Skip to main content

The MOS structure consists of a semiconductor covered by an insulator upon which a conductive electrode is deposited (Fig. 4.1). The term MOS stands for Metal-Oxide-Silicon and stems from earlier technologies that utilized aluminum, silicon dioxide (or simply oxide), and silicon to form the capacitor between source and drain of an MOS Field-Effect Transistor, MOSFET (Chap. 5). The need for a gate conductor that can withstand high-temperature annealing and allow self-alignment of gate to source-drain led to the development of heavily doped n-type or p-type polysilicon gate-conductors to replace aluminum. While doped polysilicon is the gate-conductor of choice for oxide thickness above ˜3nm, its low conductivity compared to metals begins to seriously impact MOSFET performance as device dimensions are reduced to the nanoscale range. Metal-gates, such as tungsten, molybdenum, and fully-silicided polysilicon have therefore become necessary to overcome this limitation. Also, as the silicon-dioxide thickness is reduced below ˜2nm, the level of power-consumption caused by tunneling current through the oxide becomes prohibitive. For such dimensions, it is necessary to replace silicon-dioxide with alternate dielectrics of higher dielectric constant

As will be discussed in Chap. 5, there are several advantages of replacing silicon with semiconductor variants such as silicon-germanium (SiGe) and silicon-carbon (Si : C) alloys, or germanium. In this chapter, however, the term MOS will be used to describe all of the above combinations of gate-conductor, insulator, and semicon ductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. M. Terman, “An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes,” Solid-State Electron., 5 (5), 285–299, 1962.

    Article  Google Scholar 

  2. K. Lehovec, A. Slobodskoy, and J. L. Sprague, “Field effect-capacitance analysis of surface states on silicon,” Phys. Stat. Sol. (b), 3 (3), 447–464, 1963.

    Article  Google Scholar 

  3. A. S. Grove, B. E. Deal, E. H. Snow, and C. T. Sah, “Investigation of thermally oxidized silicon surfaces using metal-oxide-semiconductor structures,” Solid-State Electron., 8 (2), 145–163, 1965.

    Article  Google Scholar 

  4. R. H. Kingston and S. F. Neustadter, “Calculation of the space-charge, electric field, and free carrier concentration at the surface of a semiconductor,” J. Appl. Phys., 26 (6), 718–720, 1955.

    Article  Google Scholar 

  5. E. H. Nicollian and J. R. Brews, MOS Physics and Technology, John Wiley & Sons, 1982.

    Google Scholar 

  6. C. E. Young, “Extended curves of the space charge, electric field, and free carrier concen tration of the surface of a semiconductor, and curves of the electrostatic potential inside a semiconductor,” J. Appl. Phys., 32 (3), 329–332, 1961.

    Article  Google Scholar 

  7. A. Many, Y. Goldstein, and N. B. Grover, Semiconductor Surfaces, North Holland, 1971.

    Google Scholar 

  8. F. Stern and W. E. Howard, “Properties of semiconductor surface inversion layers in the quan tum limit,” Phys. Rev., 163 (3), 816–835, 1967.

    Article  Google Scholar 

  9. M. J. van Dort, P. H. Woerlee, and A. J. Walker, “A simple model for quantization effects in heavily-doped silicon MOSFETs at inversion conditions,” Solid-State Electron., 37 (3), 411–414, 1994.

    Article  Google Scholar 

  10. C.-Y. Hu, S. Banerjee, K. Sandra, G. G. Streetman, and R. Sivan, “Quantization effects in inversion layers of PMOSFETs on Si (100) substrates,” IEEE Electron Dev. Lett., 17 (6), 276–278, 1996.

    Article  Google Scholar 

  11. S. A. Hareland, S. Krishnamurhty, S. Jallepalli, C.-F. Yeap, K. Hasnat, A. F. Tasch, and C. M. Maziar, “A computationally efficient model for inversion layer quantization effects in deep submicron n-channel MOSFETs,” IEEE Trans. Electron Dev., 43.

    Google Scholar 

  12. Y. Ohkura, “Quantum effects in Si n-MOS inversion layer at high substrate concentration,” Solid-State Electron., 33 (12), 1581–1585, 1990.

    Article  Google Scholar 

  13. J. A. López-Villanueva, P. Cartujo-Casinello, J. Banqueri, F. Gámiz, and S. Rodríguez, “Ef fects of the inversion layer centroid on MOSFET behavior,” IEEE Trans. Electron Dev., 44 (11), 1915–1922, 1997.

    Article  Google Scholar 

  14. F. Li, H.-H. Tseng, L. F. Register, P. J. Tobin, and S. K. Barnerjee, “Asymmetry in gate capacitance-voltage (C-V) behavior of ultrathin metal gate MOSFETs with HfO2 gate di electrics,” IEEE Trans. Electron Dev., 53 (8), 1943–1946, 2006.

    Article  Google Scholar 

  15. N. Rodriguez, F. Gamiz, and J. B. Roldan, “Modeling of inversion layer centroid and polysil icon depletion effects on ultrathin-gate-oxide MOSFET behavior: The influence of crystallo graphic orientation,” IEEE Trans. Electron Dev., 54 (4), 723–732, 2007.

    Article  Google Scholar 

  16. S.-I. Tagaki and A. Toriumi, “Quantitative understanding of inversion-layer capacitance in Si MOSFETs,” IEEE Trans. Electron Dev., 42 (12), 2125–2130, 1995.

    Article  Google Scholar 

  17. G. Doucet and F. van de Wiele, “Threshold voltage of nonuniformly doped MOS structures,” Solid-State Electron., 16 (3), 417–423, 1973.

    Article  Google Scholar 

  18. B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon,” IEEE Trans. Electron Dev., ED-27, 606–608, 1980.

    Article  Google Scholar 

  19. F. J. Grunthaner, P. J. Grunthaner, R. P. Velasquez, B. F. Lewis, J. Maserjian, and A. Madhukar, “High-resolution x-ray-photoelectron spectroscopy as a probe of local atomic structure: Appli cation to amorphous SiO2 and the Si –SiO2 interface,” Phys. Rev. Lett., 43, 1683–1685, 1979.

    Article  Google Scholar 

  20. F. J. Grunthaner, R. P. Velasquez, and M. H. Hecht, “X-ray photoelectron spectroscopy study of the chemical structure of thermally nitrided SiO2,” Appl. Phys. Lett., 44 (10), 969– 971, 1984.

    Article  Google Scholar 

  21. E. H. Poindexter, E. R. Ahlstrom, and P. J. Caplan, Proc. Intl. Conf. on the Physics of SiO2 and its Interfaces, S. T. Pantilides, ed., p. 227, Pergamon Press, N. Y., 1978.

    Google Scholar 

  22. N. M. Johnson, D. K. Biegelsen, M. D. Moyer, S. T. Chang, E. H. Poindexter, and P. J. Caplan, “Electronic traps and Pb centers at the Si/SiO2 interface: Band-gap energy distributions,” J. Appl. Phys., 56 (10) 2844–2849, 1984.

    Article  Google Scholar 

  23. T. Sakurai and T. Sugano, “Theory of continuously distributed trap states at Si –SiO2 inter faces,” J. Appl. Phys., 52 (4), 2889–2896, 1981.

    Article  Google Scholar 

  24. G. Van den Bosch, G. Groeseneken, H. E. Maes, R. B. Klein, and N. S. Saks, “Oxide and interface degradation resulting from substrate hot hole injection in metal oxide semiconductor field effect transistors at 295 K and 77 K,” J. Appl. Phys., 75, 2073–2080, 1994.

    Article  Google Scholar 

  25. B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the surface-state charge (Qss) of thermally oxidized silicon,” J. Electrochem. Soc., 114, 266–274, 1967.

    Article  Google Scholar 

  26. E. H. Snow, A. S. Grove, B. E. Deal, and C. T. Sah, “Ion transport phenomena in insulating films,” J. Appl. Phys., 36, 1664–1673, 1965.

    Article  Google Scholar 

  27. G. F. Derbenwick, “Mobile ions in SiO2: Potassium,” J. Appl. Phys., 48, 1127–1132, 1977.

    Article  Google Scholar 

  28. A. G. Tangena, N. F. De Rooij, and J. Middelhoek, “Sensitivity of MOS structures for con tamination with H+, Na+ and K+ ions,” J. Appl. Phys., 49, (11), 5576–5583, 1978.

    Article  Google Scholar 

  29. J. S. Logan and D. R. Kerr, “Migration rates of alkali ions in SiO2 films,” Solid-State Dev. Res. Conf., 1965.

    Google Scholar 

  30. G. Greeuw and J. F. Verwey, “The mobility of Na+, Li+, K+ ions in thermally grown SiO2 films,” J. Appl. Phys., 56, 2218–2224, 1984.

    Article  Google Scholar 

  31. J. P. Stagg, “Drift mobilities of N+ and K+ ions in SiO2 films,” Appl. Phys. Lett., 31 (8), 532–533, 1977.

    Article  Google Scholar 

  32. D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, 1998.

    Google Scholar 

  33. B. El-Kareh and R. J. Bombard, Introduction to VLSI Silicon Devices; Physics, Technology and Characterization, Kluwer Academic Publishers, 1986.

    Google Scholar 

  34. K. S. Krisch, J. D. Bude, and L. Manchanda, “Gate capacitance attenuation in MOS devices with thin gate dielectrics,” IEEE Electron Dev. Lett., 17 (11), 521–524, 1996.

    Article  Google Scholar 

  35. W. K. Henson, K. Z. Ahmed, E. M. Vogel, J. R. Hauser, J. J. Wortman, R. D. Venables, M. Xu, and D. Venables, “Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance-voltage measurements on MOS capacitors,” IEEE Electron Dev. Lett., 20 (4), 179–181, 1999.

    Article  Google Scholar 

  36. D. Vasileska, D. K. Schroder, and D. K. Ferry, “Scaled silicon MOSFETs: Degradation of the total gate capacitance,” IEEE Trans. Electron Dev., 44 (4), 584–587, 1997.

    Article  Google Scholar 

  37. C. Bowen, C. L. Fernando, G. Klimeck, A. Chatterjee, D. Blanks, R. Lake, J. Hu, J. Davis, M. Kulkarni, S. Hattangady, and I.-C. Chen, “Physical oxide thickness extraction and verifi cation using quantum mechanical simulation,” IEDM Tech. Digest, pp. 869–897, 1997.

    Google Scholar 

  38. S. Walstra and C. T. Sah, “Thin oxide thickness extrapolation from capacitance-voltage mea surements,” IEEE Trans. Electron Dev., 44 (7), 1136–1142, 1997.

    Article  Google Scholar 

  39. B. J. R. Hauser, “Bias sweep rate effects on quasi-static capacitance of MOS capacitors,” IEEE Trans. Electron Dev., 44 (6), 1009–1012, 1997.

    Article  Google Scholar 

  40. Y. C. Cherng, Han-Cheng Wulu, F. H. Yang, and C. Y. Lu,” Decrease of gate oxide dielectric constant in tungsten polycide gate processes,” IEEE Electron Dev. Lett., 14 (5), 243–245, 1993.

    Article  Google Scholar 

  41. T. J. Hwang, S. H. Rogers, and B. Z. Li, “Work function measurement of tungsten polycide gate structure,” J. Electron. mater., 12, 667–678, 1983.

    Article  Google Scholar 

  42. Y.-C. Yeo, P. Ranade, T.-J. King, and C. Hu, “Effects of high-K gate dielectric materials on metal and silicon gate workfunctions,” IEEE Electron Dev. Lett., 21 (6), 342–344, 2002.

    Google Scholar 

  43. C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam, W. J. Taylor, J. M. Grant, L, G. Dip, D. H. Triyoso, R. I. Hegde, D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. S. Rai, E. A. Hebert, H.-H. Tseng, S. G. H. Anderson, B. E. White, and P. J. Tobin, “Fermi-Level Pinning at the Polysilicon/Metal Oxide interface – Parts I and II,” IEEE Trans. Electron Dev., 51 (6), 971–984, 2004.

    Article  Google Scholar 

  44. M. Zerbst, “Relaxation effects at semiconductor-insulator interfaces”, Z. Angew. Phys., 22, 30–33, 1966.

    Google Scholar 

  45. J. S. Kang and D. K. Schoder, “The pulsed MIS capacitor: A critical review,” Phys. Stat. Sol., 89a, 13–43, 1985.

    Article  Google Scholar 

  46. R. Castagné and A. Vapaille, “Determination of the SiO2 –Si interface properties by means of very low frequency MOS capacitance measurements,” Surf. Sci., 28, 157–193, 1971.

    Article  Google Scholar 

  47. M. Kuhn, “A quasi-static technique for MOS C-V and surface state measurements,” Solid-State Electron., 13 (6) 873–885, 1970.

    Article  Google Scholar 

  48. E. H. Nicollian and A. Goetzberger, “The Si–SiO2 interface – electrical properties as deter mined by the metal-insulator-silicon conductance technique,” Bell Syst. Tech. J., 46, 1055– 1133, 1967.

    Google Scholar 

  49. S. W. Huang and J.-G. Hwu, “Lateral nonuniformity of effective oxide charges in MOS ca pacitors with Al2O3 gate dielectrics,” IEEE Trans. Electron Dev., 53 (7), 1608–1614, 2006.

    Article  Google Scholar 

  50. B. H. Lee, L. Kang, W.-J. Qi, R. Nieh, Y. Jeon, K. Onishi, and J. C. Lee, “Ultrathin hafnium oxide with low leakage and excellent reliability for alternative gate dielectric application,” IEEE IEDM Tech. Digest, pp. 133–137, 1999.

    Google Scholar 

  51. C. Leroux, J. Mitard, G. Ghibaudo, X. Garros, G. Reimbold, B. Guillaumot, and F. Martin, “Characterization and modeling of hysteresis phenomena in high K dielectrics,” IEDM Tech. Digest, 737–740, 2004.

    Google Scholar 

  52. C. N. Berglund, “Surface states at steam-grown silicon-silicon dioxide interfaces,” IEEE Trans. Electron Dev., ED-13 (10), 701–705, 1966.

    Article  Google Scholar 

  53. M. Kuhn and D. J. Silversmith, “Ionic contamination and transport of mobile ions in MOS structures,” J. Electrochem. Soc., 118, 966–970, 1971.

    Article  Google Scholar 

  54. M. Depas, B. Vermeire, P. W. Mertens, R. L. van Meirhaeghe, and M. M. Heyns, “Determina tion of tunneling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures,” Solid-State Electron., 38 (8), 1465–1471, 1995.

    Article  Google Scholar 

  55. M. Lenzlinger and E. H. Snow. “Fowler-Nordheim tunneling into thermally grown SiO2” J.Appl. Phys., 40, 278–283, 1969.

    Article  Google Scholar 

  56. W.-C. Lee and C. Hu, “Modeling CMOS tunneling currents through ultrathin gate oxide due to conduction and valence-band electron and hole tunneling,” IEEE Trans. Electron Dev., 48 (7), 1366–1373, 2001.

    Article  Google Scholar 

  57. E. H. Nicollian, A. Goetzberger, and C. N. Berglund, “Avalanche injection currents and charg ing phenomena in thermal SiO2,” Appl. Phys. Lett., 15, 174–176, 1969.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). The MOS Structure. In: Silicon Devices and Process Integration. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69010-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69010-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36798-9

  • Online ISBN: 978-0-387-69010-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics