The Bipolar Transistor

The concepts and derivations developed for the pn junction in Chap. 2 are directly applicable to the bipolar transistor since the transistor is formed by placing two pn junctions back-to-back, arranged vertically or laterally. The resulting structure can be described as a three-layer sandwich of p-type and n-type material (Fig. 3.1). Since the merged center can be p-type or n-type, there are two kinds of bipolar junction transistors (BJT): NPN and PNP. The center layer is called the base of width W b . When the transistor is operated as an amplifier, one of the junctions is forward-biased while the other is reverse-biased. The outer layer of the junction that is forward-biased is called the emitter, because it emits (injects) minority carriers into the base. If the base region is narrow enough, the injected minority carriers traverse the base at a certain speed and reach the reverse-biased junction where they are collected. Therefore, the outer layer of the junction that is reverse biased is called the collector.

The currents into or out of the three layers of the transistor are called the base current, I B , the emitter current, I E , and the collector current, I C. Both carrier polarities take part in transistor action


Bipolar Transistor Current Gain Heterojunction Bipolar Transistor Intrinsic Base Early Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Phillips, Transistor Engineering, McGraw-Hill, New York, 1962.Google Scholar
  2. 2.
    J. J. Ebers and J. L. Moll, ȁCLarge-signal behavior of junction transistors,ȁ Proc. IRE, 42, 1761–1772, 1954.Google Scholar
  3. 3.
    P. Gray, D. DeWitt, A. R. Boothroyd, and J. F. Gibbons, Physical Electronics and Circuit Models of Transistors, SEEC, Vol. 2, p. 181, John Wiley, New York, 1964.Google Scholar
  4. 4.
    I. Getreu, Modeling the Bipolar Transistor, Tektronix, Inc., Beaverton, Oregon, 1976.Google Scholar
  5. 5.
    B. El-Kareh, Fundamentals of Semiconductor Processing Technologies, Kluwer Academic Publishers, Boston, 1997.Google Scholar
  6. 6.
    H. Kroemer, “Two integral relations pertaining to the electron transport through a bipolar transistor with a nonuniform energy gap in the base region,” Solid-State Electronics, 28 (11), 1101–1103, 1985.Google Scholar
  7. 7.
    E. J. McGrath and D. H. Navon, “Factors limiting current gain in power transistors,” IEEE Trans. Electron Dev., ED-24 (10), 1255–1259, 1977.Google Scholar
  8. 8.
    C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recombination in p-n junctions and p-n junction characteristics,” IEEE Trans. Electron Dev., ED-45 (9), 1228–1238, 1957.Google Scholar
  9. 9.
    C. T. Sah, “Effect of surface recombination and channel on p-n junction and transistor characteristics,” IEEE Trans. Electron Dev., ED-9 (1), 94–108, 1962.Google Scholar
  10. 10.
    P. J. Coppen and W. T. Matzen, “Distribution of recombination current in emitter-base junctions of silicon transistors,” IEEE Trans. Electron Dev., ED-52 (1), 75–81, 1962.Google Scholar
  11. 11.
    J. L. Moll, Physics of Semiconductors, McGraw-Hill Physical and Quantum Electronics Series, New York, 1964.Google Scholar
  12. 12.
    J. M. Early, “Effects of space-charge layer widening in junction transistors,” Proc. IRE, 40, 1401–1406, 1952.Google Scholar
  13. 13.
    R. C. Jaeger and A. J. Brodersen, “Self consistent bipolar transistor models for computer simulations,” Solid-State Electronics, 21 (10), 1269–1272, 1978.Google Scholar
  14. 14.
    J. D. Cressler and G. Niu, Silicon-Germanium Heterojunction Bipolar Transistors, Artech House, Boston, 2003.Google Scholar
  15. 15.
    R. S. Muller, T. I. Kamins, and M. Chan, Device Electronics for Integrated Circuits, John Wiley & Sons, New York, 2003.Google Scholar
  16. 16.
    M. Takase, K. Yamashita, A. Hori, and B. Mizuno, “Shallow source/drain extensions for pMOSFETs with high activation and low process damage fabricated by plasma doping,” IEEE IEDM Tech. Dig., 475–478, 1997.Google Scholar
  17. 17.
    M. Takagi, K. Nakayama, C. Tevada, and H. Kamioko, “Improvement of shallow base transistor technology by using a doped polysilicon diffusion source,” J. Japan. Soc. Appl. Phys. (Suppl.), 42, 101–109, 1972.Google Scholar
  18. 18.
    K. Tsukamoto, Y. Akasaka, and K. Horie, “Arsenic implantation into polycrystalline silicon and diffusion to silicon substrate,” J. Appl. Phys. 48, 1815, 1977.Google Scholar
  19. 19.
    J. Graul, A. Glasl, and H. Murrmann, “Ion implanted bipolar high-performance transistors with POLYSIL emitter,” IEEE IEDM Tech. Dig., 450–454, 1975.Google Scholar
  20. 20.
    J. Graul, A. Glasl, and H. Murrmann, “High-performance transistors with arsenic-implanted poly emitters,” IEEE J. Solid-State Circuits, SC-11 (4), 491–495, 1976.Google Scholar
  21. 21.
    T. H. Ning and R. D. Isaac, “Effect of emitter contact on current gain of silicon bipolar devices,” IEEE Trans. Electron. Dev., ED-27 (11), 2051–2055, 1980.Google Scholar
  22. 22.
    T. H. Ning and D. D. Tang, “Bipolar trends,” Proc. IEEE, 74 (12), 1669–1677, 1986.Google Scholar
  23. 23.
    H. C. De Graaff and J. G. De Groot, “The SIS tunnel emitter: A theory for emitters with thin interface layers,” IEEE Trans. Electron. Dev., ED-26, 1771–1776, 1979.Google Scholar
  24. 24.
    A. A. Eltoukhy and D. J. Roulston, “Minority-carrier injection into polysilicon emitters,” IEEE Trans. Electron. Dev., ED-29 (6), 961–964, 1982.Google Scholar
  25. 25.
    A. A. Eltoukhy and D. J. Roulston, “The role of interfacial layer in polysilicon emitter bipolar transistors,” IEEE Trans. Electron. Dev., ED-29 (12), 1862–1869, 1982.Google Scholar
  26. 26.
    T. H. Ning and R. D. Isaac, “Effect of emitter contact on current gain of silicon bipolar devices,” IEEE Trans. Electron. Dev., ED-27 (11), 2051–2055, 1980.Google Scholar
  27. 27.
    C. C. Ng and E. S. Yang, “A thermionic diffusion model for polysilicon emitter,” IEEE IEDM Tech. Digest, 32–35, 1986.Google Scholar
  28. 28.
    H. Schaber and T. F. Meister, “Technology and physics of polysilicon emitters,” Proc. IEEE BCTM, 75–81, 1989.Google Scholar
  29. 29.
    V. Kumar and W. E. Dahlke, “Characteristics of Cr-SiO2-nSi tunnel diodes,” Solid-State Electron., 20 (2), 143–152, 1977.Google Scholar
  30. 30.
    S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.Google Scholar
  31. 31.
    S. Ratanaphanyarat, W. Rausch, M. Smadi, Mary Jo Saccamango, S. N. Mei, Shao-Fu Chu, P. A. Ronsheim, and J. O. Chu, “Effect of emitter contact materials on high-performance vertical p-n-p transistors,” IEEE Electron. Dev. Lett., 12 (6), 261–263, 1991.Google Scholar
  32. 32.
    B. El-Kareh, S. Balster, W. Leitz, P. Steinmann, H. Yasuda, M. Corsi, K. Dawoodi, C. Dirnecker, P. Foglietti, A. Haeusler, P. Menz, M. Ramin, T. Scharnagl, M. Schiekofer, M. Schober, U. Schulz, L. Swanson, D. Tatman, M. Waitschull, J. W. Weijtmans, and C. Willis, “A 5V complementary-SiGe BiCMOS technology for high-speed precision analog circuits,” IEEE BCTM, 211–214, 2003.Google Scholar
  33. 33.
    E. Crabbé, S. Swirhun, J. del Alamo, R. F. Pease, and R. M. Swanson, “Majority and minority carrier transport in polysilicon emitter contacts,” IEEE IEDM Tech. Dig., 28–31, 1986.Google Scholar
  34. 34.
    E. F. Chor, P. Ashburn, and A. Brunnschweiler, “Emitter resistance of arsenic- and phosphorus-doped polysilicon emitter transistors,” IEEE Electron. Dev. Lett. EDL-6 (10), 516–518, 1985.Google Scholar
  35. 35.
    C. M. Camalleri, S. Lorenti, D. Cali', P. Vasquez, and G. Ferla, “Control of amount and uniformity at the interface of an emitter region of a monocrystalline silicon wafer and a polycrystalline layer formed by chemical vapor deposition,” United States patent 6 642 121, November 4, 2003.Google Scholar
  36. 36.
    T. Suntola and J. Antson, “Method for producing compound thin films,” US Patent No. 4 058 430, Nov. 25, 1975.Google Scholar
  37. 37.
    B. Y. Tsaur and L. S. Hung, “Epitaxial alignment of polycrystalline Si films on (100) Si,” Appl. Phys. Lett. 37 (10), 648–651, 1980.Google Scholar
  38. 38.
    M. Y. Ghannam and R. W. Dutton, “Solid phase epitaxial regrowth of boron-doped polycrys talline silicon deposited by low-pressure chemical vapor deposition,” Appl. Phys. Lett. 51 (8), 611–613, 1987.Google Scholar
  39. 39.
    T. Kamins, Polycrystalline Silicon for Integrated Circuits and Displays, Kluwer Academic Publishers, Boston, 1998.Google Scholar
  40. 40.
    J. N. Burghartz, J. Y.-C. Sun, C. L. Stanis, S. R. Mader, and J. D. Warnock, “Identification of perimeter depletion and emitter plug effects in deep-submicrometer shallow-junction polysil-icon emitter bipolar transistors,” IEEE Trans. Electron. Dev., 39 (6), 1477–1489, 1992.Google Scholar
  41. 41.
    Y. Tamaki, F. Murai, K. Sagara, and A. Anzai, “A 100nm emitter transistor fabricated with direct EB writing for high-speed bipolar LSIs,” Symp. VLSI Technol., 31–32, 1987.Google Scholar
  42. 42.
    E. H. Stevens, “Saturation currents in smaller geometry bipolar transistors,” IEEE Trans. Electron. Dev., ED-31 (1), 80–82, 1984.Google Scholar
  43. 43.
    D. D. Tang, T. C. Chen, C. T. Chuang, G. P. Li, J. M. C. Stork, M. B. Ketchen, E. Hackbarth, and T. H. Ning, “Design consideration for high-performance narrow-emitter bipolar transistor,” IEEE Electron. Dev. Lett., EDL-8 (4), 174–175, 1987.Google Scholar
  44. 44.
    G. P. Li, C. T. Chuang, T. C. Chen, and T. H. Ning, “On the narrow-emitter effect of advanced shallow profile bipolar transistors,” IEEE IEDM Tech. Dig., 174–177, 1987.Google Scholar
  45. 45.
    W. L. Kaufmann and A. A. Bergh, “The temperature dependence of ideal gain in double diffused silicon transistors,” IEEE Trans. Electron. Dev., ED-15 (10), 732–735, 1968.Google Scholar
  46. 46.
    W. M. C. Sansen and R. G. Meyer, “Characterization and measurement of the base and emitter resistance of bipolar transistors,” IEEE J. Solid-State Circuits, SC-7 (6), 492–498, 1972.Google Scholar
  47. 47.
    W. F. Filenski and H. Beneking, “New technique for determination of static emitter and collector series resistances in bipolar transistors,” Electronics letters, 17 (14), 503–504, 1981.Google Scholar
  48. 48.
    T. H. Ning and D. D. Tang, “Method for determining the emitter and base series resistances of bipolar transistors,” IEEE Trans. Electron Dev., ED-31 (4), 409–412, 1984.Google Scholar
  49. 49.
    A. Neugroschel, “Measurement of the low-current base and emitter resistances of bipolar transistors,” IEEE Trans Electron Dev., ED-34 (4), 817–822, 1987.Google Scholar
  50. 50.
    J.-S. Park, A. Neugroschel, V. dela Torre, and P. J. Zdebel, “Measurement of collector and emitter resistances in bipolar transistors,” IEEE Trans. Electron. Dev., ED-38 (2), 365–371, 1991.Google Scholar
  51. 51.
    B. El-Kareh and R. J. Bombard, Introduction to VLSI Silicon Devices, Kluwer Academic Publishers, Boston, 1985.Google Scholar
  52. 52.
    P. E. Gray, D. DeWitt, A. R. Boothroyd, and J. F. Gibbons, Physical Electronics and Circuit Models of Transistors, Semiconductor Electronics Education Committee, Vol. 2, John Wiley and Sons, New York, 1964.Google Scholar
  53. 53.
    W. M. Webster, “On the variation of junction transistor current amplification factor with emitter current,” Proc. IRE, 42 (6), 914–920, New York, 1954.Google Scholar
  54. 54.
    S. K. Ghandhi, The Theory and Practice of Microelectronics, John Wiley and Sons, New York, 1968.Google Scholar
  55. 55.
    C. T. Kirk, Jr., “A theory of transistor cut-off frequency fall-off at high current densities,” IEEE Trans. Electron. Dev., ED-9 (2), 164–174, 1962.MathSciNetGoogle Scholar
  56. 56.
    R. J. Van Overstraeten, H. J. DeMan, and R. P. Mertens, “Transport equation in heavy doped silicon,” IEEE Trans. Electron Dev., ED-20 (3), 290–298, 1973.Google Scholar
  57. 57.
    K. Suzuki, “Optimum base doping profile for minimum base transit time,” IEEE Trans. Electron. Dev., ED-38 (9), 2128–2133, 1991.Google Scholar
  58. 58.
    K. Suzuki, T. Fukano, H. Ishiwari, T. Yamazaki, M. Taguchi, T. Ito, and H. Ishikawa, “50-nm ultra-thin base silicon bipolar device fabrication based on photo epitaxial growth,” Tech. Digest of 1989 Symposium on VLSI Technology, pp. 91–92.Google Scholar
  59. 59.
    C. A. King, J. L. Hoyt, C. M. Gronet, J. F. Gibbons, M. P. Scott, and J. Turner, “Si/Si1-xGexheterojunction bipolar transistors produced by limited reaction processes,” IEEE Electron. Device Lett., EDL-10 (2), 52–54, 1989.Google Scholar
  60. 60.
    W. Lee, S. E. Laux, M. V. Fischetti, and D. D. Tang, “Monte Carlo simulation of non-equilibrium transport in ultra-thin base Si bipolar transistors,” IEEE IEDM Tech. Dig., 473–476, 1989.Google Scholar
  61. 61.
    P. Rohr, F. A. Lindholm, and K. R. Allen, “Questionability of drift-diffusion transport in the analysis of small semiconductor devices,” Solid-State Electron., 17 (7), 729–734, 1974.Google Scholar
  62. 62.
    R. G. Meyer and R. S. Muller, “Charge-control analysis of the collector-base space-charge-region contributions to bipolar-transistor time constant, τT,” IEEE Trans. Electron. Dev., ED-34 (2), 450–452, 1987.Google Scholar
  63. 63.
    R. D. Thornton, D. DeWitt, P. E. Gray, and E. R. Chenette, Characteristics and Limitations of Transistors, Semiconductor Electronics Education Committee, Vol. 4, John Wiley and Sons, 1966.Google Scholar
  64. 64.
    S. E. Laux and W. Lee, “Collector signal delay in the presence of velocity overshoot,” IEEE Electron. Device Lett., EDL-11 (4), 174–176, 1990.Google Scholar
  65. 65.
    J. M. Early, “P-N-I-P and N-P-I-N junction transistor triodes,” Bell. Syst. Tech. J., 33, 517–533, 1954.Google Scholar
  66. 66.
    F. N. Trofimenkoff, “Collector depletion region transit time,” Proc. IEEE, 52 (1), 86–87, 1964.Google Scholar
  67. 67.
    L. J. Giacoletto, “Study of p-n-p alloy junction transistor from d-c. through medium frequencies,” RCA Rev., 15 (4), 506–562, 1954.Google Scholar
  68. 68.
    R. Beaufoy and J. J. Sparkes, “The junction transistor as a charge-controlled device,” ATE J., 13, 310–327, 1957.Google Scholar
  69. 69.
    B. S. Meyerson, “Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition,” Appl. Phys. Lett., 48 (12), 797–799, 1986.Google Scholar
  70. 70.
    G. L. Patton, E. James, H. Comfort, B. Ernard, B. S. Meyerson, E. F. Crabbe, G. Erald, J. Scilla, E. De Fresart, J. M. Stork, J. Y.-C. Sun, D. Harame, and J. Burghartz, “75-GHz fT SiGe-base heterojunction bipolar transistors,” IEEE Electron Dev. Lett., 11 (4), 171–173, 1990.Google Scholar
  71. 71.
    J. F. Gibbons, C. M. Gronet, and K. E. Williams, “Limited reaction processing: silicon epitaxy,” Appl. Phys. Lett., 47 (7), 721–723, 1985.Google Scholar
  72. 72.
    J. L. Hoyt, C. A. King, D. B. Noble, C. M. Gronet, and J. F. Gibbons, “Limited reaction processing: growth of Si1_xGex/Si for heterojunction bipolar transistor applications,” Thin Solid Films, 184 (1–2), 93–106, 1990.Google Scholar
  73. 73.
    T. O. Sedgwick, M. Berkenblit, and T. S. Kuan, “Low-temperature selective epitaxial growth of silicon at atmospheric pressure,” Appl. Phys. Lett., 54 (26), 2689–2691, 1989.Google Scholar
  74. 74.
    W. B. de Boer and D. J. Meyer, “Low-temperature chemical vapor deposition of epitaxial Si and SiGe layers at atmospheric pressure,” Appl. Phys. Lett, 58 (12), 1286–1288, 1990.Google Scholar
  75. 75.
    A. Pruijmboom, D. Terpstra, C. E. Timmering, W. B. de Boer, M. J. J. Theunissen, J. W. Slotboom, R. J. E. Hueting, and J. J. E. M. Hageraats, “Selective-epitaxial base technology with 14 pcs ECL-gate delay,” IEEE IEDM Tech. Dig., 747–750, 1995.Google Scholar
  76. 76.
    K. Washio, E. Ohue, K. Oda, M. Tanabe, H. Shimamato, and T. Onai, “A selective epitaxial SiGe HBT with SMI electrodes featuring 9.3-ps ECL-gate delay,” IEEE IEDM Tech. Dig., 795–798, 1997.Google Scholar
  77. 77.
    J. D. Cressler, “SiGe HBT technology,: A new contender for Si-based RF and microwave circuit applications,” IEEE Trans. Microw. Theory Tech., 46 (5), 572–589, 1998.Google Scholar
  78. 78.
    D. C. Houghton, C. J. Gibbings, C. G. Tuppen, M. H. Lyons, and M. A. G. Halliwell, “The structural stability of uncapped versus buried Si1_xGex strained layers through high temperature processing,” Thin Solid Films, 183 (1–2), 171–182, 1989.Google Scholar
  79. 79.
    D. B. Noble, J. L. Hoyt, and J. F. Gibbons, “Thermal stability of Si/Si1_xGex/Si heterojunction bipolar transistor structures grown by limited reaction processing,” Appl. Phys. Lett., 55 (19), 1978–1980, 1989.Google Scholar
  80. 80.
    A. R. Denton and N W. Ashcroft, “Vegard's law,” Phys. Rev. A 43, 003161, 1991.Google Scholar
  81. 81.
    J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. I. Misfit dislocations,” J. Crystal Growth, 27, 118–125, 1974.Google Scholar
  82. 82.
    J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers. III. Preparation of almost perfect multilayers,” J. Cryst. Growth, 32 (2), 265–273, 1976.Google Scholar
  83. 83.
    R. People and J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1_x/Si strained-layer heterostructures,” Appl. Phys. Lett., 47 (3), 322–324, 1985.Google Scholar
  84. 84.
    J. W. Slotboom and H. C. DeGraaff, “Measurement of bandgap narrowing in Si bipolar transistors,” Solid-State Electron., 19 (10), 857–862, 1976.Google Scholar
  85. 85.
    R. People, “Indirect band gap of coherently strained GexSi1_x bulk alloys on {001} silicon substrates,” Phys. Rev., B, 32, 1405–1408, 1985.Google Scholar
  86. 86.
    D. V. Lang, R. People, J. C. Bean, and A. M. Sergent, “Measurement of the band gap of GexSi1_x strained-layer heterostrcutures,” Appl. Phys. Lett., 47 (12), 1333–1335, 1985.Google Scholar
  87. 87.
    R. People, “Physics and applications of GexSi1_x strained-layer heterostructures,” IEEE J. Quantum Electron., WE-22 (9), 1696–1710, 1986.Google Scholar
  88. 88.
    S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, “Heterojucntion bipolar transistors using Si-Ge alloys,” IEEE Trans. Electron. Dev., 36 (10), 2043–2064, 1989.Google Scholar
  89. 89.
    J. C. Brighten, I. D. Hawkins, A. R. Peaker, E. H. C. Parker, and T. E. Whall, “The determination of valence band discontinuities in 91. Si/Si1_xGex/Si heterojunctions by capacitance-voltage techniques,” J. Appl. Phys., 74 (3), 1894–1899, 1993.Google Scholar
  90. 90.
    Y. T. Tang and J. S. Hamel, “An electrical method for measuring the difference in bandgap across the neutral base in SiGe HBT's,” IEEE Trans. Electron. Dev., 47 (4), 797–804, 2000.Google Scholar
  91. 91.
    B. Le Tron, M. D. R. Hashim, P. Ashburn, M. Mouis, A. Chantre, and G. Vincent, “Determination of bandgap narrowing and parasitic energy barrier in SiGe HBTs integrated in a bipolar technology,” IEEE Trans. Electron. Dev, 44 (5), 715–722, 1997.Google Scholar
  92. 92.
    C. H. Gan, J. A. Del Alamo, B. R. Bennett, B. S. Meyerson, E. F. Crabbe, C. G. Sodini, and L. R. Reif, “Si/Si1_xGex valence band discontinuity measurements using semiconductor-insulator-semiconductor (SIS) heterostructures.,” IEEE Trans. Electron. Dev., 41 (12), 2430–2439, 1994.Google Scholar
  93. 93.
    K. Nauka, T. I. Kamins, J. E. Turner, C. A. King, J. L. Hoyt, and J. F. Gibbons, “Admittance spectroscopy measurements of band offsets in Si/Si1_xGex/Si heterostructures,” Appl. Phys. Lett., 60 (2), 195–197, 1992.Google Scholar
  94. 94.
    C. King, J. Hoyt, and J. Gibbons, “Bandgap and transport properties of Si1_xGex by analysis of nearly ideal Si/Si1_xGex heterojunction bipolar transistors,” IEEE Trans. Electron. Dev, 36 (10), 2093–2104, 1989.Google Scholar
  95. 95.
    E. Prinz, P. M. Garone, P. V. Schwartz, X. Xiao, and J. C. Sturm, “The effect of base-emitter spacers and strain-dependent densities of states in Si/Si1_xGex heterojunction bipolar transistors,” IEEE IEDM Tech. Dig., 639–642, 1989.Google Scholar
  96. 96.
    D. M. Richey, J. D. Cressler, and A. J. Joseph, “Scaling issues and profile optimization in advanced UHV/CVD SiGe HBTs,” IEEE Trans. Electron. Dev, 44 (3), 431–440, 1997.Google Scholar
  97. 97.
    L. E. Kay and T. W. Tang, “Monte Carlo calculation of strained and unstrained electron mobilities in Si1_xGex using improved ionized-impurity model,” J. Appl. Phys. Lett., 70 (3), 1483–1488, 1991.Google Scholar
  98. 98.
    M. V. Fischetti and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys,” J. Appl. Physics, 80 (4), 2234–2252, 1996.Google Scholar
  99. 99.
    T. Manku, J. M. Gregor, A. Nathan, D. J. Roulston, J.-P Noel, and D. C. Houghton, “Drifthole mobility in strained and unstrained doped Si1_xGex alloys,” IEEE Trans. Electron. Dev, 40 (11), 1990–1996, 1993.Google Scholar
  100. 100.
    T. Manku and A. Nathan, “Lattice mobility of holes in strained and unstrained Si1_xGex alloys,” IEEE Electron. Dev. Lett., 12 (12), 704–706, 1991.Google Scholar
  101. 101.
    G. Busch and O. Vogt, “Elektrische Leitfaehigkeit und Halleffekt von GeSi-Legierungen,” Helv. Phys. Acta., 33, 437–458, 1960.Google Scholar
  102. 102.
    R. W. Keyes, “High-mobility FET in strained silicon,” IEEE Trans. Electron. Dev, ED-33 (6), 863, 1986.Google Scholar
  103. 103.
    C. S. Smith, “Piezoresistance effects in germanium and silicon,” Phys. Rev, 94, 42–49, 1954.Google Scholar
  104. 104.
    R. People and J. C. Bean, “band alignment of coherently strained GexSi1_x/Si heterostructures on {100} GeySi1_y substrates,” Appl. Phys. Lett., 48 (8), 538–540, 1986.Google Scholar
  105. 105.
    D. B. M. Klaassen, “A unified mobility model for device simulation –I. Model equations and concentration dependence,” Solid-State Electron., 35 (7), 953–959, 1992.Google Scholar
  106. 106.
    D. B. M. Klaassen, “A unified mobility model for device simulation – II. Temperature dependence of carrier mobility and lifetime,” Solid-State Electron., 35 (7), 961–967, 1992.Google Scholar
  107. 107.
    T. Manku and A. Nathan, “Effective mass for strained p-type Si1_xGex,” J. Appl. Phys., 69 (12), 8414–8416, 1991.Google Scholar
  108. 108.
    D. L. Harame, J. H. Comfort, J. D. Cressler, E. F. Crabbé, B. S. Meyerson, and T. Tice, “Si/SiGe epitaxial base transistors – Part I: materials, physics, and circuits,” IEEE Trans. Electron. Dev., 42 (3), 455–468, 1995.Google Scholar
  109. 109.
    S. L. Salmon, J. D. Cressler, R. C. Jaeger, and D. L. Harame, “The influence of Ge grading on the bias and temperature characteristics of SiGe HBTs for precision analog circuits,” IEEE Trans. Electron. Dev., 47 (2), 292–298, 2000.Google Scholar
  110. 110.
    E. J. Prinz and J. C. Sturm, “Current gain–Early voltage products in heterojunction bipolar transistors with nonuniform base bandgaps,” IEEE Trans. Electron. Device Lett., 12 (12), 661–663, 1991.Google Scholar
  111. 111.
    J. L. Moll and I. M. Ross, “The dependence of transistor parameters on the distribution of base layer resistivity,” Proc. IRE, 44 (1), 72–78, 1956.Google Scholar
  112. 112.
    J. W. Slotboom, G. Streutker, A. Pruijmboom, and D. Gravensteijn, “Parasitic energy barriers in SiGe HBTs,” IEEE Electron. Dev. Lett., 12 (9), 486–488, 1991.Google Scholar
  113. 113.
    E. Prinz, P. Garone, P. Schwartz, X. Xiao, and J. Sturm, “The effects of base dopant out-diffusion and undoped Si/Si1-xGex junction spacer layers in Si/Si1-xGex heterojunction bipolar transistors,” IEEE Electron. Dev. Lett., 12 (2), 42–44, 1991.Google Scholar
  114. 114.
    A. Gruhle, “The influence of emitter-base junction design on collector saturation current, ideality factor, Early voltage, and device switching speed,” IEEE Trans. Electron. Dev., 41 (2), 198–203, 1994.Google Scholar
  115. 115.
    R. J. E. Hueting, J. W.Slotboom, A. Pruijmboom, W. B. de Boer, C. E, Timmering, and N. E. B. Cowern, “On the optimization of SiGe-base bipolar transistors,” IEEE Trans. Electron. Dev., 43 (9), 1518–1524, 1996.Google Scholar
  116. 116.
    G. Niu and J. D. Cressler, “The impact of bandgap offset distribution between conduction and valence bands in Si-based graded bandgap HBTs,” Solid-State Electron., 43 (12), 1999.Google Scholar
  117. 117.
    H.J. Osten, R. Barth, G. Fischer, B. Heinemann, D. Konoll. G. Lippert, H. Rücker, P. Schley, and W. Röpke, “Carbon-containing group IV heterosctructures on Si: properties and device applications,” Thin Solid Films, 321 (1–2), 11–14, 1998.Google Scholar
  118. 118.
    J. L. Hoyt, T. O. Mitchel, K. Rim, D. V. Singh, and J. F. Gibbons, “Comparison of Si/Si1-x-yGexCy and Si/Si1-yCy heterojunctions grown by rapid thermal chemical vapor deposition,” Thin Solid Films, 321 (1–2), 41–46, 1998.Google Scholar
  119. 119.
    H. Rücker, B. Heinemann, D. Bolze, D. Knoll, D. Krüger, R. Kurps, H. J. Osten, P. Schley, B. Tillack, and P. Zaumseil, “Dopant diffusion in C-doped Si and SWiGe: physical model and experimental verification,” IEEE IEDM, 345–348, 1999.Google Scholar
  120. 120.
    E. O. Johnson, “Physical limitations on frequency and power parameters of transistors,” RCA Rev., 163–177, 1975.Google Scholar
  121. 121.
    L. Lanzerotti, et al., “A low-complexity 0.13 mm SiGe BiCMOS technology for wireless and mixed signal applications,” IEEE BCTM, 237–240, 2004.Google Scholar
  122. 122.
    K. K. Ng, M. R. Frei, and C. A. King, “Reevaluation of the fTBVceo limit on Si bipolar transistors,” IEEE Trans. Electron. Dev., 43 (8), 1854–1855, 1998.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations