1999.Google Scholar
  126. 126.
    H. Wong, V. M. C. Poon, C. W. Kok, P. J. Chan, and V. A. Gritsenko, “Interface structure of ultrathin oxide prepared by N2O oxidation,” IEEE Trans. Electron Dev., 50 (9) 1941–1945, 2003Google Scholar
  127. 127.
    D. Matsushita, “Novel fabrication process to realize ultra-thin (EOT í 0.7nm) and ultra-low-leakage SiON gate dielectrics,” 13th Int. Conf. Advanced Thermal Processing of Semiconductors, 23–30, 2005.Google Scholar
  128. 128.
    J. L. Everaert, T. Conrad, and M. Schaekers, “SiON gate dielectric formation by rapid thermal oxidation of nitrided Si,” 13th Int. Conf. Advanced Thermal Processing of Semiconductors, 135–138, 2005.Google Scholar
  129. 129.
    C. H. Kao, W. H. Sung, and C. S. Chen, “Investigation of the doping and thickness effects of polysilicon oxide by rapid thermal N2O oxidation,” Microelectron. Eng., 85 (2), 408–413, 2008.Google Scholar
  130. 130.
    S. Matsuda, T. Sato, H. Yoshimura, Y. Takegawa, A Sudo, I. Mizushima, Y. Tsunashima, and Y. Toyoshima, “Novel corner rounding process for shallow trench isolation utilizing MSTS (Micro-structure transformation of silicon),” IEEE IEDM Tech. Digest, 137–140, 1998.Google Scholar
  131. 131.
    J.-H. Lee, S.-H. Park, K.-M. Lee, K.-S. Youn, Y.-J. Park, C.-J. Choi, T.-Y. Seong, and H.-D. Lee, “A study of stress-induced p+/n salicided junction leakage failure and optimized process conditions for sub-0.15-μm CMOS technology,” IEEE Trans. Electron Dev., 49 (11), 1985–1992, 2002.Google Scholar
  132. 132.
    S. Y. Mun, C. Shin, K. C. Yoon, J. S. Kwak, H. H. Ryu, and Y. H. Jeong, “Shallow trench isolation top corner rounding using Si soft etching following diluted hydrofluorine solution,” Jpn. J. Appl. Phys., 43 (11A), 7701–7704, 2004.Google Scholar
  133. 133.
    C. Lee, D. Park, B. Jo, C. Hwang, H. J. Kim, and W. Lee, “Deep submicron CMOS technology using top-edge round STI and dual gate oxide for low power 256M-bit mobile DRAM,” Jpn. J. Appl. Phys., 42 (4B), 1892–1896, 2003.Google Scholar
  134. 134.
    T. Ohashi, T. Kubota, and A. Nakajima, “Ar annealing for suppression of gate oxide thinning at shallow trench isolation edge,” IEEE Electron Dev. Lett., 28 (7) 562–564, 2007.Google Scholar
  135. 135.
    T. Park, J. Y. Kim, K. W. Park, H. S. Lee, H. B. Shin, Y. H. Kim, M. H. Park, H. K. Kang, and M. Y. Lee, “A novel simple shallow trench isolation (SSTI) technology using high selective CeO2 slurry and liner SiN as a CMP stopper,” Proc. VLSI Tech., 159–160, 1999.Google Scholar
  136. 136.
    J. H. Park, S.-W. Shin, S.-W. Park, Y.-T. Dong, D.-J. Kim, M.-S. Suh, S.-C. Lee, N.-Y. Kwak, C.-D. Dong, D.-W. Kim, G.-I. Lee, O.-J. Kwon, and H. S. Yang, “Effect of liner oxide densification on stress-induced leakage current characteristics in shallow-trench isolation processing,” J. Electrochem. Soc., 150 (7) G359–G364, 2003.Google Scholar
  137. 137.
    T. Suntola and J. Antson, “Method for producing compound thin films,” United States Patent #4,058,430, 1977.Google Scholar
  138. 138.
    T. Suntola and J. Hyvärinen, “Atomic layer epitaxy,” Ann. Rev. Mater. Sci., 15, 177–195, 1985.Google Scholar
  139. 139.
    C. H. L. Goodman and M. V. Pessa, “Atomic layer epitaxy,” J. Appl. Phys. 60 (3), R65–R81, 1986.Google Scholar
  140. 140.
    S. M. George, A. W. Ott, and J. W. Klaus, “Surface chemistry for atomic layer growth,” J. Phys. Chem., 100 (31), 13121–13131, 1996.Google Scholar
  141. 141.
    O. Sneh, R. B. Clark-Phelps, A. R. Londergan, J. Winkler, and T. E. Seidel, “Thin film atomic layer deposition equipment for semiconductor processing,” Thin Solid Films, 402, 248–261, 2002.Google Scholar
  142. 142.
    M. Ritala and M. Leskelä, “Atomic layer epitaxy – a valuable tool for nanotechnology?,” Nanotechnology, 10, 19–24, 1999.Google Scholar
  143. 143.
    R. L. Puurunen and W. Vandervorst, “Island grown as a growth mode in atomic layer deposition: a phenomenological model,” J. Appl. Phys., 96 (12), 7686–7695, 2004.Google Scholar
  144. 144.
    M. Cho, R. Degraeve, G. Pourtois, A. Delabie, L.-Å. Ragnarsson, T. Kauerauf, G.o Groeseneken, S. De Gendt, M. Heyns, and C. S. Hwang, “Study of the reliability impact of chlorine precursor residues in thin atomic-layer-deposited HfO2 layers,” IEEE Trans. Electron Dev., 54 (4), 752–758, 2007.Google Scholar
  145. 145.
    M. Youm, H. S. Sim, H. Jeon, S.-I. Kim, and Y. T. Kim, “Metal oxide semiconductor field effect transistor characteristics with iridium gate electrode on atomic layer deposited ZrO2 high-K dielectrics,” Jpn. J. Appl. Phys., 42 (8), 5010–5013, 2003.Google Scholar
  146. 146.
    R. L. Puurunen, “Analysis of hydroxyl group controlled atomic layer deposition of hafnium dioxide from hafnium tetrachloride and water,” J. Appl. Phys., 95 (9), 4777–4786, 2004.Google Scholar
  147. 147.
    D. R. Burgess, Jr., J. E. Maslar, W. S. Hurst, E. F. Moore, W. A. Kimes, R. R. Fink, and N. V. Nguyen, “Atomic layer deposition – process models and metrologies,” Characterization and Metrology for ULSI Tech., AIP, 141–145, 2005.Google Scholar
  148. 148.
    Y. Senzaki, K. Choi, P. D. Kirsch, P. Majhi, and B. H. Lee, “Atomic layer deposition of high-K dielectric and metal gate stacks for MOS devices,” Characterization and Metrology for ULSI Tech., AIP, 69–72, 2005.Google Scholar
  149. 149.
    I. C. Kizilyalli, R. Y. S. Huang, and P. K. Roy, “MOS transistors with stacked SiO2-Ta2O5-SiO2 gate dielectrics for giga-scale integration of CMOS technologies,” IEEE Electron Dev. Lett., 19 (11), 423–425, 1998.Google Scholar
  150. 150.
    B. He, T. Ma, S. A. Campbell, and W. L. Gladfelter, “A 1.1 nm oxide equivalent gate insulator formed using TiO2 on nitrided silicon,” IEEE IEDM Tech. Digest, 1038–1040, 1998.Google Scholar
  151. 151.
    R. A. McKee, F. J. Walker, and M. F. Chisholm, “Crystalline oxides on silicon: The first five monolayers,” Phys. Rev. Lett., 81 (14), 3014–3017, 1998.Google Scholar
  152. 152.
    E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Nemayer, M. Copel, M. A. Gribelyuk, H. Okorn-Schmidt, C. D'Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L.-Å. Ragnarsson, P. Rosenheim, K. Rim, R. J. Fleming, A. Mocuta, and A. Ajmera, “Ultrathin high-K gate stack for advanced CMOS devices,” IEEE IEDM Tech. Digest, 451–454, 2001.Google Scholar
  153. 153.
    C. M. Perkins, B. B. Triplett, P. C. McIntyre, K. C. Saraswat, S. Hauka, and M. Tuominen, “Electrical and material properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition,” Appl. Phys. Lett., 78 (16), 2357–2359, 2001.Google Scholar
  154. 154.
    J. Pan, C. Woo, C.-Y. Yang, U. Bhandary, S. Guggilla, N. Kriswhna, H. Chung, A. Hui, B. Yu, Q. Xiang, and M.-R. Lin, “Replacement metal-gate NMOSFETs with ALD TaN/EPCu, PVD Ta, and PVD TaN electrode,” IEEE Electron Dev. Lett., 24 (5), 304–306, 2003.Google Scholar
  155. 155.
    A. Nakajima, T. Ohashi, S. Zhu, S. Yokoyama, S. Michimata, and H. Miyake, “Atomic layerdeposited Si-Nitride/SiO2 stack gate dielectrics for future high-speed DRAM with enhanced reliability,” IEEE Electron Dev. Lett., 26 (8), 538–540, 2005.Google Scholar
  156. 156.
    S.-J. Ding, H. Hu, S. J. Kim, X. F. Yu, C. Zhu, M. F. Li, B. J. Cho, D. S. H. Chan, S. C. Rustagi, M. B. Yu, A. Chin, and D.-L. Kwong, “High-performance MIM capacitor using ALD high-K HfO2-Al2O3 laminate dielectrics,” IEEE Electron Dev. Lett., 24 (12), 730–732, 2003.Google Scholar
  157. 157.
    A. Satta, J. Schuhmacher, C. M. Whelan, W. Vandervorst, S. H. Brongersma, G. P. Beyer, K. Maex, A. Vantomme, M. M. Vitanen, H. H. Brongersma, and W. F. A. Besling, “Growth mechanism and continuity of atomic layer deposited TiN films on thermal SiO2,” J. Appl. Phys., 92 (12), 7641–7646, 2002.Google Scholar
  158. 158.
    N.-J. Bae, K.-I. Na, H.-I. Cho, K.-Y. Park, S.-E. Boo, J.-H. Bae, and J.-H. Lee, “Thermal and electrical properties of 5-nm thick TaN film prepared by atomic layer deposition using pentakis(ethylmethylamino)tantalum precursor for copper metallization,” Jpn. J. Appl. Phys., 45 (12), 9072–9074, 2006.Google Scholar
  159. 159.
    R. Solanki and B. Pathangey, “Atomic layer deposition of copper seed layers,” Electrochem. Solid-State Lett., 3 (10), 479–480, 2000.Google Scholar
  160. 160.
    H. H. Andersen, B. Stenum, T. Sǿrensen, and H. Whitlow, “Angular distribution of particles sputtered from Cu, Pt and Ge targets by keV Ar + ion bombardment,” Nucl. Instrum. Methods B, 6 (3), 459–465, 1985.Google Scholar
  161. 161.
    S. M. Rossnagel and J. Hopwood, “Metal ion deposition from ionized magnetron sputtering discharge,” J. Vac. Sci. Technol. B, 12 (1), 449–453, 1994.Google Scholar
  162. 162.
    S. M. Rossnagel, D. Mikalsen, H. Kinoshita, and J. J. Cuomo, “Collimated magnetron sputter deposition,” J. Vac. Sci. Technol. A, 9 (2), 261–265, 1991.Google Scholar
  163. 163.
    J. C. S. Kools, A. P. Paranjpe, D. H. Heimanson, P. V. Schwartz, K. Song, B. Bergner, and S. McAllister, “Novel approach to collimated physical vapor deposition,” J. Vac. Sci. Technol. A, 17 (4), 1941–1945, 1999.Google Scholar
  164. 164.
    M. S. Barnes, J. C. Forster, and J. H. Keller, “Apparatus for depositing material into high aspect ratio holes,” United States Patent #5,178,739.Google Scholar
  165. 165.
    J. Hopwood, “Ionized physical vapor deposition of integrated circuit interconnects,” Phys. Plasma, 5 (2), 1624–1631, 1998.Google Scholar
  166. 166.
    G. Zhong and J. P. Hopwood, “Ionized titanium deposition into high-aspect ratio vias and trenches,” J. Vac. Sci. Technol. B, 17 (2), 405–409, 1999.Google Scholar
  167. 167.
    S. Hamaguchi and S. M. Rossnagel, “Liner conformality in ionized sputter metal deposition processes,” J. Vac. Sci. Technol. B, 14 (4), 2603–2608, 1996.Google Scholar
  168. 168.
    K. C. Park, I.-R. Kim, B.-S. Suh, S.-M. Choi, W.-S. Song, Y.-J. Wee, S.-G. Lee, J.-S. Chung, J.-H. Chung, S.-R. Hah, J.-H. Ahn, K.-T. Lee, K.-K. Kang, and K.-P. Suh, “Advanced i-PVD barrier metal deposition technology for 90nm Cu interconnects,” IEEE IITC Tech. Digest, 165–167, 2003.Google Scholar
  169. 169.
    D. Mao and J. Hopwood, “Ionized physical vapor deposition of titanium nitride: a deposition model,” J. Appl. Phys., 96 (1), 820–827, 2004.Google Scholar
  170. 170.
    N. Li, D. M. Ruzic, and R. A. Powell, “Chemically enhanced physical vapor deposition of tantalum nitride-based films for ultra-large scale integrated devices,” J. Vac. Sci. Technol. B, 22 (6), 2734–2742, 2004.Google Scholar
  171. 171.
    J. Brcka and R. L. Robison, “Wafer redeposition impact on etch rate uniformity in IPVD system,” IEEE Trans. Plasma Sci., 35 (1), 74–81, 2007.Google Scholar
  172. 172.
    B. J Lin, “The optimum numerical aperture for optical projection microlithography,” SPIE, 1463, 42–63, 1991.Google Scholar
  173. 173.
    C. A. Mack, “Optical proximity effects,” Microlithography World, 22–23, 1996.Google Scholar
  174. 174.
    J. F. Chen, T. Laidig, K. E. Wampler, and R. Caldwell, K. H. Nakagawa, and A. Liebchen, “Practical method for full-chip optical proximity correction,” SPIE, 3051, 790–803, 1997.Google Scholar
  175. 175.
    J. F. Chen, T. Laidig, K. E. Wampler, R. Caldwell, K. H. Nakagawa, and A. Liebchen, “A practical technology path to sub-0.10 micron process generations via enhanced optical lithography,” SPIE, 3873, 995–1016, 1999.Google Scholar
  176. 176.
    H. Chuang, P. Gilbert, W. Grobman, M. Kling, K. Lucas, A. Reich, B. Roman, E. Travis, P. Tsui, T. Vuong, and J. West, “Practical applications of 2-D optical proximity corrections for enhanced performance of 0.25μm random logic devices,” IEEE IEDM Tech. Digest, 483–456, 1997.Google Scholar
  177. 177.
    S. Roy, D. Van Deb Broeke, J. F. Chen, A. Liebchen, T. Chen, S. Hsu, X. Shi, and R. Socha, “Extending aggressive low-k1 design rule requirements for 90 and 65 nm nodes via simultaneous optimization of numerical aperture, illumination and optical proximity correction,” J. Microlith., Microfab., Microsyst., 4 (2), 023003 1–10, 2005.Google Scholar
  178. 178.
    T. Winkler, W. Dettmann, M. Hennign, W. Koestler, M. Moukara, J. Thiele, and K. Zeiler, “AOPC for double exposure lithography,” SPIE, 5754, 1169–1178, 2005.Google Scholar
  179. 179.
    S. Lee, G. Chen, and R. Lee, “Application of reverse scattering bar for memory device, combined with model-based OPC,” Int. Symp. Semicond. Manuf. (ISSM), 446–449, 2005.Google Scholar
  180. 180.
    T. Ebihara, M. D. Levenson, W. Liu, J. He, W. Yeh, S. Ahn, T. Oga, M. Shen, and H. M'saad, “Beyond k1 = 0.25 lithography: 70nm L/S patterning using KrF scanners,” SPIE 5256, 985–994, 2003.Google Scholar
  181. 181.
    S. Hsu, J. F. Chen, N. Cororan, W. Knose, D. J. Van Den Broeke, T. Laidig, K. E. Wampler, X. Shi, M. Hsu, M. Eurlings, J. Finders, T.-B. Chiou, R. Socha, W. Conley, Y. W. Hsieh, S. Tuan, F. Hsieh, “65nm full-chip implementation using double dipole lithography,” Proc. SPIE, 5040, 215–231, 2003.Google Scholar
  182. 182.
    S.-Y. Oh, W.-H. Kim, H.-S. Yune, H.-B. Kim, S.-M. Kim, C.-N. Ahn, and K.-S. Shin, “The double exposure strategy using OPC & simulation and the performance on wafer with sub-0.1mm design rule in ArF lithography,” Digest. SPIE, 4591, 1537–1543, 2002.Google Scholar
  183. 183.
    W.-K. Ma, C.-M. Lim, S.-Y. Oh, S.-M. Kim, B.-H. Nam, S.-C. Moon, and K.-S. Shin, “Double exposure to reduce overall line-width variation of 80nm DRAM gate,” Digest. SPIE, 5377, 939–946, 2004.Google Scholar
  184. 184.
    M. Dusa, B. Arnold, and A. Fumar-Pici, “Prospects and initial exploratory results for double exposure/double pitch technique,” IEEE Int. Symp. Semicond. Manuf. (ISSM), 177–180, 2005.Google Scholar
  185. 185.
    S.-K. Kim, “Double exposure and double patterning studies with inverse lithography,” IEEE 20th Int. Microprocesses and Nanotechnology Conf., 80–1, 2007.Google Scholar
  186. 186.
    W. Y. Jung, C.-D. Kim, J.-D. Eom, S.-Y. Cho, S.-M. Jeon, J.-H. Kim, J. I. Moon, B.-S. Lee, and S.-K. Park, “Patterning with spacer for expanding the resolution limit of current lithography tool,” Digest, SPIE 6165, J1–J9, 2006.Google Scholar
  187. 187.
    J. Finders, M. Dusa, and S. Hsu, “Double patterning lithography: The bridge between low k.1 ArF and EUV,” Microlithography World, February 2008.Google Scholar
  188. 188.
    M. D. Feuer and D. E. Prober, “Projection photolithography-liftoff technique for production of 0.2-μm metal patterns,” IEEE Trans. Electron Dev., ED-28 (11), 1375–1378, 1981.Google Scholar
  189. 189.
    B. J. Lin, “Immersion lithography and its impact on semiconductor manufacturing,” Proc. SPIE, 5377, 46–67, 2004.Google Scholar
  190. 190.
    M. McCullum, M. Kameyama, and S. Owa, “Practical development and implementation of 193 nm immersion lithography,” Microelectron. Eng., 83 (4–9), 640–642, 2006.Google Scholar
  191. 191.
    H. Kawata, J. M. Carter, A. Yen, and H. I. Smith, “Optical projection lithography using lenses with numerical apertures greater than unity,” Microelectron. Eng., 9 (1–4), 31–36, 1989.Google Scholar
  192. 192.
    G. Owen, R. F. W. Pease, D. A. Markle, A. Grenville, R. L. Hsieh, R. von Bönau, and N. I. Maluf, “1/8μm optical lithography,” J. Vac. Sci. Technol. B, 10 (6), 3032–3036, 1992.Google Scholar
  193. 193.
    H. Kawata, I. Matsumura, H. Yoshida, and K. Murata, “Fabrication of 0.2μm fine patterns using optical projection lithography with an oil immersion lens,” Jpn. J. Appl. Phys., 31 (12B), 4174–4177, 1992.Google Scholar
  194. 194.
    J. A. Hoffnagle, W. D. Hinsberg, M. Sanchez, and F. A. Houle, “Liquid immersion deepultraviolet interferometric lithography,” J. Vac. Sci. Technol. B, 17 (6), 3306–3309, 1999.Google Scholar
  195. 195.
    M. Switkes and M. Rothschild, “Resolution enhancement of 157 nm lithography by liquid immersion,” Proc. SPIE, 4691, 459–465, 2002.Google Scholar
  196. 196.
    B. W. Smith, A. Bourov, H. Kang, F. Cropanese, Y. Fan, N. Lafferty, and L. Zavyalova, “Water immersion optical lithography at 193 nm,” J. Microlith., Microfab., Microsyst., 3 (1), 46–51, 2004.Google Scholar
  197. 197.
    Th. Zell, “Present and future of 193 nm lithography,” Microelectron. Eng., 83 (4–9), 624–633, 2006.Google Scholar
  198. 198.
    G. O'Sillivan, A. Cummings, P. Dunne, K. Fahy, P. Hayden, L. McKinney, N. Murphy, E. Sokkel, and J. White, “Recent progress in the development of sources for EUV lithography,” American Institute of Physics (AIP) Conf. Proc., 108–116, 2005.Google Scholar
  199. 199.
    Th. Kruecken, “Plasma and radiation modeling of EUV sources for micro lithography,” American Institute of Physics (AIP) Conf. Proc., 181–190, 2007.Google Scholar
  200. 200.
    Th. Kruecken, “Discharge plasmas as EUV sources for future micro lithography,” American Institute of Physics (AIP) Conf. Proc., 259–269, 2007.Google Scholar
  201. 201.
    S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B, 14 (6), 4129–4133, 1996.Google Scholar
  202. 202.
    S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B, 15 (6), 2897–2904, 1997.Google Scholar
  203. 203.
    K. Kincade, “Imprint lithography challenges EUV for next-generation chip manufacturing,” Laser Focus World, 43 (7), 97–104, 2007.Google Scholar
  204. 204.
    S. N. Hong, G. A. Ruggles, J. J. Wortman, E. R. Myers, and J. J. Hren, “Characterization of ultra-shallow p+ -n junction diodes fabricated by 500-eV boron-ion implantation,” IEEE Trans. Electron Dev., 38 (1), 28–31, 1991.Google Scholar
  205. 205.
    A. Bousetta, J. A. van den Berg, and D. G. Armour, “Formation of 0.05-nm p+-n and n+ -p junctions by very low (<500eV) ion implantation,” IEEE Electron Dev. Lett., 13 (5), 250–252, 1992.Google Scholar
  206. 206.
    A. Al-Bayati, S. Tandon, A. May, M. Foad, and D. Wagner, “Exploring the limits of pre-amorphization implants on controlling channeling and diffusion of low energy B implants and ultra shallow junction formation,” IEEE Proc. Conf. Ion Implantation Tech., 54–57, 2000.Google Scholar
  207. 207.
    J. Liu, U. Jeong, M. Meloni, and S. Mehta, “Effects of pre-amorphization on junction characteristics and damage behavior in low energy boron implantation,” IEEE Proc. Conf. Ion Implantation Tech., 191–194, 2000.Google Scholar
  208. 208.
    N. Natsuaki, A. Shima, M. Honda, S. Nagayama, H. Sato and T. Hashimoto, “Surface sensitive redistribution of low energy implanted B in Si substrate,” IEEE Proc. Conf. Ion Implantation Tech., 474–477, 1998.Google Scholar
  209. 209.
    N. Variam, S. Falk, S. Mehta, T. Miranda, and J. Luke, “Challenges and solutions in the process integration of ultra-shallow junctions in advanced CMOS technology,” IEEE Proc. Conf. Ion Implantation Tech., 77–80, 2000.Google Scholar
  210. 210.
    H. C.-H. Wang, C.-C. Wang, C.-S. Chang, T. Wang, P. B. Griffin, and C. H. Diaz, “Interface induced uphill diffusion of boron: An effective approach for ultrashallow junction,” IEEE Proc. Conf. Ion Implantation Tech., 65–67, 2001.Google Scholar
  211. 211.
    C. Laviron, F. Milesi, and G. Mathieu, “Ultrashallow P+/N junctions using BCl 2+ implantations for sub 0.1μm CMOS devices,” IEEE Proc. Conf. Ion Implantation Tech., 100–102, 2002.Google Scholar
  212. 212.
    K. Goto, J. Matsuo, Y. Tada, T. Sugii, I. Yamada, “Decaborane (B10H14) ion implantation technology for sub 0.1μm PMOSFET's”, IEEE Trans. Electron Dev., 46 (4), 683–689, 1999.Google Scholar
  213. 213.
    D. C. Jacobson, K. Bourdelle, H-J. Gossmann, M. Sosnowski, M. A. Albano, V. Babaram, J. M. Poste A. Aganval, A. Perel, T. Horsky, “Decaborane, an alternative approach to ultra low energy ion implantation,” IEEE Proc. Conf. Ion Implantation Tech., 300–303, 2000.Google Scholar
  214. 214.
    D. Lenoble, A. Grouillet, F. Arnaud, M. Haond, S. B. Felch, Z. Fang, S. Walther, and R. B. Liebert, “Direct comparison of electrical performance of 0.1-pm pMOSFETs doped by plasma doping or low energy ion implantation,” IEEE Proc. Conf. Ion Implantation Tech., 468–471, 2000.Google Scholar
  215. 215.
    B. Mizuno, I. Nakayama, N. Aoi, M. Kubota, and T. Komeda, “New doping method for subhalf micron trench sidewalls by using an electron cyclotron resonance plasma,” Appl. Phys. Lett., 53 (21), 2059–2061, 1988.Google Scholar
  216. 216.
    N. W. Cheung, “Plasma immersion ion implantation for ULSI processing,” Nucl. Instrum. Meth. Phys. Res. B, 55 (1–4), 811–820, 1991.Google Scholar
  217. 217.
    X. Y. Qian, N. W. Cheung, and M. A. Lieberman, “Plasma immersion ion implantation of SiF4and BF3for sub-100 nm p+n junction fabrication,” Appl. Phys. Lett., 59 (3), 348–350, 1991.Google Scholar
  218. 218.
    P. K. Chu, A. Qin, C. Chan, N. W. Cheung, and L. A. Larson, “Plasma immersion ion implantation – a fledging technique for semiconductor processing,” Mater. Sci. Eng. R, 17, 207–280, 1996.Google Scholar
  219. 219.
    R. B. Liebert, S. W. Walther, S. B. Felch, Z. Fang, B. O. Pederson, and D. Hacker, “Plasma doping system for 200 and 300mm wafers,” IEEE Proc. Conf. Ion Implantation Tech., 472–475, 2000.Google Scholar
  220. 220.
    J. T. Sheuer, D. Lenoble, J.-P. Reynard, F. Lallement, A. Grouillet, A. Arevalo, D. Distaso, Z. Fang, L. Godet, B. W. Koo, T. Miller, and J. Weeman, “USJ formation using pulsed plasma doping,”Surf. Coat. Tech., 186 (1–2), 57–61, 2004.Google Scholar
  221. 221.
    S. Walther, D. Lenoble, F. Lallement, A. Grouillet, Y. Erokhin, V. Singh, and A. Testoni, “Advanced 65 nm CMOSW devices fabricated using ultra-low energy plasma doping,” Nucl. Instrum. Meth. Phys. Res. B, 237 (1–2), 126–130, 2005.Google Scholar
  222. 222.
    D. Lee, S. Baek, S. Heo, C. Cho, G. Buh, T. Park, Y. Shin, and H. Hwang, “Ultrashallow p+/n junction prepared by low energy BF3plasma doping and KrF excimer laser annealing,” Electrochem. Soc. Solid-State Lett., 9 (1), G19–G21, 2006.Google Scholar
  223. 223.
    S. Heo, S. Baek, D. Lee, G. Buh, Y. Shin, and H. Hwang, “Ultrashallow arsenic n+/p junction formed by AsH3plasma doping,” Jpn. J. Appl. Phys., 45 (13), L373–L375, 2006.Google Scholar
  224. 224.
    S. Qin and A. NcTeer, “Device performance improvement of PMOS devices fabricated by B2H6PIII/PLAD processing,” IEEE Trans. Electron Dev., 54 (9), 2497–2501, 2007.Google Scholar
  225. 225.
    A. Agarwal and M. J. Kushner, “Characteristics of pulsed plasma doping sources for ultrashallow junction formation,” J. Appl. Phys., 101 063305, 1–16, 2007.Google Scholar
  226. 226.
    H. Strack, “Ion bombardment of silicon in a glow discharge,” J. Appl. Phys., 34 (8), 2405–2409, 1963.Google Scholar
  227. 227.
    H. Ruecker, B. Heinemann, D. Bolze, D. Knoll, D. Kruger, R. Kurps, H. J. Osten, P. Schley, B. Tillack, and P. Zaumseil, “Dopant diffusion in C-doped Si and SiGe: Physical model and experimental verification,” IEEE IEDM Tech. Digest, 345–348, 1999.Google Scholar
  228. 228.
    H. J. Osten, D. Knoll, B., Heinemann, H. Röcker, and B. Tillack, “Carbon doped SiGe heterojunction bipolar transistors for high frequency applications,” IEEE BCTM Tech. Digest, 109–116, 1999.Google Scholar
  229. 229.
    K. E. Ehwald, D. Knoll, B. Heinemann, K. Chang, J. Kirchgessner, R. Mauntel, I. S. Lim, J. Steele, P. Schley, B. Tillack, A. Wolff, K. Blum, W. Winkler, M. Perschel, U. Jadghold, R. Barth, T. Gabolla, H. J. Erzgräber, B. Hunger, and H. J. Osten, “Modular integration of high-performance SiGe:C HBTs in a deep submicron, epi-free CMOS process,” IEEE IEDM Tech. Digest, 561–564, 1999.Google Scholar
  230. 230.
    H.. Baudry, B. Martinet, C. Fellous, O. Kermarrec, M. Laurens, M. Marty, J. Mourier, G. Troillard, A. Monroy, D. Dutartre, D. Bernshel, G. Vincent, and A. Chantre, “High performance 0.25μm SiGe and SiGe:C HBTs using non selective epitaxy,” IEEE BCTM Tech. Digest, 52–55, 2001.Google Scholar
  231. 231.
    T. Tominari, S. Wada, K. Tokunaga, K. Koyu, M. Kubo, T. Udo, M. Seto, K. Ohhata, H. Hosoe, Y. Kiyota, K. Washio, and T. Hashimoto, “Study on extremely thin base SiGe:C featuring sub 5-ps ECL gate delay,” IEEE BCTM Tech. Digest, 107–110, 2003.Google Scholar
  232. 232.
    M. W. Xu, S. Decoutere, A. Sibaja-Hernandez, K. van Wichelen, L. Witters, R. Loo, E. Kunnen, C. Knorr, A. Sadovnikov, and C. Bulucea, “Ultra low power SiGe:C HBT for 0.18 mm RF-BiCMOS,” IEDM Tech. Digest, 125–128, 2003.Google Scholar
  233. 233.
    L. S. Lai, C. S. Liang, P. S. Chen, Y. M. H. Y. H. Liu, Y. T. Tseng, S. C. Ly, M.-J. Tsai, C. W. Liu, C. Rosenblad, T. Buschbaum, M. Buschbeck, and J. Ram, “Optimal SiGe:C HBT module for BiCMOS applications,” VLSI Tech. Digest, 113–116, 2003.Google Scholar
  234. 234.
    F. Ducroquet, T. Ernst, J.-M. Hartmann, O. Weber. F. Andrieu, P. Holliger, P. Laugier, P. Rivallin, G. Guégan, D. Lafond, V. Laviron, V.; Carron, L. Brévard, C. Tabone, D. Bouchu, A. Toffili, J. Cluzel, and S. Deleonibus, “Double SiGe:C diffusion barrier channel 40nm CMOS with improved short-channel performances,” IEEE IEDM Tech. Digest, 437–440, 2004.Google Scholar
  235. 235.
    P. H. C. Magnée, A. L. A. M. Kemmeren, N. E. B. Cowern, J. W. Slotboom, R. J. Havens, and H. G. A. Huizing, “Ultra shallow boron base profile with carbon implantation,” IEEE BCTM, 64–57, 2001.Google Scholar
  236. 236.
    C. I. Li, R. Liu, M. Chan, T. F. Hsiao, C. L. Yang, and S. F. Tzou, “Control of source and drain extension phosphorus profile by using carbon co-implant,” 15th IEEE International Conference on Advanced Thermal Processing of Semiconductors, 127–130, 2007.Google Scholar
  237. 237.
    Y. Momiyama, K. Okabe, H. Nakao,M. Kojama, M. Kase, and T. Sugii,“Extension engineering using carbon co-implantation technology for low power CMOS design with phosphorus- and boron-extension,” Ext. Abs. 7th International Workshop on Junction Technology, 63–64, 2007.Google Scholar
  238. 238.
    A. Mineji and S. Shishiguchi, “Ultra shallow junction and super steep halo formation using carbon co-implantation for 65nm high performance CMOS devices,” IEEE International Workshop on Junction Technology, 84–87, 2006.Google Scholar
  239. 239.
    B. Colombeau, A. J. Smith, N. E. B. Cowern, W. Lerch, S.-Paul, B. J. Pawlak, F.Cristiano, X.Hebras, D.Bolze,C.Ortiz, and P. Pichler, “Electrical deactivation and diffusion of boron in preamorphized ultrashallow junctions: Interstitial transport and F co-implant control,” IEEE IEDM Tech. Digest, 971–974, 2004.Google Scholar
  240. 240.
    W. Kang, J. Kim, K. Lee, Y. Shin, T. Kim, Y. Park, and J. Park, “The leakage current improvement in an ultra shallow junction NMOS with Co silicided source and drain,” IEEE Trans. Electron Dev. Lett., 21 (1), 9–11, 2000.Google Scholar
  241. 241.
    J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of transformation to lowresistivity phase and agglomeration of TiSi2and CoSi2,” IEEE Trans. Electron Dev., 38 (2), 262–269, 1991.Google Scholar
  242. 242.
    R. A. Roy, L. A. Clevenger, C. Cabral, Jr., K. L. Saenger, S. Brauer, J. Jordan-Sweet, J. Bucchignano, G. B. Stephenson, G. Morales, and K. F. Ludwig, Jr., “In situ x-ray diffraction analysis of the C49–C54 titanium silicide phase transformation in narrow lines,” J. Appl. Phys., 66 (14), 1732–1734, 1995.Google Scholar
  243. 243.
    E. G. Colgan, J. P. Gambino, and Q. Z. Hong, “Formation and stability of silicides on polycrystalline silicon,” Mater. Sci. Eng. Reps., R16, 43–96, 1996.Google Scholar
  244. 244.
    S. P. Murarka, D. B. Fraser, A. K. Sinha, H. J. Levinstein, E. J. Lloyd, R. Liu, D. S. Williams, and S. J. Hillenius, “Self-aligned cobalt disilicide for gate and interconnection and contacts to shallow junctions,” J. Appl. Phys., 58 (2). 971–973, 1985.Google Scholar
  245. 245.
    T. Ymazaki, K. Goto, T. Fukano, Y. Nara, T. Sugii, and T. Ito, “21 psec switching 0.1mm-CMOS at room temperature using high performance Co silicide process,” IEEE IEDM Tech. Digest, 906–908, 1993.Google Scholar
  246. 246.
    T. Morimoto, H. S. Momose, T. Inuma, I. Kunishima, K. Suguro, H. Okano, I. Katakabe, H. Nakajima, M. Ono, Y. Katsumata, and H. Iwai, “A NiSi silicide technology for advanced logic devices,” IEEE IEDM Tech. Digest, 653–656, 1991.Google Scholar
  247. 247.
    J. P. Lu, D. Miles, J. Zhao, A. Gurba, Y. Xu, C. Lin, M. Hewson, J. Ruan, L. Tsung, R. Kuan, T. Grider, D. Mercer, and C. Montgomery, “A novel nickel salicide process technology for CMOS devices with sub-40nm physical gate length,” IEEE IEDM Tech. Digest, 371–373, 2002.Google Scholar
  248. 248.
    R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy, and G. Dewey, “30nm physical gate length CMOS transistors with 1.0 ps n-MOS and 1.7 ps p-MOS gate delays,” IEEE IEDM Tech. Digest, 45–48, 2000.Google Scholar
  249. 249.
    Q. Xiang, C. Woo, E. Paton, J. Foster, B. Yu, and M.-R. Lin, “Deep sub-100nm CMOS with ultra low gate sheet resistance by NiSi,” Symp. VLSI Tech. Digest, 76–77, 2000.Google Scholar
  250. 250.
    B. Froment, M. Muller, H. Brut, R. Pantel, V. Carron, H. Achard, A. Halimaoui, F. Boeuf, F.Wacquant, C. Regnier, D. Ceccarelli, R. Palla, A. Beverina, V. DeJonghe, P. Spinelli, O. Leborgne, K. Bard, S. Lis, V. Tirard, P.Morin, F. Trentesaux, V. Gravey, T. Mandrekai, D. Rabilloud, S.Van, E. Olson, J. Diedrick, “Nickel vs. Cobalt silicide integration for sub-50nm CMOS,” Europ. Solid-State Dev. Res. Conf., 215–218, 2003.Google Scholar
  251. 251.
    T.-H. Hou, T.-F Lei, and T.-S. Chao, “Improvement of junction leakage of nickel silicided junction by a Ti-capping layer,” IEEE Electron Dev. Lett., 20 (11), 572–573, 1999.Google Scholar
  252. 252.
    D. Mangelinck, P. Gas, J. M. Gay, B. Pichaud, and O. Thomas, “Effect of Co, Pt, and Au additions on the stability and epitaxy of NiSi2 films on (111) Si,” J. Appl. Phys., 84 (5), 2583–2590, 1998.Google Scholar
  253. 253.
    P. S. Lee, K. L. Pey, D. Mangelinck, J. Ding, D. Z. Chi, and L. Chan, “New salicidation technology with Ni(Pt) alloy for MOSFETs,” IEEE Electron Dev. Lett., 22 (12), 568–570, 2001.Google Scholar
  254. 254.
    T. Jarmar, J. Seger, F. Ericson, D. Mangelinck, U. Smith, S.-L. Zhang, “Morphological and phase stability of nickel-germanosilicide on Si1-xGex under thermal stress,” J. Appl. Phys., 92 (12), 7193–7199, 2002.Google Scholar
  255. 255.
    L. J. Jin, K. L. Peya, W. K. Choi, E. A. Fitzgerald, D. A. Antoniadis, A. J. Pitera, and M. L. Lee, D. Z. Chi, Md. A. Rahman, T. Osipowicz, and C. H. Tung, “Effect of Pt on agglomeration and Ge out diffusion in Ni(Pt) germanosilicide,” J. Appl. Phys., 98 (033520–1–6), 2005.Google Scholar
  256. 256.
    K. Ohuchi, C. Lavoie, C. Murray, C. D'Emic, I. Lauer, J. O. Chu, B. Yang, P. Besser, L. Gignac, J. Bruley, G. U. Singcol, F. Pagettel, A. W. Topoll, M. J. Rooks, J. J. Bucchignano,V. Narayanan, M. Khare, M. Takayanagi, K. Ishimaru, D.-G. Park, G. Shahidi, and P. Solomon, “Extendibility of NiPt silicide contacts for CMOS technology demonstrated to the 22-nm node,” IEEE IEDM Tech. Digest, 1029–1031, 2007.Google Scholar
  257. 257.
    R. T.-P. Lee, K.-M. Tan, A. E.-J. Lim, T.-Y. Liow, G. S. Samudra, D.-Z. Chi, and Y.-C. Yeo, “P-Channel tri-gate FinFETs featuring Ni1-yPtySiGe source/drain contacts for enhanced drive current performance,” IEEE Electron Dev. Lett., 29 (5), 438–441, 2008.Google Scholar
  258. 258.
    B. H. Lee, L. Kang, W.-J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” IEEE IEDM Tech. Digest, 133–136, 1999.Google Scholar
  259. 259.
    Y.-Y. Chen, W.-Y. Fu, and C.-F. Yeh, “Electrical characteristics of the HfAlON gate dielectric with interfacial UV-ozone oxide,” IEEE Electron Dev. Lett., 29 (1), 96–98, 2008.Google Scholar
  260. 260.
    G. D. Wilk, R. W. Wallace, and J. M. Anthony, “Hafnium and zirconium silicates for advanced gate dielectrics,” J. Appl. Phys., 87 (1), 484–492, 2000.Google Scholar
  261. 261.
    S. J. Lee, C. H. Lee, Y. H. Kim, H. F. Luan, W. P. Bai, T. S. Jeon, and D. L. Kwong, “High-K gate dielectrics for sub-100 nm CMOS technology,” Int. Conf. Solid-State and Integrated Tech., 1, 303–308, 2001.Google Scholar
  262. 262.
    C. Hobbs, H. Tseng, K. Reid, B. Taylor, L. Dip, L. Hebert, R. Garcia, R. Hedge, J. Grant, D. Gilmer, A. Franke, V. Dhandapani, M. Azrak, L. Prabhu, R. Rai, S. Bagchi, J. Conner, S. Backer, F. Dumbuya, B. Nguyen, and P. Tobin, “80 nm poly-Si gate CMOS with HfO2 dielectric,” IEEE IEDM Tech. Digest, 651–653, 2001.Google Scholar
  263. 263.
    Q. Lu, R. Lin, H. Takeuchi, T.-J. King, C. Hu, K. Onishi, R. Choi, C.-S. Kang, and J. C. Lee, “Deep-submicron CMOS process integration of HfO2 gate dielectric with poly-Si gate,” Semicon. Dev. Res. Symp. Digest., 377–380, 2001.Google Scholar
  264. 264.
    M. L. Green, M.-Y. Ho, B. W. Busch, G. D. Wilk, T. Sorsch, T. Conrad, B. Brijs, W. Vander-vorst, P. I. Räisänen, D. Muller, M. Bude, and J. Grazul, “Nucleation and growth of atomic layer deposited HfO2 gate dielectric layers on chemical oxide (Si-O-H) and thermal oxide (SiO2 or Si-O-N) underlayers,” J. Appl. Phys., 7168–7174, 2002.Google Scholar
  265. 265.
    M.-Y. Ho, H. Gong, G. D. Wilk, B. W. Busch, M. L. Green, P. M. Voyles, D. A. Muller, M. Bude, W. H. Lin, A. See, M. E. Loomans, S. K. Lahiri, and P. I. Räisänen, “Morphology and crystallization kinetics in HfO2 thin films grown by atomic layer deposition,” J. Appl. Phys., 93 (3), 1477–1481, 2003.Google Scholar
  266. 266.
    M. Koike, T. Ino, Y. Kamimuta, M. Koyama, Y. Kamata, N. Susuki, Y. Mitani, A. Nishiyama, and Y. Tsunashima, “Effect of Hf-N bond properties of thermally stable amorphous HfSiON and applicability of this material to sub-50 nm technology node LSIs,” IEEE IEDM Tech. Digest, 107–110, 2003.Google Scholar
  267. 267.
    T. Y. Luo, M. Laughery, G. A. Brown, H. N. Al-Shareef, V. H. C. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, “Effect of H2 content on reliability of ultrathin In-Situ Steam Generated (ISSG) SiO2,” IEEE Electron Dev. Lett., 21 (9), 430–432, 2000.Google Scholar
  268. 268.
    Y. Ma, Y. Ono, L. Stecker, D. R. Evans, and S. T. Hsu, “Zirconium oxide based gate dielectrics with equivalent oxide thickness of less than 1.0 nm and performance of submicron MOSFET using a nitride gate replacement process,” IEEE IEDM Tech. Digest, 149–152, 1999.Google Scholar
  269. 269.
    A. Chin, C. C. Liao, C. H. Lu, W. J. Chen, and C. Tsai, “Device and reliability of high-K Al2O3 gate dielectric with good mobility and low Dit,” Symp. on VLSI Tech., 135–136, 1999.Google Scholar
  270. 270.
    D. A. Buchanan, E. P. Gusev, E. Carter, H. Okorn-Schmidt, K. Rim, M. A. Gribelyuk, A. Mocuta, A. Ajmera, M. Copel, S. Guha, N. Bojarczuk, A. Callegari, C. D'Emic, P. Kozlowski, K. Chan, R. J. Fleming, P. C. Jamison, J. Brown, and R. Arndt, “80 nm poly-silicon gated n-FET with ultra-thin Al2O3 gate dielectric for ULSI applications,” IEEE IEDM Tech. Digest, 223–226, 2000.Google Scholar
  271. 271.
    R. A. B. Devine, L. Vallier, J. L. Autran, P. Paillet, and J. L. Leray, “Electrical properties of Ta 2O5 films obtained by plasma enhanced chemical vapor deposition using a TaF5 source,” Appl. Phys. Lett., 68 (13), 1775–1777, 1996.Google Scholar
  272. 272.
    S. Iwata, N. Yamamoto, N. Kobayashi, T. Terada, and T. Mizutani, “A new tungsten gate process for VLSI applications,” ED-31(9), 1174–1179, 1984.Google Scholar
  273. 273.
    B. Doris, M. Ieong, H. Zhu, Y. Zhang, M. Steen, W. Natzle, S. Callegari, V. Narayanan, J. Cai, S. H. Ku, P. Jamison, Y. Li, Z. Ren, V. Ku, D. Boyd, T. Kanarski, C. D'Emic, M. Newport, D. Dobuzinsky, S. Seshpante, J. Petrus, R. Jammy, and W. Haensch, “Device design considerations for ultra-thin SOI MOSFETs,” IEEE IEDM Tech. Digest, 631–634, 2003.Google Scholar
  274. 274.
    J. Widiez, M. Vinet, B. Guillaumot, T. Poiroux, D. Lafond, P. Holliger, O. Weber, V. Barral, B. Previtali, F. Martin, M. Mouis, and S. Deleonibus, “Fully depleted SOI MOSFETs with WSix, metal gate on HfO2 gate dielectric, “IEEE Int. SOI Conf. Proc., 161–162, 2006.Google Scholar
  275. 275.
    D. Aimé, C. Fenouillet-Beranger, P. Perreau, S. Denorme, J. Coignus, A. Cros, D. Fleury, O. Faynot, A. Vandooren, R. Gassilloud, F. Martin, S. Barnola, T. Salvetat, G. Chabanne, L. Brevard, M. Aminpur, F. Leverd, R. Gwoziecki, F. Boeuf, C. Hobbs, A. Zauner, M. Möller, V. Cosnier, S. Minoret, D. Bensahel, M. Orlowski, H. Mingam, A. Wild, S. Deleonibus, and T. Skotnicki, “Fully-Depleted SOI CMOS technology using WxN metal gate and HfSixOyNz high-k dielectric,” Eur. Solid-State Dev. Res. Conf. (ESSDERC), 255–258, 2007.Google Scholar
  276. 276.
    A. Yagishita, T. Saito, K. Nakajima, S. Inumiya, K. Matsuo, T. Shibata, Y. Tsunashima, K. Suguro, and T. Arikado, “Improvement of threshold voltage deviation in damascene metal gate transistors,” IEEE Trans. Electron Dev., 48 (8), 1604–1611, 2001.Google Scholar
  277. 277.
    S. S. Suryagandh, M. Garg, and J. C. S. Woo, “A device design methodology for sub-100-nm SOC applications using bulk and SOI MOSFETs,” IEEE Trans. Electron Dev., 51 (7), 1122–1128, 2004.Google Scholar
  278. 278.
    A. Vandooren, C. Hobbs, O. Faynot, P. Perreau, S. Denorme, C. Fenouillet-Beranger, C. Gallon, C. Morin, A. Zauner, G. Imbert, H. Bernard, P. Gamier, L. Gabette, M. Broekaart, M. Aminpur, S. Barnola, N. Loubet, D. Dutartre, T. Korman, G. Chabanne, F. Martin, Y. Le Tiec, N. Gierczynski, S. Smith, C. Laviron, M. Bidaud, I. Pouilloux, D. Bensahel, T. Skotnicki, H. Mingam, and A. Wild, “0.525μm2 6T-SRAM bit cell using 45nm fully-depleted SOI CMOS technology with metal gate, high K dielectric and elevated source/drain on 300mm wafers,” IEEE Int. SOI Conf., 221–222, 2005.Google Scholar
  279. 279.
    A. Vandooren, A. Barr, L. Mathew, T. R. White, S. Egley, D. Pham, M. Zavala, S. Samavedam, J. Schaeffer, J. Conner, B.-Y. Nguyen, Bruce E. White, Jr., M. K. Orlowski, and J. Mogab, “Fully-depleted SOI devices with TaSiN gate, HfO2 gate dielectric, and elevated source/drain extensions,” IEEE Electron. Dev. Lett., 24 (5), 342–344, 2003.Google Scholar
  280. 280.
    A. Chatterjee, R. A. Chapman, K. Joyner, M. Otobe, S. Hattangady, M. Bevan, G. A. Brown, H. Yang, Q. He, D. Rogers, S. J. Fang, R. Kraft, A. L. P. Rotondaro, M. Terry, K. Brennan, S.-W. Aur, J. C. Hu, H.-L. Tsai, P. Jones, G. Wilk, M. Aoki, M. Rodder, and I.-C. Chen, “CMOS metal replacement gate transistors using tantalum pentoxide gate insulator,” IEEE IEDM Tech. Digest, 777–780, 1998.Google Scholar
  281. 281.
    Y. Abe, T. Oishi, K. Shiozawa, Y. Tokuda, and S. Satoh, “Simulation study on comparison between metal gate and polysilicon gate for sub-quarter-micron MOSFETs,” IEEE Electron Dev. Lett., 20 (12), 632–634, 1999.Google Scholar
  282. 282.
    K. Maitra and V. Misra, “A simulation study to evaluate the feasibility of midgap workfunction metal gates in 25 nm bulk CMOS,” IEEE Electron Dev. Lett., 24 (11), 707–709, 2003.Google Scholar
  283. 283.
    I. De, D. Johri, A. Srivastava, and C. M. Osburn, “Impact of gate workfunction on device performance at the 50nm technology node,” Solid-State Electron., 44, 1077–1080, 2000.Google Scholar
  284. 284.
    E. Jossel and T. Skotnicki, “Polysilicon gate with depletion – or – metallic gate with buried channel: What evil worse?” IEEE IEDM Tech. Digest, 661–664, 1999.Google Scholar
  285. 285.
    M. Masahara, S.-i. O'uchi, Y Liu, K. Sakamoto, K. Endo, T. Matsukawa, T. Sekigawa, H. Koike, and E. Suzuki, “Optimum gate workfunction for Vth-controllable four-terminal-driven double-gate MOSFETs (4T-XMOSFETs) - Band-edge workfunction versus midgap workfunction,” IEEE Trans. Nanotech., 5 (6), 716–722, 2006.Google Scholar
  286. 286.
    Y.-C. Yeo, Q. Lu, P. Ranade, H. Takeuchi, K. J. Yang, I. Polishchuk, T.-J. King, C. Hu, S. C. Song, H. F. Luan, and D.-L. Kwong, “Dual-metal gate CMOS technology with ultrathin silicon nitride gate dielectric,” IEEE Electron Dev. Lett., 22 (5), 227–229, 2001.Google Scholar
  287. 287.
    S. B. Samavedam, L. B. La, J. Smith, S. Dakshina-Murthy, E. Luckowski, J. Schaefer, M. Zavala, R. Martin, V. Dhanapani, D. Triyoso, H. H. Tseng, P. J. Tobin, D. C. Gilmer, C. Hobbs, W. J. Taylor, J. M. Grant, R. I. Hedge, J. Mogab, C. Thomas, P. Abramowitz, M. Moosa, J. Conner, J. Jiang, V. Arunachalam, M. Saad, B.-Y Nguyen, and B., White, “Dual-metal gate CMOS with HfO2 gate dielectric,” IEEE IEDM Tech. Digest, 433–436, 2002.Google Scholar
  288. 288.
    Z. B. Zhang, S. C. Song, C. Huffman, J. Barnett, N. Moumen, H. Alshareef, P. Majhi, M. Hussain, M. S. Akbar, J. H. Sim, S. H. Bae, B. Sassman, and B. H. Lee, “Integration of dual metal gate CMOS with TaSiN (NMOS) and Ru (PMOS) gate electrodes on HfO2 gate dielectric,” VLSI Symp. Tech. Dig., 50–51, 2005.Google Scholar
  289. 289.
    B. Tavel, T. Skotnicki, G. Pares, N. Carrière, M. Rivoire, F. Leverd, C. Julien, J. Torres, and R. Pantel, “Totally silicided (CoSi2) polysilicon: a novel approach to very low-resistive gate (˜ 2Ω2/◻) without metal CMP nor etching,” IEEE IEDM Tech. Digest, 825–828, 2001.Google Scholar
  290. 290.
    T. Hoffmann, A. Veloso, A. Lauwers, H. Yu, M. Van Dal, H. Tigelaar, T. Chiarella, C. Kerner, R. Mitsuhashi, I. Satoru, M. Niwa, A. Rothschild, B. Froment, J. Ramos, A. Nackaerts, S. Brus, C. Vrancken, P. P. Absil, M. Jurczak, J. A. Kittl, and S. Biesemans, “Low power CMOS featuring dual work function FUSI on HfSiON and 17ps inverter delay,” VLSI Symp. Tech. Dig., 154–155, 2006.Google Scholar
  291. 291.
    A. Lauwers, A. Veloso, T. Hoffmann, M. J. H. van Dal, C. Vrancken, S. Brus, S. Locorotondo, J.-F. de Marneffe, B. Sijmus, S. Kubicek, T. Chiarella, M. A. Pawlak, K. Opsomer, M. Niwa, R. Mitsuhashi, K. G. Anil, H. Y. Yu, C. Demeurisse, R. Verbeeck, M. de Potter, P. Absil, K. Maex, M. Jurczak, S. Biesemans, and J. A. Kittl, “CMOS integration of dual work function phase controlled Ni FUSI with simultaneous silicidation of NMOS (NiSi) and PMOS (Ni-rich silicide) gates on HfSiON,“IEEE IEDM Tech. Digest, 661–664, 2005.Google Scholar
  292. 292.
    A. Lauwers, A. Veloso, S.-Z. Chang, H. Y. Yu, T. Hoffmann, C. Kerner, M. Demand, A. Rothschild, M. Niwa, I. Satoru, R. Mitsuhashi, M. Ameen, G. Whittemore, M. A. Pawlak, C. Vrancken, C. Demeurisse, S. Mertens, W Vandervorst, P. Absil, S. Biesemans, and J. A. Kittl, “Cost-effective low Vt Ni-FUSI CMOS on SiON by means of Al implant (pMOS) and Yb + P coimplant (nMOS),” IEEE Electron Dev. Lett., 29 (1), 34–37, 2008.Google Scholar
  293. 293.
    J. Yuan and J. C. S. Woo, “Tunable work function in fully nickel-silicided polysilicon gates for metal gate MOSFET applications,” IEEE Electron Dev. Lett., 26 (2), 87–89, 2005.Google Scholar
  294. 294.
    N. Kumar, P. Pourrezaei, M. Fissel, T. Begley, B. Lee, and E. C. Douglas, “Growth and properties of radio frequency reactively sputtered titanium nitride thin films”, J. Vac. Sci. Technol. A, 5 (4), 1778–1782, 1987.Google Scholar
  295. 295.
    J. F. Creemer, W. van der Vlist, C. R. de Boer, H. W. Zandbergen, P. M. Sarro, D. Briand, and N. F. de Rooij, “MEMS hotplates with TiN as a heater material,” IEEE Sensors, 330–333, 2005.Google Scholar
  296. 296.
    C. W. Kaanta, S. G. Bombardier, W. J. Cote, W. R. Hill, G. Kerszykowski, H. S. Landis, D. J. Poindexter, C. W. Pollard, G. H. Ross, J. G. Ryan, S. Wolff, and J. E. Cronin, “Dual Damascene: A ULSI wiring technology,” Proc. VLSI Multilevel Interconnect Conference (VMIC), 144–152, 1991.Google Scholar
  297. 297.
    J. G. Ryan, R. M. Geffken, N. R. Poulin, and J. R. Paraszczak, “The evolution of interconnection technology at IBM,” IBM J. Res. Dev., 39 (4), 371–381, 1995.Google Scholar
  298. 298.
    D. Edelstein, J. Heidemreich, R. Goldblatt, W. Cote, C. Uzioh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dubovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in sub-0.25 mm CMOS ULSI technology,” IEEE IEDM Tech. Digest, 273–276, 1997.Google Scholar
  299. 299.
    K. Mosig, H. Cox, E. Klawuhn, T. S. de Filipe, and A. Shiota, “Integration of porous low-k dielectric with CVD barriers,” IEEE IEDM Tech. Digest, 88–91, 2001.Google Scholar
  300. 300.
    D. Edelstein, C. Uzoh, C. Cabral, Jr., P. DeHaven, P. Buchwalter, A. Simon, E. Cooney, S. Malhotra, D. Klaus, H. Rathore, B. Agarwala, and D. Nguyen, “A high performance liner for copper damascene interconnects,” IEEE IITC Tech. Digest, 9–11, 2001.Google Scholar
  301. 301.
    J. C. Lin, R. Augur, S. L. Shue, C. H. Yu, M. S. Liang, A. Vijayendran, T. S. d Filipe, and M. Danek, “CVD barriers for Cu with nanoporous ultra-low-k: Integration and reliability,” IEEE IITC Tech. Digest, 21–23, 2002.Google Scholar
  302. 302.
    P. Moon, V. Dubin, S. Johnston, J. Leu, K. Raol, and C. Wu, “Process roadmap and challenges for metal barriers,” IEEE IEDM Tech. Digest, 841–844, 2003.Google Scholar
  303. 303.
    H. Chung, M. Chang, S. Chu, N. Kumar, K. Goto, N. Maity, S. Sankaranarayanan, H. Okamura, N. Ohtsuka, and S. Ogawa, “An ultra-thin ALD TaN barrier for high-performance Cu interconnects,” IEEE Int. Symp. Semicond. Manuf., 454–456, 2003.Google Scholar
  304. 304.
    J. W. Hong, K. I. Choi, Y. K. Lee, S. G. Park, S. W. Lee, J. M. Lee, S. B. Kang, G. H. Choi, S. T. Kim, U.-I. Chung, and J. Moon, “Characteristics of PAALD-TaN thin fims derived from TAIMATA precursor for copper metallization,” IEEE IITC Tech. Digest, 9–11, 2004.Google Scholar
  305. 305.
    C.-C. Yang, D. Edelstein. L. Clevenger, A. Cowley, J. Gill, K. Chanda, A. Simon, T. Dalton, B. Agarwala, E. Cooney III, D. Nguyen, T. Spooner, and A. Stamper, “Extendibility of PVD barrier/seed for BEOL Cu metallization,” IEEE IITC Tech. Digest, 135–137, 2005.Google Scholar
  306. 306.
    T. Usui, H. Nasu, S. Takahashi, N. Shimizu, T. Nishikawa, M. Yoshimaru, H. Shibata, M. Wada, and J. Koike “Highly reliable copper dual-damascene interconnects with self-formed MnSixOy barrier layer,” IEEE Trans. Electron Dev., 53 (10), 2492–2498, 2006.Google Scholar
  307. 307.
    Y. Ohoka, Y. Ohba, A. Isobayashi, T. Hayashi, N. Komai, S. Arakawa, R. Kanamura, and S. Kadomura, “Integration of High Performance and Low Cost Cu/Ultra Low-k SiOC(k = 2.0) “Interconnects with self-formed barrier technology for 32nm-node and beyond,” IEEE IITC Tech. Digest, 67–69, 2007.Google Scholar
  308. 308.
    H. Kudo, M. Haneda, H. Ochimizu, A. Tsukune, S. Okano, N. Ohtsuka, M. Sunayama, H. Sakai, T. Suzuki, H. Kitada, S. Amari, T. Tabira, H. Matsuyama, N. Shimizu, T. Futatsugi, and T. Sugii, “Copper wiring encapsulation with ultra-thin barriers to enhance wiring and dielectric reliabilities for 32-nm nodes and beyond,” IEEE IEDM Tech. Digest, 513–516, 2007.Google Scholar
  309. 309.
    J.-J. Tan, Q. Xie, M. Zhou, T. Chen, Y.-L. Jiang, and X.-P. Qu, “Investigation of Ru/TaN on low dielectric constant material with k = 2.7,” Int. Conf. Solid-State and Integrated Circuit tech., 339–341, 2006.Google Scholar
  310. 310.
    S. Smith, G. Book, W. M. Li, Y. M. Sun, P. Gillespie, M. Tuominen, and K. Pfeifer, “The application of ALD WNxCy as a copper diffusion barrier,” IEEE IITC Tech. Digest, 135–137, 2003.Google Scholar
  311. 311.
    S.-M. Choi, K.-C. Park, B.-S. Suh, I.-R. Kim, K.-K. Kang, K.-P. Suh, H.-S. Park, H.-S. Ha, and D.-K. Joo, “Process integration of CVD Cu seed using ALD Ru glue layer for sub-65nm Cu interconnect,” IEEE Symp. VLSI Tech., 64–65, 2004.Google Scholar
  312. 312.
    S. Lin, C. Jin, L. Lui, M. Tsai, M. Daniels, A. Gonzalez, J. T. Wetzel, K. A. Monnig, P. A. Winebarger, S. Jang, D. Yu, and M. S. Liang, “Low-k dielectrics characterization for damascene integration,” IEEE IITC Tech. Digest, 146–148, 2001.Google Scholar
  313. 313.
    S. Kondo, B. U. Moon, S. Tokitoh, K. Misawa, S. Sone, H. J. Shin, N. Ohashi, and N. Kobayashi, “Low-pressure CMP for 300-mm ultra low-k (k = 1.6-1.8)/Cu integration,” IEEE IEDM Tech Digest, 151–154, 2003.Google Scholar
  314. 314.
    N. Chandrasekaran, S. Ramarajan, W. Lee, G. M. Sabde, and S. Meikle, “Effects of CMP process conditions on defect generation in low-k materials. An atomic force microscopy study,” J. Electrochem. Soc., 151 (12), G882–G889, 2004.Google Scholar
  315. 315.
    R. Chang and C. J. Spanos, “Dishing-radius model of copper CMP dishing effects,” IEEE Trans. Semicond. Manuf., 18 (2), 297–303, 2005.Google Scholar
  316. 316.
    L. Economikos, X. Wang, A. Sakamoto, P. Ong, M. Naujok, R. Knarr, L. Chen, Y. Moon, S. Neo, J. Salfelder, A. Duboust, A. Manems, W. Lu, S. Shrauti, F. Liu, S. Tsai, and W. Swaert, “Integrated electro-chemical mechanical planarization (Ecmp) for future generation device technology,” IEEE IITC Tech. Digest, 233–235, 2004.Google Scholar
  317. 317.
    F. Q. Liu, T. Du, A. Duboust, S. Tsai, and W.-Y. Hsu, “Cu planarization in electrochemical mechanical planarization,” J. Electrochem. Soc., 153 (6), C377–C381, 2006.Google Scholar
  318. 318.
    M. Mellier, T. Berger, R. Duru, M. Zaleski, M. C. Luche, M. Rivoire, C. Goldberg, G. Wyborn, K.-L. Chang, Y. Wang, V. Ripoche, S. Tsai, M. Thothadri, W.-Y. Hsu, L. Chen, “Full copper electrochemical mechanical planarization (Ecmp) as a technology enabler for the 45 and 32nm nodes,” IEEE IITC Tech. Digest, 70–72, 2007.Google Scholar
  319. 319.
    P. Besser, A. Marathe, L. Zhao, M. Herrick, C. Caspasso, and H. Kawasaki, “Optimizing the electromigration performance if copper interconnects,” IEEE IEDM Tech. Digest, 119–122, 2000.Google Scholar
  320. 320.
    C.-K. Hu, L. Gignac, R. Rosenberg, E. Liniger, J. Rubino, C. Sambucetti, A. Domenicucci, X. Chen, and A. K. Stamper, “Reduced electromigration of Cu wires by surface coating,” Appl. Phys. Lett., 81 (10), 1782–1784, 2000.Google Scholar
  321. 321.
    T. Ko, C. L. Chang, S. W. Chou, M. W. Lin, C. I. Lin, C. H. Shih, H. W. Su, M. H. Tsai, W. S. Shue, and M. S. Lian, “High performance/reliability Cu interconnect with selective CoWP cap,” IEEE VLSI Tech. Digest, 109–110, 2003.Google Scholar
  322. 322.
    T. Ishagami, T. Kurokawa, Y. Kakuhara, B. Withers, J. Jacobs, A. Kolics, I. Ivanov, M. Sekine, and K. Ueno, “High reliability Cu interconnection utilizing a low contamination CoWP capping layer,” IEEE IITC Tech. Digest, 75–77, 2004.Google Scholar
  323. 323.
    J. Gambino, J. Wynne, S. Smith, Y. Kakuhara, B. Withers, J. Jacobs, A. Kolics, I. Ivanonv, M. Sekine, and K. Ueno, “Effect of CoWP cap thickness on via yield and reliability for Cu interconnects with CoWP-only cap process,” IEEE IITC Tech. Digest, 111–113, 2005.Google Scholar
  324. 324.
    T. Itabashi, H. Nakano, and H. Akahoshi, “Electroless deposited CoWB for copper diffusion barrier metal,” IEEE IITC Tech. Digest, 285–287, 2002.Google Scholar
  325. 325.
    O. Hinsinger, R. Fox, E. Sabouret, C. Goldberg, C. Verovel, W. Besling, P. Brun, E. Jossel, C. Monget, O. Belmont, J. Van Hasse, B. G. Sharma, J. P. Jacquemin, P. Vannier, A. Humbert, D. Bune, R. Gonella, E. Mastromatteo, D. Reber, A. Farcy, J. Mueller, P. Christie, V. H. Nguyen, C. Cregut, and T. Berger, “Demonstration of an extendable and industrial 300” BEOL integration for the 65-nm technology node,” IEEE IEDM Tech. Digest, 317– 320, 2004.Google Scholar
  326. 326.
    S. M. Rossnagel, R. Wisnieff, D. Edelstein, and T. S. Kuan, “Interconnect issues post 45nm,” IEEE IEDM Tech. Digest, 95–98, 2005.Google Scholar
  327. 327.
    I. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys., 1, 1–42, 1952.Google Scholar
  328. 328.
    A. F. Mayadas and M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces,” Phys. Rev. B 1, 1382–1389, 1970.Google Scholar
  329. 329.
    C. Reale, “Thickness dependence of the electrical conductivity in vacuum deposited copper films,” Proceedings of the IEEE, 57 (11), 2073–2075, 1969.Google Scholar
  330. 330.
    S. M. Rossnagel and T. S. Kuan, “Alteration of Cu conductivity in the size effect regime,” J. Vac. Sci. Tech. B 22 (1), 240–247, 2004.Google Scholar
  331. 331.
    W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, “Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller,” J. Appl. Phys., 97, 023706 1–3, 2005.Google Scholar
  332. 332.
    W. Steinhoegl, G. Schindler, G. Steinlesberger, M. Traving, and M. Engelhardt, “Scaling laws for the resistivity increase of sub-100 nm interconnects,” International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 27–30, 2003.Google Scholar
  333. 333.
    M. T. Bohr, “Interconnect scaling - the real limiter to high performance ULSI,” IEEE IEDM Tech. Digest, 241–244, 1995.Google Scholar
  334. 334.
    S. C. Sun, “Process technology for advanced metallization and interconnect systems,” IEEE IEDM Tech. Digest, 765–768, 1997.Google Scholar
  335. 335.
    M. Igarashi, A. Harada, H. Amishiro, H. Kawashima, N. Morimoto, Y. Kusumi, T. Saito, A. Ohsaki, T. Mori, T. Fukuda, Y. Toyoda, K. Higashitani, and H. Arima, “The best combination of aluminum and copper interconnects for high performance 0.18mm CMOS logic device,” IEEE IEDM Tech. Digest, 829–892, 1998.Google Scholar
  336. 336.
    K. Tokashiki, T. Maruyama, and A. Nishizawa, “Influence of process chamber ambient on SiOC (k = 2:9) ILD Cu damascene ashing,” IEEE Trans. Semicond. Manuf., 17 (3), 305–310, 2004.Google Scholar
  337. 337.
    A. Grill, V. Patel, K. P. Rodbell, E. Huang, S. Christiansen, M. R. Baklanov, J. L. Veteran, D. L. O'Meara, V. Misra, and P. S. Ho, “Characteristics of low-k and ultralow-k PECVD deposited SiCOH films,” Mater. Res. Soc. Proc., 716, 569–574, 2002.Google Scholar
  338. 338.
    T. Nakamura and A. Nakashima, “Robust multilevel interconnects with a nano-clustering porous low-k (k-33),” IEEE IITC Tech. Digest, 175–177, 2004.Google Scholar
  339. 339.
    I. Sugiura, Y. Nakata, N. Misawa, S. Otsuka, N. Nishikawa, Y. Iba, E. Sugirnoto, Y. Setta, H. Sakai, Y. Mizushima, Y. Kotaka, C. Uchibori, T. Suzuki, H. Kitada, Y. Koura, K. Nakano, T. Karasawa, Y. Ohkura, H. Watatani, M. Sato, S. Nakai, M. Nakaishi, N. Shimizu, S. Fukuyama, M. Miyajima, T. Nakamura, E. Yano, and K. Watanabe, “45nm-Node BEOL integration featuring porous-ultra-low-K/Cu multilevel interconnects,” IEEE IITC Tech. Digest, 15–17, 2005.Google Scholar
  340. 340.
    M. Aimadeddine, V. Jousseaume, V. Arnal, L. Favennec, A. Farcy, A. Zenasni, M. Assous, M. Vilmay, S. Jullian, P. Maury, V. Delaye, N. Jourdan, T. Vanypre, P. Brun, G. Imbert, Y. LeFriec, M. Mellier, H. Chaabouni, L. L. Chapelon, K. Hamioud, F. Volpi, D. Louis, G. Passemard, and J. Torres, “Robust integration of an ULK SiOCH dielectric (k = 2.3) for high performance 32 nm node BEOL,” IEEE IITC Tech. Digest, 175–177, 2007.Google Scholar
  341. 341.
    N. Inoue, M. Tagami, F. Itoh, H. Yamamoto, T. Takeuchi, S. Saito, N. Furutake, M. Ueki, M. Tada, T. Suzuki, and Y. Hayashi, “45nm-node interconnects with porous SiOCH-stacks, tolerant of low-cost packaging applications,” IEEE IITC Tech. Digest, 181–183, 2007.Google Scholar
  342. 342.
    D. Ryuzaki, H. Sakurai,' K. Abe, K. Takeda, and H. Fuhda, “Enhanced dielectric-constant reliability of low-k porous organosilicate glass (k = 2.3) for 45-nm-generation Cu interconnects,” IEEE IEDM Tech. Digest, 949–952, 2004.Google Scholar
  343. 343.
    Y. Hayashi, F. Itoh, Y. Harada, T. Takeuchi, M. Tada, M. Tagami, H. Ohtake, K. Hijioka, S. Saito, T. Onodera, D. Hara, and K. Tokudome, “Novel molecular-structure design for PECVD porous SiOCH films toward 45nm-node, ASICs with k = 2.3,” IEEE IITC Tech. Digest, 225–227, 2004.Google Scholar
  344. 344.
    S. Arakawa, I. Mizuno, Y. Ohoka, K Nagahata, K. Tabuchi, R. Kanamura and S. Kadomura, “Breakthrough integration of 32 nm-node Cu/ultra-low-k SiOC (k = 2.0) interconnects by using advanced pore-sealing and low-k hard mask technologies,” IEEE IITC Tech. Digest, 21–212, 2006.Google Scholar
  345. 345.
    T. Ueda, E. Tamaoka, K. Yamashita, N. Aoi, and S. Mayumi, “A novel air gap integration scheme for multi-level interconnects using self-aligned via plugs,” IEEE VLSI Tech. Digest, 46–47, 1998.Google Scholar
  346. 346.
    V. Amal, J. Torres, P. Gayet, R. Gonella, P. Spinelli, M. Guillermet, J.-P. Reynard, C. Vérove, “Integration of a 3 Level Cu - SiO2 Air Gap Interconnect for Sub 0.1 micron CMOS Technologies,” IEEE IITC Tech. Digest, 298–300, 2001.Google Scholar
  347. 347.
    S. E. Schulz and K. Schulze, “Achieving ultra low k dielectric constant for nanoelectronics interconnect systems,” Solid-State Integr. Circuit Tech., 298–301, 2006.Google Scholar
  348. 348.
    L. G. Gosset, F. Gaillard, D. Bouchu, R. Gras, J. de Pontcharra, S. Orain1, O. Cueto, Ph. Lyan, O. Louveau, G. Passemard, and J. Torres, “Multi-level Cu interconnects integration and characterization with air gap as ultra-low K material formed using a hybrid sacrificial oxide/polymer stack,” IEEE IITC Tech. Digest, 58–60, 2997.Google Scholar
  349. 349.
    T. Harada, A. Ueki, K. Tomita, K. Hashimoto, J. Shibata, H. Okamura, K. Yoshikawa, T. Iseki, M. Higashi, S. Maejima, K. Nomura, K. Goto, T. Shono, S. Muranaka, N. Torazawa, S. Hirao, M. Matsumoto, T. Sasaki, S. Matsumoto, S. Ogawa, M. Fujisawa, A. Ishii, M. Matsuura, T. Ueda, “Extremely low Keff (͌1.9) Cu interconnects with air gap formed using SiOC,” IEEE IITC Tech. Digest, 141–143, 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations