Analog Devices and Passive Components

Analog devices allow the design of circuits whose inputs and outputs are continuously varying quantities, such as resistance, capacitance, current, and voltage. The measured analog signal has an infinite number of possible values. The information is conveyed by the instantaneous value of the signal. Initially, analog circuits were designed primarily with bipolar transistors (Chap. 3). Analog MOSFETs, however, have become increasingly important because of their higher packing density, lower cost, high input impedance, and performance that has gradually approached that of bipolar transistors

While several component parameters can be simultaneously optimized for digital and analog applications, there are specific analog requirements that are different from digital. In particular, the trend in high-performance, high-density digital MOSFETs is to reduce the size to deep submicron and nanoscale dimensions and operate at supply voltages as low as about 0.8 V, while analog devices typically require higher voltages and hence larger dimensions, particularly to ensure a sufficiently large signal-to-noise ratio. Other parameters, such as high transistor cut-off frequency, high maximum oscillation frequency, and high Early voltage, low bipolar base resistance, low component mismatch, and low noise, are of particular importance to analog applications. The relative importance of these parameters depends on application. When mixed analog and digital components are designed on the same die, such as in system on a chip (SoC), there is a trade-off between simultaneously optimizing the two sets of components and manufacturing cost


Sheet Resistance Drain Current Passive Component Analog Device Dielectric Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Lilienfeld, “Method and Apparatus for Controlling Electric Current,” US patent #1,745,175, issued January 28, 1930. Filed: Canadian application October 1925, US application October 1926.Google Scholar
  2. 2.
    J. E. Lilienfeld, “Device for Controlling Electric Currents,” US patent 1,900,018, issued March 7, 1933, filed March 1928.Google Scholar
  3. 3.
    O. Heil, “Improvements in or Relating to Electrical Amplifiers and other Control Arrangements,” U.K. patent 439, 457, issued December 1935, filed March 1935.Google Scholar
  4. 4.
    W. Shockley, “A unipolar ‘field-effect’ transistor,” Proc. IEEE, 40 (11), 1365–1376, 1952.Google Scholar
  5. 5.
    J. C. Guo, “Halo and LDD engineering for multiple VTH high performance analog CMOS devices,” IEEE Trans. Semcon. Manuf., 20 (3), 313–322, 2007.CrossRefGoogle Scholar
  6. 6.
    E. A. Vittoz, “Future of analog in the VLSI environment,” Proc. ISCASM, 1372–1375, 1990.Google Scholar
  7. 7.
    K. Bult, “Analog broadband communication circuits in pure digital deep sub-micron CMOS,” IEEE ISSCC Tech. Dig., 76–78, 1999.Google Scholar
  8. 8.
    J. J. P. Bruines, “Process outlook for analog and RF applications,” Microelectron. Eng., 54, 35–48, 2000.CrossRefGoogle Scholar
  9. 9.
    N. H. E. West and K. Eshraghian, Principles of CMOS VLSI Design, Addison-Wesley Publishing Company, 1993.Google Scholar
  10. 10.
    T. N. Buti, S. Ogura, N. Rovedo, and K. Tobimatsu, “A new asymmetrical halo source GOLD drain (HS-GOLD) deep sub-half-micrometer n-MOSFET design for reliability and performance,” IEEE Trans. Electron Dev., 38 (8), 1757–1764, 1991.CrossRefGoogle Scholar
  11. 11.
    H. Shin and L. Lee, “A 0.1-μm asymmetric halo by large-angle-tilt implant (AHLATI) MOS-FET for high performance and reliability,” IEEE Trans. Electron Dev., 46 (4), 820–822, 1999.MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Cheng, V. R. Rao, and J. C. S. Woo, “Exploration of velocity overshoot in a high-performance deep sub-0.1-μm SOI MOSFET with asymmetric channel profile,” IEEE Electron Dev. Lett., 20 (10), 538–540, 1999.CrossRefGoogle Scholar
  13. 13.
    D. G. Borse, K. N. M. Rani, N. K. Jha, A. N. Chandorkar, J. Vasi, V. R. Rao, B. Cheng, and J. C. S. Woo, “Optimization and realization of sub-100-nm channel length single halo p-MOSFETs,” IEEE Trans. Electron Dev., 49 (6), 1077–1079, 2002.CrossRefGoogle Scholar
  14. 14.
    H. V. Deshpande, B. Cheng, and J. C. S. Woo, “Channel engineering for analog device design in deep submicron CMOS technology for system on chip applications,” IEEE Trans. Electron Dev., 49 (9), 1558–1565, 2002.CrossRefGoogle Scholar
  15. 15.
    K. Narasimhulu, D. K. Sharma, and V. R. Rao, “Impact of lateral asymmetric channel doping on deep submicrometer mixed-signal device and circuit performance,” IEEE Trans. Electron Dev., 50 (12), 2481–2488, 2003.CrossRefGoogle Scholar
  16. 16.
    K. Narasimhulu, M. P. Desai, S. G. Narendra, and V. R. Rao, “The effect of LAC doping on deep submicrometer transistor capacitances and its influence on device RF performance,” IEEE Trans. Electron Dev., 51 (9), 1416–1422, 2004.CrossRefGoogle Scholar
  17. 17.
    J. H. Song, Y. J. Park, and H. S. Min, “Drain current enhancement due to velocity overshoot effects and its analytical modeling,” IEEE Trans. Electron Dev., 43 (11), 1870–1974, 1996.CrossRefGoogle Scholar
  18. 18.
    M. Lundstrom, “Elementary scattering theory of the Si MOSFET,” IEEE Electron Dev. Lett., 18 (7), 361–363, 1997.CrossRefGoogle Scholar
  19. 19.
    H. S. Shin, C. Lee, S. W. Wang, B. G. Park, and H. S. Min, “Channel length independent subthreshold characteristics in submicron MOSFETs,” IEEE Electron Dev. Lett., 19 (4), 137–139, 1998.CrossRefGoogle Scholar
  20. 20.
    E. Vittoz and J. Fellrath, “CMOS analog integrated circuits based on weak inversion operation,” IEEE J. Solid-State Circuits, SC-12 (3), 224–231, 1977.CrossRefGoogle Scholar
  21. 21.
    B. C. Paul, A. Raychowdhury, and K. Roy, “Device operation for digital subthreshold logic operation,” IEEE Trans. Electron Dev., 52 (2), 237–247, 2005.CrossRefGoogle Scholar
  22. 22.
    S. Chakraborty, A. Mallik, C. K. Sarkar, and V. R. Rao, “Impact of halo doping on the subthreshold performance of deep-submicron CMOS devices and circuits for ultra-low power analog/mixed-signal applications,” IEEE Trans. Electron Dev., 54 (2), 241–247, 2007.CrossRefGoogle Scholar
  23. 23.
    R. W. Berry, P. M. Hall, and M. T. Harris, Thin Film Technology, Van Nostrand, 1968.Google Scholar
  24. 24.
    W.-C. Liu, K.-B. Thei, H.-M. Chuang, K.-W. Lin, C.-C. Cheng, Y.-S. Ho, C.-W. Su, S.-C. Wong, C.-H. Lin, and C. H. Diaz, “Characterization of polysilicon resistors in sub-0.25μm CMOS ULSA applications,” IEEE Electron Dev. Lett., 22 (7), 318–320, 2001.CrossRefGoogle Scholar
  25. 25.
    J. Y. Seto, “The electrical properties of polycrystalline silicon films,” J. Appl. Phys., 46 (12), 5247–5254, 1975.CrossRefGoogle Scholar
  26. 26.
    N. C.-C. Lu, L. Gerzberg, C.-Y. Lu, and J. D. Meindl, “Modeling and optimization of monolithic polycrystalline silicon resistors,” IEEE Trans. Electron Dev., ED-28 (7), 818– 830, 1981.CrossRefGoogle Scholar
  27. 27.
    M. M. Mandurah, K. C. Saraswat, and T. I. Kamins, “Phosphorus doping of low pressure chemically vapor-deposited silicon films,” J. Electrochem. Soc., 126 (8), 1019–1023, 1979.CrossRefGoogle Scholar
  28. 28.
    N. C. C. Lu, L. Gerzberg, and J. D. Meindl, “A quantitative model of the effect of grain size on the resistivity of polycrystalline silicon resistors,” Electron Dev. Lett., EDL-1 (3), 38–41, 1980.CrossRefGoogle Scholar
  29. 29.
    T. I. Kamins, “Hall mobility in chemically deposited polycrystalline silicon,” J. Appl. Phys., 42 (11), 4357–4365, 1971.CrossRefGoogle Scholar
  30. 30.
    M. E. Cowher and T. O. Sedgwick, “Chemical vapor deposited polycrystalline silicon,” J. Electrochem. Soc., 119 (11), 1565–1570, 1972.CrossRefGoogle Scholar
  31. 31.
    A. L. Fripp, “Dependence of resistivity on the doping level of polycrystalline silicon,” J. Appl. Phys., 46 (3), 1240–1244, 1975.CrossRefGoogle Scholar
  32. 32.
    P. Rai-Choudhury and P. L. Hower, “Growth and characterization of polycrystalline silicon,” J. Electrochem. Soc., 120 (12), 1761–1766, 1971.CrossRefGoogle Scholar
  33. 33.
    G. Baccarani and B. Riccò, “Transport properties of polycrystalline silicon films,” J. Appl. Phys., 49 (11), 5565–5570, 1978.CrossRefGoogle Scholar
  34. 34.
    M. Nakabayshi, M. Ikegami, and T. Daikoku, “Influence of hydrogen on electrical characteristics of poly-Si resistor,” Jpn. J. Appl. Phys., 32, Part 1 (9A), 3734–3738, 1993.CrossRefGoogle Scholar
  35. 35.
    F. Hegner, “The industrial production of high quality nickel-chromium resistors with controlled temperature coefficient of resistance,” Thin Solid Films, 57 (2), 359–362, 1979.CrossRefGoogle Scholar
  36. 36.
    G. Nocerino and K. E. Singer, “The electrical and compositional structure of thin Ni-Cr films,” Thin Solid Films, 57 (2), 343–348, 1979.CrossRefGoogle Scholar
  37. 37.
    M. A. Bayne, “Al-doped Ni-Cr for temperature coefficient of resistance control in hybrid thin-film resistors,” J. Vac. Sci. Technol. A4 (6), 3142–3145, 1986.Google Scholar
  38. 38.
    F. Wu, A. W. McLaurin, K. E. Henson, D. G. Managhan, and S. L. Thomasson, “The effects of the process parameters on the electrical and microstructure characteristics of the CrSi thin resistor films: part I,” Thin Solid Films, 332, 418–422, 1998.CrossRefGoogle Scholar
  39. 39.
    D. Nachrodt, U. Pachen, A. Ten Have, and H. Vogt, “Ti/Ni(80%)Cr(20%) thin-film resistor with a near zero temperature coefficient of resistance for integration in a standard CMOS process,” IEEE Electron Dev. Lett., 29 (3), 212–214, 2008.CrossRefGoogle Scholar
  40. 40.
    P. Zurcher, P. Alluri, P. Chu, A. Duvallet, C. Happ, R. Henderson, J. Mendonca, M. Kim, M. Petras, M. Raymond, T. Remmel, D. Roberts, B. Steimle, J. Stipanuk, S, Straub, T. Sparks, M. Tarabbia, H. Thibieroz, and M. Miller, “Integration of thin film MIM capacitors and resistors into copper metallization based RF-CMOS and Bi-CMOS technologies,” IEEE IEDM Tech. Dig., 153–156, 2000.Google Scholar
  41. 41.
    P. Fehlhaber, “Laser trimming of SiCr thin-film resistors,” IEEE IEDM Tech. Dig., 9–10, 1969.Google Scholar
  42. 42.
    R. H. Wagner, “Functional laser trimming: An overview,” Laser Processing of Semiconductors and Hybrids, SPIE Proceedings, 611, 8–17, 1986.Google Scholar
  43. 43.
    M. J. Mueller and W. Mickanin, “Functional laser trimming of thin film resistors on silicon IC,” Laser Processing of Semiconductors and Hybrids, SPIE Proceedings, 611, 70–83, 1986.Google Scholar
  44. 44.
    H.-M. Chuang, K.-B. Thei, S.-F. Tsai, and W.-X. Liu, “Temperature-dependent characteristics of polysilicon and diffused resistors,” IEEE Trans. Electron Dev., 50 (5), 1413– 1415, 2003.CrossRefGoogle Scholar
  45. 45.
    W. A. Lane and G. T. Wrixon, “The design of thin-film polysilicon resistors for analog IC applications,” IEEE Trans. Electron Dev., 36 (4), 738–744, 1989.CrossRefGoogle Scholar
  46. 46.
    D. W. Lee, T. M. Roh, H. S. Park, J. Kim, J. G. Koo, and D. Y. Kim, “Fabrication technology of polysilicon resistors using novel mixed process for analogue CMOS application,” IEEE Electron Lett., 35 (7), 803–804, 1999.Google Scholar
  47. 47.
    M. S. Raman, T. Kifle, E. Bhattacharya, and K. N. Bhat, “Physical model for the resistivity and temperature coefficient of resistivity in heavily doped polysilicon,” IEEE Trans. Electron Dev., 53 (8), 1885–1892, 2006.CrossRefGoogle Scholar
  48. 48.
    P. Steinmann, S. M. Stuart, R. Higgins, “Controlling the TCR of thin film resistors,” Euro. Dev. Res. Conf., 451–453, 2000.Google Scholar
  49. 49.
    C. A. Neugebauer and M. B. Webb, “Electrical conduction mechanism in ultrathin, evaporated metal films,” J. Appl. Phys., 33, 74–82, 1962.CrossRefGoogle Scholar
  50. 50.
    J. R. Sambles and T. W. Preist, “The effects of surface scattering upon resistivity,” J. Phys. F: Met. Phys., 12, 1971–1987, 1982.CrossRefGoogle Scholar
  51. 51.
    Y. Amemiya, T. Ono, and K. Kato, “Electrical trimming of heavily doped polycrystalline silicon resistors,” IEEE Trans. Electron Dev., ED-26 (11), 1738–1742, 1979.CrossRefGoogle Scholar
  52. 52.
    K. Kato, T. Ono, and Y. Amemiya, “A physical mechanism of current-induced resistance decrease in heavily doped polysilicon resistors,” IEEE Trans. Electron Dev., ED-29 (8), 1156–1161, 1982.CrossRefGoogle Scholar
  53. 53.
    S. Das and S. K. Lahiri, “Electrical trimming of ion-beam-sputtered polysilicon resistors by high current pulses,” IEEE Trans. Electron Dev., 41 (8), 1429–1434, 1994.CrossRefGoogle Scholar
  54. 54.
    C. T. Black, K. W. Guarini, Y. Zhang, H. Kim, J. Benedict, E. Sikorski, I. V. Babich, and K. R. Milkove, “High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitor,” IEEE Electron Dev. Lett., 25 (9), 622–624, 2004.CrossRefGoogle Scholar
  55. 55.
    T.-I. Liou and C.-S. Teng, “n+-poly-to-n+-silicon capacitor structure for single poly analog CMOS and BiCMOS process,” IEEE Trans. Electron Dev., 36 (9), 1620–1628, 1989.CrossRefGoogle Scholar
  56. 56.
    S. A. St Onge, S. G. Franz, A. F. Puttlitz, A. Kalinoski, B. E. Johnson, and B. El-Kareh, “Design of precision capacitors for analog applications,” IEEE Trans. Comput. Hybrids Manuf. Tech., 15 (6), 1064–1070, 1992.CrossRefGoogle Scholar
  57. 57.
    J. L. McCreary, “Matching properties, and voltage and temperature dependence of MOS capacitors,” IEEE J. Solid-State Circuits, SC-14 (6), 608–616, 1987.Google Scholar
  58. 58.
    C. Kaya, H. Tigelaar, J. Peterson, M. De Wit, J. Fattaruso, D. Hester, S. Kiriaki, K.-S. Tan, and F. Tsay, “Polycide/metal capacitors for high precision A/D converters,” IEEE IEDM Tech. Dig., 782–785, 1988.Google Scholar
  59. 59.
    J. A. Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, “Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics,” IEEE Trans. Electron Dev., 22 (5), 230–232, 2001.CrossRefGoogle Scholar
  60. 60.
    K. Stein, G. Hueckel, E. Eld, T. Bartush. R. Groves, N. Greco, and D. Harame, “High reliability metal insulator metal capacitors for silicon germanium analog applications,” IEEE BCTM Tech. Dig., 191–194, 1997.Google Scholar
  61. 61.
    T. Yoshitomi, Y. Ebuchi, H. Kimijima, T. Ohguro, E. Morifuji, H. S. Momose, K. Kasai, K. Ishimaru, F. Matsuoka, Y. Katsumata, M. Kinugawa, and H. Iwai, “High performance MIM capacitor for RF BiCMOS/CMOS LSI,” IEEE BCTM Tech. Dig., 133–136, 1999.Google Scholar
  62. 62.
    T. Ishikawa, D. Kodama, Y. Matsui, M. Hiratani, T. Furusawa, and D. Hisamoto, “High-capacitance Cu/Ta 2O5/Cu MIM structure for SoC applications featuring a single-mask addon process,” IEEE IEDM Tech. Dig., 940–942, 2002.Google Scholar
  63. 63.
    C. Zhu, H. Hu, X. Yu, S. J. Kim, A. Chin, M. F. Li, B. J. Cho, and D.-L. Kwong, “Voltage and temperature dependence of capacitance of high-K HfO2 MIM capacitors: A unified understanding and prediction,” IEEE IEDM Tech. Digest, 879–882, 2003.Google Scholar
  64. 64.
    H. Hu, S.-J. Ding, H. F. Lim, C. Zhu, M. F. Li, S. J. Kim, X. F. Yu, J. H. Chen, Y. F. Yong, B. J. Cho, D. S. H. Chan, S. C. Rustagi, M. B. Yu, C. H. Tung, A. Du, D. My, P. D. Foo, A. Chin, and D.-L. Kwong, “High performance ALD HfO2-Al2O3 laminate MIM capacitor for RF and mixed signal IC applications,” IEEE IEDM Tech. Dig., 379–382, 2003.Google Scholar
  65. 65.
    S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y.-Z. Xiong, C. Zhu, A. Chin, and D.-M. Kwong, “Metal-insulator-metal RF bypass capacitor using niobium oxide (Nb2O5) with HfO2/Al2O3 barriers,” IEEE Electron Dev. Lett., 26 (9), 625–627, 2005.CrossRefGoogle Scholar
  66. 66.
    K. C. Chiang, C.-C. Huang, G. L. Chen, W. J. Chen, H. L. Kao, Y.-H. Wu, A. Chin, and S. P. McAlister, “High performance SrTiO3 MIM capacitors for analog applications,” IEEE Trans. Electron Dev., 53 (9), 2312–2319, 2006.CrossRefGoogle Scholar
  67. 67.
    K. Hyyppä, “Dielectric absorption in memory capacitors,” IEEE Trans. Instrum. Meas., 21 (1), 53–56, 1972.CrossRefGoogle Scholar
  68. 68.
    J. C. Kuenen and G. C. M. Meijer, “Measurement of dielectric absorption of capacitors and analysis of its effects on VCO,” IEEE Trans. Instrum. Meas., 45 (1), 89–97, 1996.CrossRefGoogle Scholar
  69. 69.
    C. Iorga, “Compartmental analysis of dielectric absorption in capacitors,” IEEE Trans. Dielectrics, 7 (2), 187–192, 2000.CrossRefGoogle Scholar
  70. 70.
    P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, 35 (6), 905–910, 2000.CrossRefGoogle Scholar
  71. 71.
    J. Maget, R. Kraus, and M. Tiebout, “A physical model of a CMOS varactor with high capacitance tuning range and its application to simulate integrated VCOs,” Solid-State Electron, 46, 1609–1615, 2002.CrossRefGoogle Scholar
  72. 72.
    C.-S. Chang, C.-P. Chao, J. G. J. Chern, and J. Y.-C. Sun, “Advanced CMOS technology portfolio for RF IC applications,” IEEE Trans. Electron Dev., 52 (7), 1324–1334, 2005.CrossRefGoogle Scholar
  73. 73.
    B. El-Kareh, S. Balster, W. Leitz, P. Steinmann, H. Yasuda, M. Corsi, K. Dawoodi, C. Dirnecker, P. Foglietti, A. Haeusler, P. Menz, M. Ramin, T. Scharnagl, M. Schiekofer, M. Schober, U. Schulz, L. Swanson, D. Tatman, M. Waitschull, J. W. Weijtmans, and C. Willis, “A 5V complementary-SiGe BiCMOS technology for high-speed precision analog circuits,” IEEE BCTM, 211–214, 2003.Google Scholar
  74. 74.
    Y. Morandini, J.-F. Larchanchel, and C. Gaquiere, “Evaluation of SiGeC HBT varactor using different collector access and base-collector junction configuration in BiCMOS technologies,” IEEE BCTM Tech. Dig., 246–249, 2007.Google Scholar
  75. 75.
    R. A. Moline and G. F. Foxhall, “Ion-implanted hyperabrupt junction voltage variable capacitors,” IEEE Trans. Electron Dev., ED-19 (2), 267–273, 1972.CrossRefGoogle Scholar
  76. 76.
    S. M. Sze, Properties of Semiconductor Devices, John Wiley & Sons, 1981.Google Scholar
  77. 77.
    P. J. Kannam, S. Ponczak, and J. Olmstead, “Design considerations of hyperabrupt varactor diodes,” IEEE Trans. Electron Dev., ED-18 (3), 109–115, 1971.CrossRefGoogle Scholar
  78. 78.
    M. H. Norwood and E. Shatz, “Voltage variable capacitor tuning: A review,” Proc. IEEE, 56 (5), 788–798, 1968.CrossRefGoogle Scholar
  79. 79.
    T. Soorapanth, C. P. Yue, D. K. Shaeffer, T. H. Lee, and S. S. Wong, “Analysis and optimization of accumulation-mode varactor for RF ICs,” IEEE Symp. VLSI Circuits Tech. Dig., 32–33, 1998.Google Scholar
  80. 80.
    F. Svelto, P. Erratico, S. Manzini, and R. Castello, “A metal-oxide-semiconductor varactor,” IEEE Electron Dev. Lett., 20 (4), 164–166, 1999.CrossRefGoogle Scholar
  81. 81.
    F. Svelto, S. Manzini, and R. Castello, “A three terminal varactor for RF IC's in standard CMOS technology,” IEEE Trans. Electron Dev., 47 (4), 893–895, 2000.CrossRefGoogle Scholar
  82. 82.
    W. M. Y. Wong, P. S. Hui, Z. Chen, K. Shen, J. Lau, P. C. H. Chan, and P.-K. Ko, A wide tuning range gated varactor,” IEEE J. Solid-State Circuits, 35 (5), 773–779, 2000.CrossRefGoogle Scholar
  83. 83.
    J.-H. Gau, R.-T. Wu, Steven Sang, C.-H. Kuo, T.-L. Chang, H.-H. Chen, A. Chen, and J. Ko, “Gate-assisted high-Q-factor junction varactor,” IEEE Electron Dev. Lett., 26 (9), 682– 683, 2005.CrossRefGoogle Scholar
  84. 84.
    Y.-J. Chan, C.-F. Huang, C.-C. Wu, C.-H. Chen, and C.-P. Chao, “Performance consideration of MOS and junction diodes for varactor application,” IEEE Trans. Electron Dev., 54 (9), 2570–2573, 2007.CrossRefGoogle Scholar
  85. 85.
    J.-B. Shyu, G. C. Temes, and F. Krummenacher, “Random error effects in matched MOS capacitors and current sources,” IEEE J. Solid-State Circuits, SC-17, 1070–1076, 1982, and SC-19 (6), 948–955, 1984.CrossRefGoogle Scholar
  86. 86.
    K. R. Lakshmikumar, R. A. Hadaway, and M. A. Copeland, “Characterization and modeling of mismatch in MOS transistor5s for precision analog design,” IEEE J. Solid-State Circuits, SC-21 (6), 1057–1066, 1986.CrossRefGoogle Scholar
  87. 87.
    M. J. M. Pelgrom, A. C. J., Duinmaijer, and A. P. G., Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, 24 (5), 1433–1440, 1989.CrossRefGoogle Scholar
  88. 88.
    P. R. Kinget, “Device mismatch and tradeoffs in the design of analog circuits,” IEEE J. Solid-State Circuits, 40 (6), 1212–1224, 2005.CrossRefGoogle Scholar
  89. 89.
    M. J. M. Pelgrom, H. P. Tuinhout, and M. Vertregt, “Transistor matching in analog CMOS applications,” IEEE IEDM Tech. Dig., 915–918, 1998.Google Scholar
  90. 90.
    S. Lovett, M. Welten, A. Mathewson, and B. Mason, “Optimizing MOS transistor matching,” IEEE J. Solid-State Circuits, 33 (1), 147–150, 1998.CrossRefGoogle Scholar
  91. 91.
    G. Baccarani, M. Severi, and G. Soncini, “A new method for the determination of the interfaced-state density in the presence of statistical fluctuation of the surface potential,” Appl. Phys. Lett., 23 (5), 265–267, 1973.CrossRefGoogle Scholar
  92. 92.
    R. Castagne and A. Vapaille, “Apparent interface state density introduced by the spatial fluctuations of surface potential in an M.O.S. structure,” Electron Lett., 6 (22), 691–693, 1970.CrossRefGoogle Scholar
  93. 93.
    R. W. Keyes, “Physical limits in digital electronics,” Proc. IEEE, 740–768, 1975.Google Scholar
  94. 94.
    B. Hoeneisen and C. A. Mead, “Fundamental limits in microelectronics – I. MOS technology,” Solids-State Electron., 819–829, 1972.Google Scholar
  95. 95.
    K. Takeuchi, T. Tatsumi, and A. Furukawa, “Channel engineering for the reduction of random-dopant-placement-induced threshold voltage fluctuation,” IEEE IEDM Tech. Dig., 841–844, 1997.Google Scholar
  96. 96.
    P. A. Stolk and D. B. M. Klaassen, “The effect of statistical dopant fluctuations on MOS device performance,” IEEE IEDM Tech. Dig., 627–630, 1996.Google Scholar
  97. 97.
    T. Mizuno, J.-I. Okamura, and A. Toriumi, “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs,” IEEE Trans. Electron Dev., 41 (11), 2216–2221, 1994.CrossRefGoogle Scholar
  98. 98.
    A. Asenov and S. Saini, “Polysilicon gate enhancement of the random dopant induced threshold voltage fluctuations in sub-100 nm MOSFETs with ultrathin gate oxide,” IEEE Trans. Electron Dev., 47 (4), 805–812, 2000.CrossRefGoogle Scholar
  99. 99.
    H. P. Tuinhout, A. H. Montree, and P. A. Stolk, “Effects of gate depletion and boron penetration on matching of deep submicron CMOS transistors,” IEEE IEDM Tech. Dig., 631–634, 1997.Google Scholar
  100. 100.
    R. Difrenza, J. C. Vildeuil, P. Llinares, and G. Ghibaudo, “Impact of grain number fluctuations in the MOS transistor gate on matching performance,” IEEE ICMTS, 244–249, 2003.Google Scholar
  101. 101.
    H. Ryssel, H. Iberl, M. Bleier, G. Prine, K. Haberger, and H. Kranz, “Arsenic-implanted polysilicon layers,” Appl. Phys., 24 (3), 197–200, 1981.CrossRefGoogle Scholar
  102. 102.
    B. Swaminathan, K. C. Saraswat, and R. W. Dutton, “Diffusion of arsenic in polycrystalline silicon,” Appl. Phys. Lett., 40 (9), 795–798, 1982.CrossRefGoogle Scholar
  103. 103.
    M. Arienzo, Y. Komem, and A. E. Michel, “Diffusion of arsenic in bilayer polycrystalline silicon films,” J. Appl. Phys., 55 (2), 365–369, 1984.CrossRefGoogle Scholar
  104. 104.
    H. Schaber, R. V. Criegern, and I. Weitzel, “Analysis of polycrystalline diffusion source by secondary ion mass spectroscopy,” J. Appl. Phys., 58 (11), 4036–4042, 1985.CrossRefGoogle Scholar
  105. 105.
    J. M. C. Stork, M. Arienzo, and C. Y. Wong, “Correlation between the diffusive and electrical barrier properties of the interface in polysilicon contacted n+-p junctions,” IEEE Trans. Electron Dev., 32, 1766–1770, 1985.CrossRefGoogle Scholar
  106. 106.
    J. L. Hoyt, E. F. Crabbé, R. F. W. Pease, J. F. Gibbons, and A. F. Marshall, “Lateral uniformity of n+/p junctions formed by arsenic diffusion from epitaxially aligned polycrystalline silicon on silicon”, J. Electrochem. Soc., 135 (7), 1773–1779, 1988.CrossRefGoogle Scholar
  107. 107.
    S. Nédèle, D. Mathiot, and M. Gaunneau, “Diffusion of boron on polycrystalline silicon,” ESSDERC Tech. Dig., 153–156, 1996.Google Scholar
  108. 108.
    A. Wang and K. C. Saraswat, “A strategy for modeling of variations due to grain size in polycrystalline thin-film transistors,” IEEE Trans. Electron Dev., 47 (5), 1035–1043, 2000.CrossRefGoogle Scholar
  109. 109.
    J. T. Horstmann, U. Hilleringmann, and K. F. Goser, “Matching analysis of deposition defined 50-nm MOSFETs,” IEEE Trans. Electron Dev., 45 (1), 299–306, 1998.CrossRefGoogle Scholar
  110. 110.
    S. Winkelmeier, M. Sarstedt, M. Ereken, M. Goethals, and K. Ronse, “Metrology method for the correlation of line edge roughness for different resists before and after etch,” Microelec-tron. Eng., 57–58, 665–672, 2001.Google Scholar
  111. 111.
    S. Xiong and J. Bokor, “A simulation study of gate line edge roughness effects on doping profiles of short-channel MOSFET devices,” IEEE Trans. Electron Dev., 51 (2), 228–232, 2004.CrossRefGoogle Scholar
  112. 112.
    L. H. A. Leunissen, M. Ercken, and G. P. Patsis, “Determining the impact of statistical fluctuations on resist line edge roughness,” Microelectron. Eng., 78–79, 2–10, 2005.CrossRefGoogle Scholar
  113. 113.
    C. H. Diaz, H.-J. Tao, Y.-C. Ku, A. Yen, and K. Young, “An experimentally validated analytical model for gate line-edge roughness (LER) effects on technology scaling,” IEEE Electron Dev. Lett., 22 (6), 287–289, 2001.CrossRefGoogle Scholar
  114. 114.
    T. Linton, M. Chandhok, B. J. Rice, and C. Schrom, “Determination of the line edge roughness specification for 34 nm devices,” IEEE IEDM Tech. Dig., 303–306, 2002.Google Scholar
  115. 115.
    J. A. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W, Sansen, and H. E. Maes, “Line edge roughness: Characterization, modeling and impact on device behavior,” IEEE IEDM Tech. Dig., 307–310, 2002.Google Scholar
  116. 116.
    G. Declerck, “A look into the future of nanoelectronics,” Symp. VLSI Tech. Dig., 6–10, 2005.Google Scholar
  117. 117.
    M. Steyart, J. Bastos, R. Roovers, P. Kinget, W. Samsen, B. Graindourze, A. Pergoot, and Er. Janssens, “Threshold voltage mismatch in short-channel MOS transistors,” Electron. Lett., 30 (18), 146–148, 1994.Google Scholar
  118. 118.
    S.-C. Chyi, K.-H. Pan, and D.-J. Ma, “A CMOS mismatch model and scaling effects,” IEEE Electron Dev. Lett., 18 (6), 261–263, 1997.CrossRefGoogle Scholar
  119. 119.
    P. H. Drennan and C. C. McAndrew, “A comprehensive MOSFET mismatch model,” IEEE IEDM Tech. Dig., 167–170, 1999.Google Scholar
  120. 120.
    P. G. Brennan and V. C. McAndrew, “Understanding MOSFET mismatch for analog design,” IEEE J. Solid-State Circuits, 38 (3), 450–456, 2003.CrossRefGoogle Scholar
  121. 121.
    T. Serrano-Gotarredona and B. Linares-Barranco, “A new five-parameter MOS transistor mismatch model,” IEEE Electron Dev. Lett., 21 (1), 37–39, 2000.CrossRefGoogle Scholar
  122. 122.
    H. Klimach, A. Arnaud, C. Galup-Montoro, and M. C. Schneider, “MOSFET mismatch modeling: A new approach,” IEEE Des. Test Comput., 23 (1), 20–29, 2006.CrossRefGoogle Scholar
  123. 123.
    A. R. Brown, G. Roy, and A. Asenov, “Poly-Si-gate-related variability in decananome-ter MOSFETs with conventional architecture,” IEEE Trans. Electron Dev., 54 (11), 3036– 3063, 2007.Google Scholar
  124. 124.
    H. Tuinhout, M. Pelgrom, R. Penning de Vries, and M. Vertregt, “Effects of metal coverage on MOSFET matching,” IEEE IEDM Tech. Dig., 735–738, 1997.Google Scholar
  125. 125.
    J. A. Croon, H. P. Tuinhout, R. Difrenza, J. Knol, A. J. Moonen, S. Decoutere, H. E. Maes, and W. Sansen, “A comparison of extraction techniques for threshold voltage mismatch,” Proc. IEEE 2002 Conf. Microelectronics Test Structures, 15, 225–240, 2002.Google Scholar
  126. 126.
    P. G. Drennan, C. C. McAndrew, J. Bates, and D. Schroder, “Rapid evaluation of the root causes of BJT mismatch,” Proc. International Conf. on Microelectronic Test Structures (ICMTS), 122–127, 2000.Google Scholar
  127. 127.
    P. G. Drennan, C. C. McAndrew, and J. Bates, “A comprehensive vertical BJT mismatch model,” IEEE BCTM Tech. Dig., 83–86, 1998.Google Scholar
  128. 128.
    H. P. Tuinhout, “Improving BiCMOS technologies using BJT parametric mismatch characterization,” IEEE BCTM Tech. Dig., 163–170, 2003.Google Scholar
  129. 129.
    C. C. McAndrew, J. Bates, T. T. Ida, and P. Drennan, “Efficient statistical BJT modeling, why β is more than IC/IB,” IEEE BCTM Tech. Dig., 28–31, 1997.Google Scholar
  130. 130.
    S. Bordez, S. Danaie, R. Difrenza, J.-C. Vildeuil, and G. Morin, “Study of bipolar matching at high current level with various test configurations leading to a new model approach,” IEEE BCTM Tech. Dig., 62–65, 2005.Google Scholar
  131. 131.
    P. G. Drennan,“Diffused resistor mismatch modeling and characterization,” IEEE BCTM Tech. Dig., 27–30, 1999.Google Scholar
  132. 132.
    R. Thewes, R. Brederlow, C. Dahl, U. Kollmer, C. G. Linnenbank, B. Holzapfl, J. Becker, J. Kissing, S. Kessel, and W. Weber, “Explanation and quantitative model for the matching behavior of poly-silicon resistors,” IEEE IEDM Tech. Dig., 771–774, 1998.Google Scholar
  133. 133.
    H. Thibieroz, P. Shaner, and Z. C. Butler, “Mismatch and flicker noise characterization of tantalum nitride thin film resistors for wireless applications,” IEEE ICMTS, 14, 207–212, 2001.Google Scholar
  134. 134.
    U. Grünebaum, J. Oehm, and K. Schumacher, “Mismatch Modeling and Simulation – A Comprehensive Approach,” Analog Integrated Circuits and Signal Processing, Kluwer Academic Publishers, 29, 165–171, 2001.CrossRefGoogle Scholar
  135. 135.
    H. Iwai and S. Kohyama, “On-chip capacitance measurement circuits in VLSI structures,” IEEE Trans. Electron Dev., ED-29 (10), 1622–1626, 1982.CrossRefGoogle Scholar
  136. 136.
    B. Eitan, “Channel-length measurement technique based on a floating-gate device,” IEEE Electron Dev. Lett., 9 (7), 340–342, 1988.CrossRefGoogle Scholar
  137. 137.
    C. Kortekaas, “On-chip quasi-static floating-gate capacitance measurement method,” IEEE ICMTS, 3, 109–113, 1990.Google Scholar
  138. 138.
    H. P. Tuinhout, H. Elzinga, J. T. Brugman, and F. Postma, “Accurate capacitor matching measurements using floating gate test structures,” IEEE ICMTS, 8, 133–137, 1995.Google Scholar
  139. 139.
    H. P. Tuinhout, H. Elzinga, J. T. Brugman, and F. Postma, “The floating gate measurement technique for characterization of capacitor matching,” IEEE Trans. Semicon. Manuf., 9 (1), 2–8, 1996.CrossRefGoogle Scholar
  140. 140.
    J. Hunter, P. Gudem, and S. Winters, “A differential floating gate capacitance mismatch measurement technique,” IEEE ICMTS, 13, 142–147, 2000.Google Scholar
  141. 141.
    A. van der Ziel, Noise in Solid State Devices and Circuits, John Wiley & Sons, 1986.Google Scholar
  142. 142.
    M. von Haartman and M. Ö stling, Low-Frequency Noise in Advanced NOS Devices, Springer, 2007.Google Scholar
  143. 143.
    C. Surya and T. Y.Hsiang, “Surface mobility fluctuations in metal-oxide-semiconductor field-effect transistors,” Phys. Rev. B., 35 (12), 6343–6347, 1987.CrossRefGoogle Scholar
  144. 144.
    K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “Random telegraph noise of deep-submicrometer MOSFETs,” IEEE Electron Dev. Lett., 11 (2), 90–92, 1990.CrossRefGoogle Scholar
  145. 145.
    K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, R. W. Epworth, and D. M. Tennant, “Discrete resistance switching in submicrometer silicon inversion layers: Individual interface traps and low-frequency (1/f?) noise,” Phys. Rev. Lett., 52 (3), 228–231, 1984.CrossRefGoogle Scholar
  146. 146.
    M. J. Uren, D. J. Day, and M. J. Kirton, “1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., 47 (11), 1195–1197, 1985.CrossRefGoogle Scholar
  147. 147.
    M. J. Kirton, M. J. Uren, and S. Collins, “Individual interface states and their implication for low-frequency noise in MOSFETs,” Appl. Surf. Science, 30 (1–4), 148–152, 1987.CrossRefGoogle Scholar
  148. 148.
    Y. F. Lim, Y. Z. Xiong, N. Singh, R. Yang, Y. Jiang, D. S. H. Chan, W. Y. Loh, L. K. Bera, G. Q. Lo, N. Balasubramanian, and D. -L. Kwong, “Random telegraph signal noise in gate-all-around Si-FinFET with ultra-narrow body,” IEEE Trans. Electron Dev., 77 (9), 765– 768, 2006.Google Scholar
  149. 149.
    S.-R. Li, W. McMahon, Y.-L. R. Lu, and Y.-H. Lee, “RTS noise characterization in flash cells,“IEEE Electron Dev. Lett., 29 (1), 106–108, 2008.CrossRefGoogle Scholar
  150. 150.
    C. M. Compagnoni, R. Gusmeroli, A. S. Spinelli, and A. Visconti, “RTN VT instability from the stationary trap-filling condition: An analytical spectroscopic investigation,” IEEE Trans. Electron. Dev., 55 (2), 655–661, 2008.CrossRefGoogle Scholar
  151. 151.
    R. H. Howard, W. J. Skocpol, L. D. Jackel, P. M. Mankiewich, L. A. Fetter, D. M. Tennant, R. Epworth, and K. S. Ralls, “Single electron switching events in nanometer-scale Si MOS-FETs,” IEEE Trans. Electron Dev., ED-32 (9), 1669–1674, 1985.CrossRefGoogle Scholar
  152. 152.
    S. Machlup, “Noise in semiconductors: Spectrum of a two-parameter random signal,” J. Appl. Phys., 25, 241–243, 1954.CrossRefGoogle Scholar
  153. 153.
    R. C. Jaeger and A. J. Broderson, “Low-frequency noise sources in bipolar junction transistors,” IEEE Trans. Electron Dev., ED-17 (2), 128–134, 1970.CrossRefGoogle Scholar
  154. 154.
    J. L. Plumb and E. R. Chenette, “Flicker noise in transistors,” IEEE Trans. Electron Dev., 10 (5), 304–308, 1963.CrossRefGoogle Scholar
  155. 155.
    O. Roux dit Buisson and G. Moria, “Flicker noise characteristics of polysilicon resistors in submicron BiCMOS technologies,” IEEE ICMTS, 10, 49–51, 1997.Google Scholar
  156. 156.
    E. Zhao, R. Krithivasan, A. K. Sutton, Z. Jin, J. D. Cressler, B. El-Kareh, S. Balster, and H. Yasuda, “An investigation of low-frequency noise in complementary SiGe HBTs,” IEEE Trans. Electron Dev., 53 (2), 329–338, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations