Weighted Back-projection Methods

  • Michael Radermacher


Traditionally, 3D reconstruction methods have been classified into two major groups, Fourier reconstruction methods and direct methods (e.g. Crowther et al., 1970; Gilbert, 1972). Fourier methods are defined as algorithms that restore the Fourier transform of the object from the Fourier transforms of their projections and then obtain the real-space distribution of the object by inverse Fourier transformation. Included in this group are also equivalent reconstruction schemes that use expansions of object and projections into orthogonal function systems (e.g. Cormack, 1963, 1964; Smith et al., 1973; Chapter 9 of this volume). In contrast, direct methods are defined as those that carry out all calculations in real space. These include the convolution back-projection algorithms (Bracewell and Riddle, 1967; Gilbert, 1972; Ramachandran and Lakshminarayanan, 1971) and iterative algorithms (Gordon et al., 1970; Colsher, 1977). Weighted back-projection methods are difficult to classify in this scheme, since they are equivalent to convolution back-projection algorithms, but work on the real-space data as well as the Fourier transform data of either the object or the projections. Both convolution back-projection and weighted back-projection algorithms are based on the same theory as Fourier reconstruction methods, whereas iterative methods normally do not take into account the Fourier relationships between object transform and projection transforms.


Weighting Function Inverse Fourier Transform Arbitrary Geometry Tilt Series Maximum Tilt Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barth, M., Bryan, R. K. and Hegerl, R. (1989). Approximation of missing-cone data in electron microscopy. Ultramicroscopy 31:365–378.CrossRefGoogle Scholar
  2. Bellon, P. L., Cantele, F., Kreman, M., Lanzavecchia, S., Wright, E., Zampighi, G. A. and Zampighi, L. (2005). Conical tomography of freeze-fracture replicas: a method for the study of integral membrane proteins inserted in phospholipid bilayers. J. Struct. Biol. 149:87–98.PubMedCrossRefGoogle Scholar
  3. Bellon, P. L. and Lanzanvacchia, S. (1997). Fast direct Fourier methods, based on one-and two-pass coordinate transformations, yield accurate reconstructions of X-ray CT clinical images. Phys. Med. Biol. 42:443–463.PubMedCrossRefGoogle Scholar
  4. Bellon, P. L., Lanzavecchia, S. and Radermacher, M. (1999). Fast and accurate three-dimensional reconstruction from projections with random orientations via Radon Transforms. J. Struct. Biol. 128:152–164.PubMedCrossRefGoogle Scholar
  5. Bracewell, R. N. and Riddle, A. C. (1967). Inversion of fan-beam scans in radio astronomy. Astrophys. J. 150:427–434.CrossRefGoogle Scholar
  6. Carazo, J.M. and Carrascosa, J. L. (1987). Information recovery in missing angular data cases: an approach by the convex projections method in three dimensions. J. Microsc. 45:23–43.Google Scholar
  7. Carazo, J.-M., Wagenknecht, T. and Frank, J. (1989). Variations of the three-dimensional structure of the Escherichia coli ribosome in the range of overlap views. Biophys. J. 55:465–477.PubMedCrossRefGoogle Scholar
  8. Cardone, G., Grünewald, K. and Steven, A.C. (2005). A resolution criterion for electron tomography based on cross-validation. J. Struct. Biol. 151:117–129.PubMedCrossRefGoogle Scholar
  9. Colsher, J.G. (1977). Iterative three-dimensional image reconstruction from tomographic projections. Comput. Graph. Image Proc. 6:513–537.CrossRefGoogle Scholar
  10. Cormack, A. M. (1963). Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys. 34:2722–2727.CrossRefGoogle Scholar
  11. Cormack, A. M. (1964). Representation of a function by its line integrals, with some radiological applications. II. J. Appl. Phys. 35:2908–2913.CrossRefGoogle Scholar
  12. Crowther, R. A., DeRosier, D. J. and Klug, A. (1970). The reconstruction of a three dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. A 317:319–340.CrossRefGoogle Scholar
  13. Deans, S. R. (1983). The Radon Transform and Some of Its Applications. Wiley, New York.Google Scholar
  14. Frank, J., Carazo, J.-M. and Radermacher, M. (1988). Refinement of the random conical reconstruction technique using multivariate statistical analysis and classification. Eur. J. Cell Biol. Suppl. 25 48:143–146.Google Scholar
  15. Frank, J. and Goldfarb, W. (1980). Methods for averaging of single molecules and lattice fragments. in Electron Microscopy at Molecular Dimensions (W. Baumeister and W. Vogell, eds). Springer-Verlag, Berlin, pp. 261–269.Google Scholar
  16. Frank, J., McEwen, B. F., Radermacher, M., Turner, J. N. and Rieder, C. L. (1987). Three-dimensional tomographic reconstruction in high-voltage electron microscopy. J. Electron Microsc. Tech. 6:193–205.CrossRefGoogle Scholar
  17. Gilbert, P. F. C. (1972). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. II: Direct methods. Proc. R. Soc. B 182:89–102.Google Scholar
  18. Goodman, J.W. (1968). Introduction to Fourier Optics. McGraw-Hill, New York.Google Scholar
  19. Gordon, R., Bender, R. and Herman, G.T. (1970). Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29: 471–481.PubMedCrossRefGoogle Scholar
  20. Harauz, G. and van Heel, M. (1986). Exact filters for general three-dimensional reconstruction. Optik 73:146–156.Google Scholar
  21. Hoppe, W., Schramm, H. J., Sturm, M., Hunsmann, N. and GaBmann, J. (1976). Threedimensional electron microscopy of individual biological objects. I: Methods. Z. Naturforsch. 31a:645–655.Google Scholar
  22. Hsieh, C.-E., Marko, M., Frank, J. and Mannella, C. A. (2002). Electron tomographic analysis of frozen-hydrated tissue sections. J. Struct. Biol. 138:63–73.PubMedCrossRefGoogle Scholar
  23. Kwok, Y. S., Reed, I. S. and Truong, T. K. (1977). A generalized |ω|-filter for 3D reconstruction. IEEE Trans. Nucl. Sci. NS24:1990–2005.Google Scholar
  24. Lanzavecchia, S. and Bellon P. L. (1998). Fast computation of 3D Radon transform via a direct Fourier method. Bioinformatics 14:212–216.PubMedCrossRefGoogle Scholar
  25. Levi, A. and Stark, H. (1983). Signal restoration from phase by projections onto convex sets. J. Opt. Soc. Am. 73:810–822.Google Scholar
  26. McEwen, B. F., Radermacher, M., Rieder, C. L. and Frank, J. (1986). Tomographic three-dimensional reconstruction of cilia ultrastructure from thick sections. Proc. Nat. Acad. Sci. USA 83:9040–9044.PubMedCrossRefGoogle Scholar
  27. Papoulis, A. (1968). Systems and Transforms with Applications in Optics. McGraw-Hill, New York; reprint, Robert E. Krieger, Florida, 1986.Google Scholar
  28. Provencher, S. W. and Vogel, R. H. (1988). Three-dimensional reconstruction from electron micrographs of disordered specimes. I: Method. Ultramicroscopy 25:209–222.PubMedCrossRefGoogle Scholar
  29. Radermacher, M. (1980). Dreidimensionale Rekonstruktion bei kegelförmiger Kippung im Elektronenmikroskop. PhD thesis, Technische Universität München, Germany.Google Scholar
  30. Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electron. Microsc. Tech. 9:359–394.PubMedCrossRefGoogle Scholar
  31. Radermacher, M. (1994). Three-dimensional reconstruction from random projections: orientational alignment via Radon transforms. Ultramicroscopy 53:121–136.PubMedCrossRefGoogle Scholar
  32. Radermacher, M. (1997). Radon transform techniques for alignment and three-dimensional reconstruction from random projections. Scanning Microsc. 11:171–177.Google Scholar
  33. Radermacher, M. and Hoppe, W. (1978). 3-D reconstruction from conically tilted projections. In Proc. 9th Int. Congr. Electron Microscopy Vol. 1, pp. 218–219.Google Scholar
  34. Radermacher, M. and Hoppe, W. (1980). Properties of 3-D reconstructions from projections by conical tilting compared to single axis tilting. In Proceeding of the 7th European Congress on Electron Microscopy Vol. 1, pp. 132–133.Google Scholar
  35. Radermacher, M., Wagenknecht, T., Verschoor, A. and Frank, J. (1986). A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli. J. Microsc. 141: RP1–RP2.PubMedGoogle Scholar
  36. Radermacher, M., Wagenknecht, T., Verschoor, A. and Frank, J. (1987). Threedimensional reconstruction from a single-exposure random conical tilt series applied to the 50S ribosomal of Escherichia coli. J. Microsc. 146:113–136.PubMedGoogle Scholar
  37. Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. König. Sächs. Ges. Wiss. Leipzig, Math. Phys. Kl. 69:262–277.Google Scholar
  38. Ramachandran, G. N. and Lakshminarayanan, A.V. (1971). Three-dimensional reconstruction from radiographs and electron micrographs: Application of convolution instead of Fourier transforms. Proc. Natl. Acad. Sci. USA 68:2236–2240.PubMedCrossRefGoogle Scholar
  39. Shannon, C. E. (1949). Communication in the presence of noise. Proc. IRE 37:10–22.CrossRefGoogle Scholar
  40. Shepp, L.A. (1980). Computerized tomography and nuclear magnetic resonance zeugmatography. J. Comput. Assist. Tomogr. 4:94–107.PubMedCrossRefGoogle Scholar
  41. Smith, P. R., Peter, T.M. and Bates, R.H.T. (1973). Image reconstruction from a finite number of projections. J. Phys. A 6:361–382.CrossRefGoogle Scholar
  42. Stöffler, D., Feja, B., Fahrenkrog, B., Walz, J., Typke, D. and Aebi, U. (2003). Cryoelectron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328:119–130.PubMedCrossRefGoogle Scholar
  43. Suzuki, S. (1983). A study on the resemblance between a computed tomographic image and the original object, and the relationship to the filterfunction used in image reconstruction. Optik 66:61–71.Google Scholar
  44. Vainshtein, B. K. and Orlov, S. S. (1972). Theory of the recovery of functions from their projections. Sov. Phys. Crystallogr. 17:253–257.Google Scholar
  45. Vogel, R. W. and Provencher, S. W. (1988). Three-dimensional reconstruction from electron micrographs of disordered specimes. II Implementation and results. Ultramicroscopy 25:223–240.PubMedCrossRefGoogle Scholar
  46. Zampighi, G. A., Zampighi, L., Fain, N., Wright, E. M., Cantele, F. and Lanzavecchia, S. (2005). Conical tomography II: A method for the study of cellular organelles in thin sections. J. Struct. Biol. 151:263–274.PubMedCrossRefGoogle Scholar
  47. Zwick, M. and Zeitler, E. (1973). Image reconstruction from projections. Optik 38:550–565.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michael Radermacher
    • 1
  1. 1.University of Vermont Collage of MedicineBurlingtonUSA

Personalised recommendations