Skip to main content
  • 1937 Accesses

A junction is formed when two dissimilar materials come in contact with each other. The junction between a p-type and n-type semiconductor is called a pn junction. A heterojunction is formed when the semiconductors on both sides of a pn junction are not the same. An example of a heterojunction is when one side is made of silicon and the other of a silicon–germanium alloy. A junction formed between a metal, or a material of metallic character, and a semiconductor is called a contact. The contact is ohmic if it exhibits no barrier to majority carriers in either direction, resulting in a symmetrical current–voltage characteristic with respect to the zero origin. A rectifying contact is asymmetrical, the resistance to current being much larger in one direction than in the other.

The pn junction is the fundamental building block for other silicon devices. The junction shape, profile and characteristics have a direct impact on device parameters. A thorough understanding of the properties of pn junctions is therefore essential to the understanding of the operation of transistors and integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Dutton and Z. Yu, Technology CAD, Computer Simulation of IC Process and Devices, Kluwer Academic Publishers, 1993.

    Google Scholar 

  2. S. M. Sze, Physics of Semiconductors, John Wiley & Sons, 1981.

    Google Scholar 

  3. H. Armstrong, “A theory of voltage breakdown of cylindrical P–N junctions, with applications,” IRE Trans. Electron Dev., ED-4, 15–16, 1957.

    Article  Google Scholar 

  4. A. B. Phillips, Transistor Engineering, McGraw-Hill, New York, 1962.

    Google Scholar 

  5. W. Shockley, and W. T. Read, “Statistics of recombination of holes and electrons,” Phys. Rev. 87, 835, 1952.

    Article  MATH  Google Scholar 

  6. R. N. Hall, “Electron-hole recombination in Germanium,” Phys. Rev., 87, 387, 1952.

    Article  Google Scholar 

  7. A. K. Jonscher, Principles of Semiconductor Device Operation, John Wiley & Sons, New York, 1960.

    MATH  Google Scholar 

  8. J. L. Moll, Physics of Semiconductors, McGraw-Hill, New York, 1964.

    MATH  Google Scholar 

  9. A. G. Chynoweth, “Ionization rates for electrons and holes in silicon,” Phys. Rev., 109 (5), 1537–1540, 1958.

    Article  Google Scholar 

  10. G. A. Baraff, “Distribution functions and ionization rates for hot electrons in silicon,” Phys. Rev., 128 (6), 2507–2517, 1962.

    Article  MATH  Google Scholar 

  11. R. Van Overstraeten and H. DeMan, “Measurement of the ionization rates in diffused silicon p-n junctions,” Solid State Electron., 13 (5), 583–608, 1970.

    Article  Google Scholar 

  12. W. N. Grant,“Electron and hole ionization rates in epitaxial silicon at high electric fields,” Solid State Electron., 16, 1189–1203, New York 1973.

    Google Scholar 

  13. A. D. Sutherland, “An improved empirical fit to Baraff's universal curves for the ionization coefficients of electron and hole multiplication in semiconductors,” IEEE Trans. Electron. Dev., ED-27 (7), 1299–1300, 1980.

    Article  Google Scholar 

  14. C. R. Crowell and S. M. Sze, “Temperature dependence of avalanche multiplication in semiconductors,” Appl. Phys. Lett., 9 (6), 242–244, 1966.

    Article  Google Scholar 

  15. S. Reggiani, E, Gnani, M. Rudan, G. Baccarani, C. Corvasce, D. Barlini, M. Ciappa, W. Fichtner, M. Denison, N. Jensen, G. Groos, and M. Stecher, “Measurement and modeling of the electron impact-ionization coefficient in silicon up to very high temperature,” IEEE Trans. Electron. Dev., 52 (10), 2290–2299, 2005.

    Article  Google Scholar 

  16. S. M. Sze and G. Gibbons, “Avalanche breakdown voltage of abrupt and linearly graded p-n junctions in Ge, Si, GaAs and GaP,” Appl. Phys. Lett., 8, 111, 1966.

    Article  Google Scholar 

  17. K. G. McKay, “Avalanche breakdown in silicon,” Phys. Rev., 94, 877–884, 1954.

    Article  Google Scholar 

  18. R. M. Warner, “Avalanche breakdown in silicon diffused junctions,” Solid State Electron., 15, 1303, 1972.

    Article  Google Scholar 

  19. J. H. He, X. Zhang, and Y. Wang, “Equivalent doping profile transformation: a semi-empirical analytical method for predicting breakdown characteristics of an approximate single-diffused parallel-plane junction,” IEEE Trans. Electron. Dev., 48 (12), 2763–2768, 2001.

    Article  Google Scholar 

  20. S. M. Sze and G. Gibbons, “Effect of junction curvature on breakdown voltages in semiconductors,” Solid State Electron., 9, 831–840, 1966.

    Article  Google Scholar 

  21. S. K. Ghandhi, Semiconductor Power Devices, John Wiley, New York, 1977.

    Google Scholar 

  22. D. Krizaj and S. Amon, “Breakdown voltage of elliptic pn junctions,” Fifth European Conference on Power Electronics and Applications, Vol. 2, pp. 293–296, Sept. 13–16, 1993.

    Google Scholar 

  23. R. B. Fair and W. W. Hayden, “Zener and Avalanche Breakdown in As-implanted low-voltage Si n-p junctions,” IEEE Trans. Electron. Dev., ED-23(5), 512–518, 1976.

    Article  Google Scholar 

  24. C. Zener, “A theory of electrical breakdown voltages of solid dielectrics,” Proc. Roy. Soc. London, A145, 523–529, 1934.

    Article  Google Scholar 

  25. F. Braun, “Ueber die Stromleitung durch Schwefelmetalle,” Ann. Phys. J. C. Poggendorff. Phys. Chem., 153, 556–563, 1874.

    Google Scholar 

  26. F. Braun, “Ueber Abweichungen vom Ohm'schen Gesetz in metallisch leitenden Koerpern,” Ann. Phys. G. Wiedemann, 1, 95–110, 1877.

    Google Scholar 

  27. C. A. Mead, “Physics of interfaces,” in Ohmic Contacts to Semiconductors (B. Schwartz, ed.), Electrochem. Soc., New York, 3–16, 1969.

    Google Scholar 

  28. W. Schottky, “Halbleitertheorie der Sperrschicht,” Naturwissenschaften, 26, 843, 1938; Z. Phys. 113, 367, 1939; 118, 539, 1942.

    Article  Google Scholar 

  29. H. K. Henisch, “Rectifying Semiconductor Contacts,” Clarendon, Oxford, 1957.

    Google Scholar 

  30. M. M. Atalla, “Metal-semiconductor Schottky barriers, devices and applications,” Proc. Munich Symp. Microelectronics, pp. 123–157, October 1966.

    Google Scholar 

  31. J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev., 71 (10), 717–727, 1947.

    Article  MathSciNet  Google Scholar 

  32. W. Shockley, “On the surface states associated with a periodic potential,” Phys. Rev., 56 (4), 317–323, 1939.

    Article  MATH  Google Scholar 

  33. W. H. Brattain and W. Shockley, “Density of surface states on silicon deduced from contact potential measurements,” Phys. Rev., 72, 345, 1947.

    Google Scholar 

  34. A. M. Cowley and S. M. Sze, “Surface sates and barrier height of metal-semiconductor systems,” J. Appl. Phys., 36, 3212, 1965.

    Article  Google Scholar 

  35. E. H. Rhoderick, “The physics of Schottky barriers,” Third Solid-State Device Conf., pp. 1153–1168, Exeter, 1969.

    Google Scholar 

  36. A. J. Dekker, Solid State Physics, Prentice-Hall, New Jersey, USA, 1965.

    Google Scholar 

  37. V. L. Rideout and C. R. Crowell, “Effects of image force and tunneling on current transport in metal-semiconductor (Schottky barrier) contacts,” Solid-State Electron., 13, 993–1009, 1970.

    Article  Google Scholar 

  38. H. A. Bethe, “Theory of boundary layer of crystal rectifiers,” MIT Radiation Lab. Rept., 43/12, 1942.

    Google Scholar 

  39. C. R. Crowell, “The Richardson constant for thermionic emission in Schottky barrier diodes,” Solid-State Electron., 8, 395–399, 1965.

    Article  Google Scholar 

  40. A. M. Cowley, “Titanium-Silicon Schottky barrier diodes,” Solid-State Electron., 12, 403”414, 1970.

    Article  Google Scholar 

  41. D. L. Scharfetter, “Minority carrier injection and charge storage in epitaxial Schottky barrier diodes,” Solid-State Electron., 8, 299–211, 1965.

    Article  Google Scholar 

  42. A. Y. C. Yu, “Electron tunneling and contact resistance of metal-silicon contact barriers,” Solid-State Electron., 13, 239–247, 1970.

    Article  Google Scholar 

  43. F. A. Padovani and R. Stratton, “Field and thermionic-field emission in Schottky barriers,” Solid-State Electron., 9, 695”707, 1966.

    Article  Google Scholar 

  44. D. K. Schroeder and D. L. Meier, “Solar cell contact resistance: A review,” IEEE Trans. Electron. Dev., ED-31 (5), 637–647, 1984.

    Article  Google Scholar 

  45. D. P. Kennedy and P. C. Murley, “A two-dimensional mathematical analysis of the diffused semiconductor resistor,” IBM J. Res. Dev., 12, 242–250, 1968.

    Article  MATH  Google Scholar 

  46. H. Murrmann and D. Widmann, “Current crowding on metal contacts to planar devices,” IEEE Trans. Electron. Dev., ED-16, 1022–1024, 1969.

    Article  Google Scholar 

  47. H. Murrmann and D. Widmann, “Messung des Uebergangswiderstandes zwischen Metall und Diffusionsschichet in Si Planarelementen,” Solid-State Electron., 12, 879–886, 1969.

    Article  Google Scholar 

  48. H. Murrmann and D. Widmann, “Current crowding on metal contacts to planar devices,” IEEE Trans. Electron. Dev., ED-16, 1022–1024, 1969.

    Article  Google Scholar 

  49. H. H. Berger, “Models for contacts to planar devices,” Solid-State Electron., 15, 145–158, 1972.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2009). Junctions and Contacts. In: Silicon Devices and Process Integration. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-69010-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-69010-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-36798-9

  • Online ISBN: 978-0-387-69010-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics