A review of silicon properties is important to understanding silicon components, in particular modern components such as strained-silicon MOSFETs and hetero junction bipolar transistors. Several books cover this subject in detail. The objective of this chapter is to highlight those features that are most important to silicon device operation and characteristics.


Conduction Band Valence Band Drift Velocity Hole Concentration Minority Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Adler, A. C. Smith, and R. L. Longini, Introduction to Semiconductor Physics, Semi conductor Electronics Education Committee, Vol. 1, J. Wiley & Sons, New York, 1964.Google Scholar
  2. 2.
    W. Finkelburg, Einfuehrung in die Atomphysik, Springer Verlag, Berlin, 1958.Google Scholar
  3. 3.
    B. El-Kareh, Fundamentals of Semiconductor Processing Technologies, Kluwer Academic Press, Boston, 1995.Google Scholar
  4. 4.
    J. L. Moll, Physics of Semiconductors, McGraw-Hill, New York, 1964.MATHGoogle Scholar
  5. 5.
    C. Kittel, Introduction to Solid State Physics, John Wiley, New York, 1956.Google Scholar
  6. 6.
    A. J. Dekker, Solid State Physics, Prentice-Hall, New Jersey (USA), 1965.Google Scholar
  7. 7.
    W. Shockley, Electrons and Holes in Semiconductors, D. Van Nostrand Company, Princeton, New Jersey, 1950.Google Scholar
  8. 8.
    G. E. Kimball, “The electronic structure of diamond,” J. Chem. Phys., 3 (9), 560–564, 1935.CrossRefGoogle Scholar
  9. 9.
    E. M. Conwell, “Properties of silicon and germanium,” Part II, Proc. IRE, 46, 1281, 1958.CrossRefGoogle Scholar
  10. 10.
    R. A. Levy, Principles of Solid State Physics, Academic Press, 1968.Google Scholar
  11. 11.
    C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP”, J. Electrochem. Soc.: Solid State Sci. Technol., 122, 1133, 1975.Google Scholar
  12. 12.
    F. J. Morin and J. P. Maita, “Electrical properties of silicon containing arsenic and boron,” Phys. Rev., 96, 28–35, 1954.CrossRefGoogle Scholar
  13. 13.
    A. Many, Y. Goldstein, and N. B. Grover, Semiconductor Surfaces, North-Holland Publishing Co., 1971.Google Scholar
  14. 14.
    J. C. Hensel, H. Hasegawa, and M. Nakayama, “Cyclotron resonance in uniaxially stressed silicon,” Phys. Rev., 138 (1A), A132, 1965.CrossRefGoogle Scholar
  15. 15.
    H. D. Barber, “Effective mass and intrinsic concentration in silicon,” Solid-State Electron., 10, 1039, 1967.CrossRefGoogle Scholar
  16. 16.
    G. D. Mahan, “Energy gap in Si and Ge: Impurity dependence,” J. Appl. Phys., 51, 2634– 2646, 1980.CrossRefGoogle Scholar
  17. 17.
    T. N. Morgan, “Broadening of impurity bands in heavily doped silicon,” Phys. Rev., 139, 343–348, 1965.CrossRefGoogle Scholar
  18. 18.
    R. J. Van Overstraeten, H. J. DeMan, and R. P. Mertens, “Transport equation in heavily doped silicon,” IEEE Trans. Electron. Devices, ED-20, 290–298, 1973.CrossRefGoogle Scholar
  19. 19.
    S. R. Dhariwal, V. N. Ojha, and G. P. Srisvastava, “On the shifting and broadening of impurity bands and their contribution to the effective electric bandgap narrowing in moderately doped semiconductors,” IEEE Trans. Electron. Device, ED-32 (1), 44–48, 1985.CrossRefGoogle Scholar
  20. 20.
    H. P. D. Lanyon and R. A. Tuft, “Bandgap narrowing in moderately to heavily doped silicon,” IEEE Trans. Electron. Devices, ED-26 (7), 1014–1018, 1979.CrossRefGoogle Scholar
  21. 21.
    C. M. Van Vliet, “Bandgap narrowing and emitter efficiency in heavily doped emitter struc tures revisited,” IEEE Trans. Electron. Devices, 40 (6), 1040–1047, 1993.Google Scholar
  22. 22.
    D. S. Lee and J. G. Fossum, “Energy-band distortion in highly doped silicon,” IEEE Trans. Electron. Devices, ED-30 (6), 626–634, 1983.Google Scholar
  23. 23.
    N. Shigyo, N. Konishi, and H. Satake, “An improved bandgap narrowing model based on corrected intrinsic carrier concentration,” IEIC Trans. Electron., E-75-C (2), 156–160, 1992.Google Scholar
  24. 24.
    J. W. Slotboom and H. C. De Graaff, “Measurement of bandgap narrowing in Si bipolar tran sistors,” Solid State Electron., 19, 857–862, 1976.CrossRefGoogle Scholar
  25. 25.
    J. W. Slotboom and H. C. De Graaff, “Bandgap narrowing in silicon bipolar transistors,” IEEE Trans. Electron. Devices, ED-24 (8), 1123–1125, 1977.CrossRefGoogle Scholar
  26. 26.
    R. P. Mertens, J. L. Van Meerbergen, J. F. Nus, and R. J. Van Overstraeten, “Measurement of the minority-carrier transport parameters in heavily doped silicon,” IEEE Trans. Electron. Devices, ED-27 (5), 949–955, 1980.CrossRefGoogle Scholar
  27. 27.
    J. del Alamo, S. Swirhun, and R. M. Swanson, “Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon,” IEDM Technol. Digest, 290–293, 1985.Google Scholar
  28. 28.
    H. S. Bennett and C. L. Wilson, “Statistical comparisons of data on band-gap narrow ing in heavily doped silicon: electrical and optical measurements,” J. Appl. Phys., 55 (10), 3582–3587, 1984.CrossRefGoogle Scholar
  29. 29.
    A. Neugroschel, S. C. Pao, and F. A. Lindholm, “A method for determining energy gap lowering in highly doped semiconductors,” IEEE Trans. Electron. Devices, ED-29 (5), 894–902, 1982.CrossRefGoogle Scholar
  30. 30.
    A. W. Wieder, “Emitter effects in shallow bipolar devices” Measurements and consequences,” IEEE Trans. Electron. Devices, ED-27 (8), 1402–1408, 1980.CrossRefGoogle Scholar
  31. 31.
    G. E. Possin, M. S. Adler, and B. J. Baliga, “Measurement of the p-n product in heavily doped epitaxial emitters,” IEEE Trans. Electron. Devices, ED-31 (1), 3–17, 1984.CrossRefGoogle Scholar
  32. 32.
    G. W. Ludwig and R. L Watters, “Drift and conductivity mobility in silicon,” Phys. Rev, 101(6), 1699–1701, 1956.CrossRefGoogle Scholar
  33. 33.
    E. M. Conwell and V. F. Weisskopf, “Theory of impurity scattering in semiconductors,” Phys. Rev. 77(3), 388–390, 1950.MATHCrossRefGoogle Scholar
  34. 34.
    D. M. Caughy and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” Proc. IEEE, 2192–2193, 1967.Google Scholar
  35. 35.
    G. Baccarani and P. Ostoja, “Electron mobility empirically related to phosphorus concentra tion in silicon,” Solid State Electron., 18 (6), 579–580, 1975.CrossRefGoogle Scholar
  36. 36.
    D. A. Antoniadis, A. G. Gonzalez, and R. W. Dutton, “Boron in near intrinsic {100} and (111) silicon under inert and oxidizing ambients – diffusion and segregation,” J. Electrochem. Soc: Solid-State Sci. Technol., 125 (5), 813–819, 1978.Google Scholar
  37. 37.
    S. Wagner, “Diffusion of boron from shallow ion implants in silicon,” J. Electrochem. Soc: Solid-State Sci. Technol., 119 (1), 1570–1576, 1972.Google Scholar
  38. 38.
    N. D. Arora, J. R. Hauser, and D. J. Roulston, “Electron and hole mobilities in silicon as a func tion of concentration and temperature,” IEEE Trans. Electron. Dev. ED-29, 292–295, 1982.CrossRefGoogle Scholar
  39. 39.
    W W Gartner, “Temperature dependence of junction transistor parameters,” Proc. IRE, 45 (5), 667, 1957.CrossRefGoogle Scholar
  40. 40.
    J. C. Irvin, “Resistivity of bulk silicon and of diffused layers in silicon,” Bell Syst. Tech. J. 41, 387, March 1962.Google Scholar
  41. 41.
    W R. Thurber, R. L. Mattis, Y. M. Liu, and J. J. Filliban, “Resistivity-dopant density relation ship for phosphorus-doped silicon,” J. Electrochem. Soc: Solid State Sci. Technol., 12 (8), 1807, 1980.Google Scholar
  42. 42.
    A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley and Sons, 1967.Google Scholar
  43. 43.
    S. M. Sze, Physics of Semiconductor Devices, John Wiley and Sons, 1981.Google Scholar
  44. 44.
    R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev, 87 (2), 387, 1952.CrossRefGoogle Scholar
  45. 45.
    W Shockley and W T. Read, “Statistics of the recombination of holes and electrons,” Phys. Rev. 87 (5), 835–842, 1952.MATHCrossRefGoogle Scholar
  46. 46.
    J. Dziewier and W Schmid, “Auger recombination coefficients for highly doped and highly excited silicon,” Appl. Phys. Lett., 31, 346 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Personalised recommendations