Cryotomography: Low-dose Automated Tomography of Frozen-hydrated Specimens

  • Abraham J. Koster
  • Montserrat Bárcena


Electron tomography is an imaging technique that provides 3D images of a specimen with nanometer scale resolution. The range of specimens that can be investigated with this technique is particularly wide, from large (500–1000 nm) unique variable structures such as whole cells to suspensions of thousands of small identical macromolecules (>200 kDa).When applied to cryofixed frozen-hydrated biological material, the technique is often referred to as cryotomography. In combination with automated low-dose data collection and advanced computational methods, such as molecular identification based on pattern recognition, cryotomography can be used to visualize the architecture of small cells and organelles and/or to map macromolecular structures in their cellular environment. The resolution that can be obtained with cryotomography depends on several fundamental and technical issues related to specimen preparation, microscopy and subsequent image processing steps, but will typically be in the range of 5–10 nm.


Tilt Angle Specimen Holder Tilt Axis Data Collection Scheme Electron Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, M., Dubochet, J. et al. (1998). Cryo-negative staining. Micron 29:145–160.PubMedCrossRefGoogle Scholar
  2. Adrian, M., ten Heggeler-Bordier, B. et al. (1990). Direct visualization of supercoiled DNA molecules in solution. EMBO J. 9:4551–4554.PubMedGoogle Scholar
  3. Ahting, U., Thun, C. et al. (1999). The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147:959–968.PubMedCrossRefGoogle Scholar
  4. Al-Amoudi, A., Chang, J. J. et al. (2004). Cryo-electron microscopy of vitreous sections. EMBO J. 23:3583–3588.PubMedCrossRefGoogle Scholar
  5. Al-Amoudi, A., Dubochet, J. et al. (2003). An oscillating cryo-knife reduces cutting-induced deformation of vitreous ultrathin sections. J. Microsc. 212:26–33.PubMedCrossRefGoogle Scholar
  6. Al-Amoudi, A., Studer, D. et al. (2005). Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J. Struct. Biol. 150:109–121.PubMedCrossRefGoogle Scholar
  7. Angert, I., Majorovits, E. et al. (2000). Zero-loss image formation and modified contrast transfer theory in EFTEM. Ultramicroscopy 81:203–222.PubMedCrossRefGoogle Scholar
  8. Bajaj, C., Yu, Z. et al. (2003). Volumetric feature extraction and visualization of tomographic molecular imaging. J. Struct. Biol. 144:132–143.PubMedCrossRefGoogle Scholar
  9. Barth, M., Bryan, R. K. et al. (1988). Estimation of missing cone data in three-dimensional electron microscopy. Scanning Microsc. Suppl. 2:277–284.PubMedGoogle Scholar
  10. Baumeister, W. (2002). Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12:679–684.PubMedCrossRefGoogle Scholar
  11. Baumeister, W. (2005). From proteomic inventory to architecture. FEBS Lett. 579:933–937.PubMedCrossRefGoogle Scholar
  12. Baumeister, W., Grimm, R. et al. (1999). Electron tomography of molecules and cells. Trends Cell Biol. 9:81–85.PubMedCrossRefGoogle Scholar
  13. Baumeister, W. and Steven, A. C. (2000). Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci. 25:624–631.PubMedCrossRefGoogle Scholar
  14. Beck, M., Forster, F. et al. (2004). Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390.PubMedCrossRefGoogle Scholar
  15. Benjamin, J., Ganser-Pornillos, B. K. et al. (2005). Three-dimensional structure of HIV-1 viruslike particles by electron cryotomography. J. Mol. Biol. 346:577–588.PubMedCrossRefGoogle Scholar
  16. Biel, S. S., K. Kawaschinski, et al. (2003). From tissue to cellular ultrastructure: closing the gap between micro-and nanostructural imaging. J Microsc 212:91–99.PubMedCrossRefGoogle Scholar
  17. Böhm, J., Frangakis, A. S. et al. (2000). Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97:14245–14250.PubMedCrossRefGoogle Scholar
  18. Böhm, J., Lambert, O. et al. (2001). FhuA-mediated phage genome transfer into liposomes: a cryo-electron tomography study. Curr. Biol. 11:1168–1175.PubMedCrossRefGoogle Scholar
  19. Bongini, L., Fanelli, D. et al. (2004). Freezing immunoglobulins to see them move. Proc. Natl Acad. Sci. USA 101:6466–6471.PubMedCrossRefGoogle Scholar
  20. Bouwer, J. C., Mackey, M. R. et al. (2004). Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement. J. Struct. Biol. 148:297–306.PubMedCrossRefGoogle Scholar
  21. Braet, F. (2004). How molecular microscopy revealed new insights into the dynamics of hepatic endothelial fenestrae in the past decade. Liver Int. 24:532–539.PubMedCrossRefGoogle Scholar
  22. Brandt, S., Heikkonen, J. et al. (2001). Automatic alignment of transmission electron microscope tilt series without fiducial markers. J. Struct. Biol. 136:201–213.PubMedCrossRefGoogle Scholar
  23. Braunfeld, M. B., Koster, A. J. et al. (1994). Cryo automated electron tomography: towards high-resolution reconstructions of plastic-embedded structures. J Microsc 174:75–84.PubMedGoogle Scholar
  24. Bullitt, E., Rout, M. P. et al. (1997). The yeast spindle pole body is assembled around a central crystal of Spc42p. Cell 89:1077–1086.PubMedCrossRefGoogle Scholar
  25. Burge, R. E., Dainty, J. C. et al. (1977). Optical and digital image processing in high-resolution electron microscopy. Ultramicroscopy 2:169–178.PubMedCrossRefGoogle Scholar
  26. Cardone, G., Grünewald, K., Steven, A.C. (2005). A resolution criterion for electron tomography based on cross-validation. J. Struct. Biol. 151:117–119.PubMedCrossRefGoogle Scholar
  27. Carragher, B., Kisseberth, N. et al. (2000). Leginon: an automated system for acquisition of images from vitreous ice specimens. J. Struct. Biol. 132:33–45.PubMedCrossRefGoogle Scholar
  28. Chestnut, M. H., Siegel, D. P. et al. (1992). A temperature-jump device for time-resolved cryo-transmission electron microscopy. Microsc. Res. Tech. 20:95–101.PubMedCrossRefGoogle Scholar
  29. Coene, W., Janssen, G. et al. (1992). Phase retrieval through focus variation for ultraresolution in field-emission transmission electron microscopy. Phys. Rev. Lett. 69:3743–3746.PubMedCrossRefGoogle Scholar
  30. Crowther, R. A., Amos, L. A. et al. (1970). Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs. Nature 226:421–425.PubMedCrossRefGoogle Scholar
  31. Cyrklaff, M., M. Adrian, et al. (1990). Evaporation during preparation of unsupported thin vitrified aqueous layers for cryo-electron microscopy. J. Electron Microsc. Tech. 16:351–355.PubMedCrossRefGoogle Scholar
  32. Cyrklaff, M., C. Risco, et al. (2005). Cryo-electron tomography of vaccinia virus. Proc. Nat Acad. Sci. USA 102:2772–2777.PubMedCrossRefGoogle Scholar
  33. De Carlo, S., El-Bez, C. et al. (2002). Cryo-negative staining reduces electron-beam sensitivity of vitrified biological particles. J. Struct. Biol. 138:216–226.PubMedCrossRefGoogle Scholar
  34. DeRosier, D. J. and Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134.CrossRefGoogle Scholar
  35. Dierksen, K., Typke, D. et al. (1993). Implementation of autofocus and low-dose procedures. Ultramicroscopy 49:109–120.CrossRefGoogle Scholar
  36. Dierksen, K., Typke, D. et al. (1992). Towards automatic electron tomography. Ultramicroscopy 40:71–87.CrossRefGoogle Scholar
  37. Dierksen, K., Typke, D. et al. (1995). Three-dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. Biophys. J. 68:1416–1422.PubMedCrossRefGoogle Scholar
  38. Downing, K. H. and Hendrickson, F. M. (1999). Performance of a 2k CCD camera designed for electron crystallography at 400 kV. Ultramicroscopy 75:215–233.PubMedCrossRefGoogle Scholar
  39. Dubochet, J., Adrian, M. et al. (1988). Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228.PubMedGoogle Scholar
  40. Dubochet, J. and Sartori Blanc, N. (2001). The cell in absence of aggregation artifacts. Micron 32:91–99.PubMedCrossRefGoogle Scholar
  41. Erk, I., Nicolas, G. et al. (1998). Electron microscopy of frozen biological objects: a study using cryosectioning and cryosubstitution. J. Microsc. 189:236–248.PubMedCrossRefGoogle Scholar
  42. Faruqi, A. R., Cattermole, D. M. et al. (2003). Evaluation of a hybrid pixel detector for electron microscopy. Ultramicroscopy 94:263–276.PubMedCrossRefGoogle Scholar
  43. Feja, B. and Aebi, U. (1999). Determination of the inelastic mean free path of electrons in vitrified ice layers for on-line thickness measurements by zero-loss imaging. J. Microsc. 193:15–19.PubMedCrossRefGoogle Scholar
  44. Fernandez, J. J. and Li, S. (2003). An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. J. Struct. Biol. 144:152–161.PubMedCrossRefGoogle Scholar
  45. Forster, F., Medalia, O. et al. (2005). Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl Acad. Sci. USA 102:4729–4734.PubMedCrossRefGoogle Scholar
  46. Frangakis, A. S., Bohm, J. et al. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl Acad. Sci. USA 99:14153–14158.PubMedCrossRefGoogle Scholar
  47. Frangakis, A. S. and Hegerl, R. (2001). Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135:239–250.PubMedCrossRefGoogle Scholar
  48. Frangakis, A. S. and Hegerl, R. (2002). Segmentation of two-and three-dimensional data from electron microscopy using eigenvector analysis. J. Struct. Biol. 138:105–113.PubMedCrossRefGoogle Scholar
  49. Frangakis, A. S., Stoschek, A. et al. (2001). Wavelet transform filtering and nonlinear anisotropic diffusion assessed for signal reconstruction performance on multidimensional biomedical data. IEEE Trans. Biomed. Eng. 48:213–222.PubMedCrossRefGoogle Scholar
  50. Frank, J. (2002). Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31: 303–319.PubMedCrossRefGoogle Scholar
  51. Frank, J., Radermacher, M. et al. (1996). SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116:190–199.PubMedCrossRefGoogle Scholar
  52. Frank, J., Wagenknecht, T. et al. (2002). Three-dimensional imaging of biological complexity. J. Struct. Biol. 138:85–91.PubMedCrossRefGoogle Scholar
  53. Frederik, P. M., Busing, W.M. et al. (1982). Concerning the nature of the cryosectioning process. J. Microsc. 125:167–175.PubMedGoogle Scholar
  54. Freitag, B., Kujawa, S. et al. (2005). Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102:209–214.PubMedCrossRefGoogle Scholar
  55. Fung, J. C., Liu, W. et al. (1996). Toward fully automated high-resolution electron tomography. J. Struct. Biol. 116:181–189.PubMedCrossRefGoogle Scholar
  56. Grimm, R., Barmann, M. et al. (1997). Energy filtered electron tomography of ice-embeddedactin and vesicles. Biophys. J. 72:482–489.PubMedGoogle Scholar
  57. Grimm, R., Singh, H. et al. (1998). Electron tomography of ice-embedded prokaryotic cells. Biophys. J. 74:1031–1042.PubMedGoogle Scholar
  58. Grimm, R., Typke, D. et al. (1996). Determination of the inelastic mean free path in ice by examination of tilted vesicles and automated most probable loss imaging. Ultramicroscopy 63:169–179.PubMedCrossRefGoogle Scholar
  59. Grunewald, K., Desai, P. et al. (2003). Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302:1396–1398.PubMedCrossRefGoogle Scholar
  60. Grunewald, K., Medalia, O. et al. (2003). Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys. Chem. 100:577–591.PubMedCrossRefGoogle Scholar
  61. Han, K. F., Sedat, J.W. et al. (1995). Mechanism of image formation for thick biological specimens: exit wavefront reconstruction and electron energy-loss spectroscopic imaging. J. Microsc. 178:107–119.PubMedGoogle Scholar
  62. Han, K. F., Sedat, J.W. et al. (1997). Practical image restoration of thick biological specimens using multiple focus levels in transmission electron microscopy. J. Struct. Biol. 120:237–244.PubMedCrossRefGoogle Scholar
  63. Hart, R. G. (1968). Electron microscopy of unstained biuological material: The polytropic montage. Science 159:1464–1467.PubMedCrossRefGoogle Scholar
  64. He, W., Cowin, P. et al. (2003). Untangling desmosomal knots with electron tomography. Science 302:109–113.PubMedCrossRefGoogle Scholar
  65. Hegerl, R. and Hoppe, W. (1976). Influence of electron noise on three-dimensional image reconstruction. Z. Naturforsch. 31a:1717–1721.Google Scholar
  66. Henderson, R. (1995). The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28: 171–193.PubMedGoogle Scholar
  67. Heymann, J. B., Cheng, N. et al. (2003). Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat. Struct. Biol. 10:334–341.PubMedCrossRefGoogle Scholar
  68. Hoppe, W. (1969). Das Endlichkeitspostulat und das Interpolationstheorem der dreidimensionalen electronenmikroscopischen Analyse aperiodischer Strukturen. Optik 29: 617–621.Google Scholar
  69. Horowitz, R. A., Koster, A. J. et al. (1997). Automated electron microscope tomography of frozen-hydrated chromatin: the irregular three-dimensional zigzag architecture persists in compact, isolated fibers. J. Struct. Biol. 120:353–362.PubMedCrossRefGoogle Scholar
  70. Hsieh, C. E., Marko, M. et al. (2002). Electron tomographic analysis of frozen-hydrated tissue sections. J. Struct. Biol. 138:63–73.PubMedCrossRefGoogle Scholar
  71. Humbel, B. M., Weber, K. et al. (1991). Versatile controlling system for cryopreparation techniques in electron microscopy. J. Electron Microsc. Tech. 17:450–455.PubMedCrossRefGoogle Scholar
  72. Koster, A. J., A. van der Bos, et al. (1987). An autofocus method for a TEM. Ultramicroscopy 21: 209–222.CrossRefGoogle Scholar
  73. Koster, A. J., Chen, H. et al. (1992). Automated microscopy for electron tomography. Ultramicroscopy 46:207–227.PubMedCrossRefGoogle Scholar
  74. Koster, A. J., Grimm, R. et al. (1997). Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120:276–308.PubMedCrossRefGoogle Scholar
  75. Koster, A. J., der Ruijter, W. J. et al. (1989). Autofocus method for a TEM using minimum electron dose. Ultramicroscopy 27:251–272.CrossRefGoogle Scholar
  76. Kremer, J. R., Mastronarde, D. N. et al. (1996). Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116:71–76.PubMedCrossRefGoogle Scholar
  77. Kurner, J., Frangakis, A. S. et al. (2005). Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307:436–448.PubMedCrossRefGoogle Scholar
  78. Kurner, J., Medalia, O. et al. (2004). New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography. Exp. Cell Res. 301:38–42.PubMedCrossRefGoogle Scholar
  79. Leapman, R. D. and Sun, S. (1995). Cryo-electron energy loss spectroscopy: observations on vitrified hydrated specimens and radiation damage. Ultramicroscopy 59:71–79.PubMedCrossRefGoogle Scholar
  80. Lepault, J., Booy, F. P. et al. (1983). Electron microscopy of frozen biological suspensions. J. Microsc. 129: 89–102.PubMedGoogle Scholar
  81. Lepault, J., Erk, I. et al. (1991). Time-resolved cryo-electron microscopy of vitrified muscular components. J. Microsc. 161:47–57.PubMedGoogle Scholar
  82. Liu, Y., Penczek, P. A. et al. (1995). A marker-free alignment method for electron tomography. Ultramicroscopy 58:393–402.PubMedCrossRefGoogle Scholar
  83. Lucic, V., Yang, T. et al. (2005). Morphological characterization of molecular complexes present in the synaptic cleft. Structure (Camb.) 13:423–334.CrossRefGoogle Scholar
  84. Mannella, C. A. (2006). The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762:140–147.PubMedGoogle Scholar
  85. Mannella, C. A., Pfeiffer, D. R. et al. (2001). Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52:93–100.PubMedCrossRefGoogle Scholar
  86. Marabini, R., Rietzel, E. et al. (1997). Three-dimensional reconstruction from reduced sets of very noisy images acquired following a single-axis tilt schema: application of a new three-dimensional reconstruction algorithm and objective comparison with weighted backprojection. J. Struct. Biol. 120:363–371.PubMedCrossRefGoogle Scholar
  87. Marco, S., Boudier, T. et al. (2004). Electron tomography of biological samples. Biochemistry 69:1219–1225.PubMedGoogle Scholar
  88. Marsh, B. J., Volkmann, N. et al. (2004). Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc. Natl Acad. Sci. USA 101:5565–5570.PubMedCrossRefGoogle Scholar
  89. Mastronarde, D. N. (1997). Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120:343–352.PubMedCrossRefGoogle Scholar
  90. Matias, V. R., Al-Amoudi, A. et al. (2003). Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185:6112–6118.PubMedCrossRefGoogle Scholar
  91. McEwen, B. F., Downing, K. H. et al. (1995). The relevance of dose-fractionation in tomography of radiation-sensitive specimens. Ultramicroscopy 60:357–373.PubMedCrossRefGoogle Scholar
  92. McEwen, B. F. and Frank, J. (2001). Electron tomographic and other approaches for imaging molecular machines. Curr. Opin. Neurobiol. 11:594–600.PubMedCrossRefGoogle Scholar
  93. McEwen, B. F., Marko, M. et al. (2002). Use of frozen-hydrated axonemes to assess imaging parameters and resolution limits in cryoelectron tomography. J. Struct. Biol. 138:47–57.PubMedCrossRefGoogle Scholar
  94. McIntosh, R., Nicastro, D. et al. (2005). New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 15:43–51.PubMedCrossRefGoogle Scholar
  95. Medalia, O., Typke, D. et al. (2002a). Cryoelectron microscopy and cryoelectron tomography of the nuclear pre-mRNA processing machine. J. Struct. Biol. 138:74–84.PubMedCrossRefGoogle Scholar
  96. Medalia, O., Weber, I. et al. (2002b). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213.PubMedCrossRefGoogle Scholar
  97. Messaoudi, C., Boudier, T. et al. (2003). Use of cryo-negative staining in tomographic reconstruction of biological objects: application to T4 bacteriophage. Biol. Cell 95:393–398.PubMedCrossRefGoogle Scholar
  98. Midgley, P. A. and Weyland M. (2003). 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96:413–431.PubMedCrossRefGoogle Scholar
  99. Moritz, M., Braunfeld, M. B. et al. (1995). Three-dimensional structural characterization of centrosomes from early Drosophila embryos. J. Cell Biol. 130:1149–1159.PubMedCrossRefGoogle Scholar
  100. Muller, E. G., Snydsman, B. E. et al. (2005). The organization of the core proteins of the yeast spindle pole body. Mol. Biol. Cell. 16:3341–3352.PubMedCrossRefGoogle Scholar
  101. Murk, J. L., Humbel, B. M. et al. (2003). Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc. Natl Acad. Sci. USA 100:13332–13337.PubMedCrossRefGoogle Scholar
  102. Nicastro, D., Frangakis, A. S. et al. (2000). Cryo-electron tomography of Neurospora mitochondria. J. Struct. Biol. 129:48–56.PubMedCrossRefGoogle Scholar
  103. Nickell, S., Forster, F. et al. (2005). TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149:227–234.PubMedCrossRefGoogle Scholar
  104. Nickell, S., Hegerl, R. et al. (2003). Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141:34–42.PubMedCrossRefGoogle Scholar
  105. Nitsch, M., Walz, J. et al. (1998). Group II chaperonin in an open conformation examined by electron tomography. Nat. Struct. Biol. 5:855–857.PubMedCrossRefGoogle Scholar
  106. Owen, C. H. and Landis, W. J. (1996). Alignment of electron tomographic series by correlation without the use of gold particles. Ultramicroscopy 63:27–38.PubMedCrossRefGoogle Scholar
  107. Patwardhan, A. (2003). Transmission electron microscopy of weakly scattering objects described by operator algebra. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20:1210–1222.PubMedCrossRefGoogle Scholar
  108. Penczek, P., Marko, M. et al. (1995). Double-tilt electron tomography. Ultramicroscopy 60:393–410.PubMedCrossRefGoogle Scholar
  109. Penczek, P. A. (2002). Three-dimensional spectral signal-to-noise ratio for a class of reconstruction algorithms. J. Struct. Biol. 138:34–46.PubMedCrossRefGoogle Scholar
  110. Perkins, G. A., Renken, C.W. et al. (1997). Electron tomography of large, multicomponent biological structures. J. Struct. Biol. 120:219–27.PubMedCrossRefGoogle Scholar
  111. Radermacher, M. (1992). Weighted Back-projection Methods. Plenum Press, New York.Google Scholar
  112. Radermacher, M. (1994). Three-dimensional reconstruction from random projections: orientational alignment via Radon transforms. Ultramicroscopy 53:121–136.PubMedCrossRefGoogle Scholar
  113. Radon, J. (1917). Über die Bertimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. König. Sächs. Ges. Wiss. Math. Phs. Klasse 69:262–277.Google Scholar
  114. Rath, B. K., Hegerl, R. et al. (2003). Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144:95–103.PubMedCrossRefGoogle Scholar
  115. Rath, B. K., Marko, M. et al. (1997). Low-dose automated electron tomography: a recent implementation. J. Struct. Biol. 120:210–218.PubMedCrossRefGoogle Scholar
  116. Ress, D. B., Harlow, M. L. et al. (2004). Methods for generating high-resolution structural models from electron microscope tomography data. Structure (Camb.) 12:1763–1774.CrossRefGoogle Scholar
  117. Rockel, B., Walz, J. et al. (1999). Structure of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum as studied by electron tomography. FEBS Lett. 451:27–32.PubMedCrossRefGoogle Scholar
  118. Rose, H. (2005). Prospects for aberration-free electron microscopy. Ultramicroscopy 103:1–6.PubMedCrossRefGoogle Scholar
  119. Russell, R. B., Alber, F. et al. (2004). A structural perspective on protein-protein interactions. Curr. Opin. Struct. Biol. 14:313–324.PubMedCrossRefGoogle Scholar
  120. Sali, A., Glaeser, R. et al. (2003). From words to literature in structural proteomics. Nature 422:216–225.PubMedCrossRefGoogle Scholar
  121. Sandin, S., Ofverstedt, L. G. et al. (2004). Structure and flexibility of individual immunoglobulin G molecules in solution. Structure (Camb.) 12:409–415.CrossRefGoogle Scholar
  122. Sawada, H., Tomita, T., Naruse, M., Honda, T., Hambridge, P., Hartel, P., Haider, M., Hetherington, C., Doole, R., Kirkland, A., Hutchison, J., Titchmarsh, J. and Cockayne, D. (2005) Experimental evaluation of a spherical aberration-corrected TEM and STEM. J. Electron Microsc. (Tokyo) 54:119–121.CrossRefGoogle Scholar
  123. Saxton, W. O. and Baumeister, W. (1982). The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127:127–138.PubMedGoogle Scholar
  124. Saxton, W.O., Baumeister, W. et al. (1984). Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13(1-2):57–70.PubMedCrossRefGoogle Scholar
  125. Sherman, M. B., Brink, J. et al. (1996). Performance of a slow-scan CCD camera for macromolecular imaging in a 400 kV electron cryomicroscope. Micron 27:129–139.PubMedCrossRefGoogle Scholar
  126. Sherman, M. B., Jakana, J. et al. (1997). A strategy for electron tomographic data collection and crystallographic reconstruction of biological bundles. J. Struct. Biol. 120:245–256.PubMedCrossRefGoogle Scholar
  127. Sitte, H. (1996). Advanced instrumentation and methodology related to cryoultramicrotomy: a review. Scanning Microsc. Suppl. 10:387–463; discussion 463–466.PubMedGoogle Scholar
  128. Skoglund, U., Ofverstedt, L. G. et al. (1996). Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: a test application with adenovirus. J. Struct. Biol. 117:173–188.PubMedCrossRefGoogle Scholar
  129. Somlyo, A. P. and Shuman, H. (1982). Electron probe and electron energy loss analysis in biology. Ultramicroscopy 8:219–233.PubMedCrossRefGoogle Scholar
  130. Sorzano, C. O., Marabini, R. et al. (2001). The effect of overabundant projection directions on 3D reconstruction algorithms. J. Struct. Biol. 133:108–118.PubMedCrossRefGoogle Scholar
  131. Steven, A. C. and Aebi, U. (2003). The next ice age: cryo-electron tomography of intact cells. Trends Cell Biol. 13:107–110.PubMedCrossRefGoogle Scholar
  132. Steven, A. C., Heymann, J. B. et al. (2005). Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr. Opin. Struct. Biol. 15:227–236.PubMedCrossRefGoogle Scholar
  133. Stoffler, D., Feja, B. et al. (2003). Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328:119–130.PubMedCrossRefGoogle Scholar
  134. Studer, D. and Gnaegi, H. (2000). Minimal compression of ultrathin sections with use of an oscillating diamond knife. J. Microsc. 197:94–100.PubMedCrossRefGoogle Scholar
  135. Studer, D., Michel, M. et al. (1989). High pressure freezing comes of age. Scanning Microsc Suppl. 3: 253–268; discussion 268–269.PubMedGoogle Scholar
  136. Subramaniam, S. and Milne, J. L. (2004). Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33:141–155.PubMedCrossRefGoogle Scholar
  137. Talmon, Y. (1987). Cryotechniques in biological electron microscopy. In Electron beam radiation damage to organic and biological cryospecimens (R. A. Steinbrecht and K. Zierold, eds). Berlin, Springer-Verlag, pp. 64–86.Google Scholar
  138. Talmon, Y., Burns, J. L. et al. (1990). Time-resolved cryotransmission electron microscopy. J. Electron Microsc. Tech 14:6–12.PubMedCrossRefGoogle Scholar
  139. Taylor, K.A., Schmitz, H. et al. (1999). Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell 99:421–431.PubMedCrossRefGoogle Scholar
  140. Toyoshima, C. and Unwin, N. (1988). Contrast transfer for frozen-hydrated specimens: determination from pairs of defocused images. Ultramicroscopy 25:279–291.PubMedCrossRefGoogle Scholar
  141. Typke, D., Downing, K. H. et al. (2004). Electron microscopy of biological macromolecules: bridging the gap between what physics allows and what we currently can get. Microsc. Microanal. 10:21–27.PubMedCrossRefGoogle Scholar
  142. Typke, D., Nordmeyer, R. A. et al. (2005). High-throughput film-densitometry: an efficient approach to generate large data sets. J. Struct. Biol. 149:17–29.PubMedCrossRefGoogle Scholar
  143. Unser, M., Sorzano, C.O. et al. (2005). Spectral signal-to-noise ratio and resolution assessment of 3D reconstructions. J. Struct. Biol. 149:243–255.PubMedCrossRefGoogle Scholar
  144. Van Aert, S., den Dekker, A. J. et al. (2002). High-resolution electron microscopy and electron tomography: resolution versus precision. J. Struct. Biol. 138:21–33.PubMedCrossRefGoogle Scholar
  145. Volkmann, N. (2002). A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J. Struct. Biol. 138:123–129.PubMedCrossRefGoogle Scholar
  146. von Schack, M. L., Fakan, S. et al. (1993). Cryofixation and cryosubstitution: a useful alternative in the analyses of cellular fine structure. Eur. J. Histochem. 37:5–18.Google Scholar
  147. Wagenknecht, T., Hsieh, C. E. et al. (2002). Electron tomography of frozen-hydrated isolated triad junctions. Biophys. J. 83:2491–2501.PubMedGoogle Scholar
  148. Walz, J., Koster, A. J. et al. (1999). Capsids of tricorn protease studied by electron cryomicroscopy. J. Struct. Biol. 128:65–68.PubMedCrossRefGoogle Scholar
  149. Walz, J., Tamura, T. et al. (1997a). Tricorn protease exists as an icosahedral supermolecule in vivo. Mol. Cell 1:59–65.PubMedCrossRefGoogle Scholar
  150. Walz, J., Typke, D. et al. (1997b). Electron tomography of single ice-embedded macromolecules: three-dimensional alignment and classification. J. Struct. Biol. 120:387–395.PubMedCrossRefGoogle Scholar
  151. White, H.D., Thirumurugan, K. et al. (2003). A second generation apparatus for time-resolved electron cryo-microscopy using stepper motors and electrospray. J. Struct. Biol. 144:246–252.PubMedCrossRefGoogle Scholar
  152. Winkler, H. and Taylor, K.A. (2003). Focus gradient correction applied to tilt series image data used in electron tomography. J. Struct. Biol. 143:24–32.PubMedCrossRefGoogle Scholar
  153. Zhang, P., Beatty, A. et al. (2001). Automated data collection with a Tecnai 12 electron microscope: applications for molecular imaging by cryomicroscopy. J. Struct. Biol. 135:251–261.PubMedCrossRefGoogle Scholar
  154. Zhang, P., Borgnia, M. J. et al. (2003). Automated image acquisition and processing using a new generation of 4K × 4K CCD cameras for cryo electron microscopic studies of macromolecular assemblies. J. Struct. Biol. 143:135–144.PubMedCrossRefGoogle Scholar
  155. Zhang, P., Bos, E. et al. (2004). Direct visualization of receptor arrays in frozen-hydrated sections and plunge-frozen specimens of E. coli engineered to overproduce the chemotaxis receptor Tsr. J. Microsc. 216:76–83.PubMedCrossRefGoogle Scholar
  156. Zhang, P., Land, W. et al. (2005). Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism. J. Struct. Biol. 150:144–153.PubMedCrossRefGoogle Scholar
  157. Zhao, Q., Ofverstedt, L.G. et al. (2004). Morphological variation of individual Escherichia coli 50S ribosomal subunits in situ, as revealed by cryo-electron tomography. Exp. Cell Res. 300:190–201.PubMedCrossRefGoogle Scholar
  158. Zheng, Q. S., Braunfeld, M. B. et al. (2004). An improved strategy for automated electron microscopic tomography. J. Struct. Biol. 147:91–101.PubMedCrossRefGoogle Scholar
  159. Zhu, J., Penczek, P. A. et al. (1997). Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. J. Struct. Biol. 118:197–219.PubMedCrossRefGoogle Scholar
  160. Ziese, U., Geerts, W. J. et al. (2003). Correction of autofocusing errors due to specimen tilt for automated electron tomography. J. Microsc. 211:179–85.PubMedCrossRefGoogle Scholar
  161. Ziese, U., Janssen, A. H. et al. (2002). Automated high-throughput electron tomography by precalibration of image shifts. J. Microsc. 205:187–200.PubMedCrossRefGoogle Scholar
  162. Ziese, U., C. Kubel, et al. (2002). Three-dimensional localization of ultrasmall immuno-gold labels by HAADF-STEM tomography. J. Struct. Biol. 138:58–62.PubMedCrossRefGoogle Scholar
  163. Zuo, J.M. (2000). Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc. Res. Tech. 49:245–268.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Abraham J. Koster
    • 1
  • Montserrat Bárcena
    • 2
  1. 1.Molecular Cell BiologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Department of Molecular Cell BiologyUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations