Skip to main content

Cryotomography: Low-dose Automated Tomography of Frozen-hydrated Specimens

  • Chapter
Electron Tomography

Abstract

Electron tomography is an imaging technique that provides 3D images of a specimen with nanometer scale resolution. The range of specimens that can be investigated with this technique is particularly wide, from large (500–1000 nm) unique variable structures such as whole cells to suspensions of thousands of small identical macromolecules (>200 kDa).When applied to cryofixed frozen-hydrated biological material, the technique is often referred to as cryotomography. In combination with automated low-dose data collection and advanced computational methods, such as molecular identification based on pattern recognition, cryotomography can be used to visualize the architecture of small cells and organelles and/or to map macromolecular structures in their cellular environment. The resolution that can be obtained with cryotomography depends on several fundamental and technical issues related to specimen preparation, microscopy and subsequent image processing steps, but will typically be in the range of 5–10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, M., Dubochet, J. et al. (1998). Cryo-negative staining. Micron 29:145–160.

    Article  PubMed  CAS  Google Scholar 

  • Adrian, M., ten Heggeler-Bordier, B. et al. (1990). Direct visualization of supercoiled DNA molecules in solution. EMBO J. 9:4551–4554.

    PubMed  CAS  Google Scholar 

  • Ahting, U., Thun, C. et al. (1999). The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147:959–968.

    Article  PubMed  CAS  Google Scholar 

  • Al-Amoudi, A., Chang, J. J. et al. (2004). Cryo-electron microscopy of vitreous sections. EMBO J. 23:3583–3588.

    Article  PubMed  CAS  Google Scholar 

  • Al-Amoudi, A., Dubochet, J. et al. (2003). An oscillating cryo-knife reduces cutting-induced deformation of vitreous ultrathin sections. J. Microsc. 212:26–33.

    Article  PubMed  CAS  Google Scholar 

  • Al-Amoudi, A., Studer, D. et al. (2005). Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J. Struct. Biol. 150:109–121.

    Article  PubMed  CAS  Google Scholar 

  • Angert, I., Majorovits, E. et al. (2000). Zero-loss image formation and modified contrast transfer theory in EFTEM. Ultramicroscopy 81:203–222.

    Article  PubMed  CAS  Google Scholar 

  • Bajaj, C., Yu, Z. et al. (2003). Volumetric feature extraction and visualization of tomographic molecular imaging. J. Struct. Biol. 144:132–143.

    Article  PubMed  Google Scholar 

  • Barth, M., Bryan, R. K. et al. (1988). Estimation of missing cone data in three-dimensional electron microscopy. Scanning Microsc. Suppl. 2:277–284.

    PubMed  CAS  Google Scholar 

  • Baumeister, W. (2002). Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12:679–684.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W. (2005). From proteomic inventory to architecture. FEBS Lett. 579:933–937.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W., Grimm, R. et al. (1999). Electron tomography of molecules and cells. Trends Cell Biol. 9:81–85.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W. and Steven, A. C. (2000). Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci. 25:624–631.

    Article  PubMed  CAS  Google Scholar 

  • Beck, M., Forster, F. et al. (2004). Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390.

    Article  PubMed  CAS  Google Scholar 

  • Benjamin, J., Ganser-Pornillos, B. K. et al. (2005). Three-dimensional structure of HIV-1 viruslike particles by electron cryotomography. J. Mol. Biol. 346:577–588.

    Article  PubMed  CAS  Google Scholar 

  • Biel, S. S., K. Kawaschinski, et al. (2003). From tissue to cellular ultrastructure: closing the gap between micro-and nanostructural imaging. J Microsc 212:91–99.

    Article  PubMed  CAS  Google Scholar 

  • Böhm, J., Frangakis, A. S. et al. (2000). Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97:14245–14250.

    Article  PubMed  Google Scholar 

  • Böhm, J., Lambert, O. et al. (2001). FhuA-mediated phage genome transfer into liposomes: a cryo-electron tomography study. Curr. Biol. 11:1168–1175.

    Article  PubMed  Google Scholar 

  • Bongini, L., Fanelli, D. et al. (2004). Freezing immunoglobulins to see them move. Proc. Natl Acad. Sci. USA 101:6466–6471.

    Article  PubMed  CAS  Google Scholar 

  • Bouwer, J. C., Mackey, M. R. et al. (2004). Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement. J. Struct. Biol. 148:297–306.

    Article  PubMed  CAS  Google Scholar 

  • Braet, F. (2004). How molecular microscopy revealed new insights into the dynamics of hepatic endothelial fenestrae in the past decade. Liver Int. 24:532–539.

    Article  PubMed  Google Scholar 

  • Brandt, S., Heikkonen, J. et al. (2001). Automatic alignment of transmission electron microscope tilt series without fiducial markers. J. Struct. Biol. 136:201–213.

    Article  PubMed  CAS  Google Scholar 

  • Braunfeld, M. B., Koster, A. J. et al. (1994). Cryo automated electron tomography: towards high-resolution reconstructions of plastic-embedded structures. J Microsc 174:75–84.

    PubMed  CAS  Google Scholar 

  • Bullitt, E., Rout, M. P. et al. (1997). The yeast spindle pole body is assembled around a central crystal of Spc42p. Cell 89:1077–1086.

    Article  PubMed  CAS  Google Scholar 

  • Burge, R. E., Dainty, J. C. et al. (1977). Optical and digital image processing in high-resolution electron microscopy. Ultramicroscopy 2:169–178.

    Article  PubMed  CAS  Google Scholar 

  • Cardone, G., Grünewald, K., Steven, A.C. (2005). A resolution criterion for electron tomography based on cross-validation. J. Struct. Biol. 151:117–119.

    Article  PubMed  Google Scholar 

  • Carragher, B., Kisseberth, N. et al. (2000). Leginon: an automated system for acquisition of images from vitreous ice specimens. J. Struct. Biol. 132:33–45.

    Article  PubMed  CAS  Google Scholar 

  • Chestnut, M. H., Siegel, D. P. et al. (1992). A temperature-jump device for time-resolved cryo-transmission electron microscopy. Microsc. Res. Tech. 20:95–101.

    Article  PubMed  CAS  Google Scholar 

  • Coene, W., Janssen, G. et al. (1992). Phase retrieval through focus variation for ultraresolution in field-emission transmission electron microscopy. Phys. Rev. Lett. 69:3743–3746.

    Article  PubMed  CAS  Google Scholar 

  • Crowther, R. A., Amos, L. A. et al. (1970). Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs. Nature 226:421–425.

    Article  PubMed  CAS  Google Scholar 

  • Cyrklaff, M., M. Adrian, et al. (1990). Evaporation during preparation of unsupported thin vitrified aqueous layers for cryo-electron microscopy. J. Electron Microsc. Tech. 16:351–355.

    Article  PubMed  CAS  Google Scholar 

  • Cyrklaff, M., C. Risco, et al. (2005). Cryo-electron tomography of vaccinia virus. Proc. Nat Acad. Sci. USA 102:2772–2777.

    Article  PubMed  CAS  Google Scholar 

  • De Carlo, S., El-Bez, C. et al. (2002). Cryo-negative staining reduces electron-beam sensitivity of vitrified biological particles. J. Struct. Biol. 138:216–226.

    Article  PubMed  CAS  Google Scholar 

  • DeRosier, D. J. and Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134.

    Article  Google Scholar 

  • Dierksen, K., Typke, D. et al. (1993). Implementation of autofocus and low-dose procedures. Ultramicroscopy 49:109–120.

    Article  Google Scholar 

  • Dierksen, K., Typke, D. et al. (1992). Towards automatic electron tomography. Ultramicroscopy 40:71–87.

    Article  Google Scholar 

  • Dierksen, K., Typke, D. et al. (1995). Three-dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. Biophys. J. 68:1416–1422.

    Article  PubMed  CAS  Google Scholar 

  • Downing, K. H. and Hendrickson, F. M. (1999). Performance of a 2k CCD camera designed for electron crystallography at 400 kV. Ultramicroscopy 75:215–233.

    Article  PubMed  CAS  Google Scholar 

  • Dubochet, J., Adrian, M. et al. (1988). Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228.

    PubMed  CAS  Google Scholar 

  • Dubochet, J. and Sartori Blanc, N. (2001). The cell in absence of aggregation artifacts. Micron 32:91–99.

    Article  PubMed  CAS  Google Scholar 

  • Erk, I., Nicolas, G. et al. (1998). Electron microscopy of frozen biological objects: a study using cryosectioning and cryosubstitution. J. Microsc. 189:236–248.

    Article  PubMed  CAS  Google Scholar 

  • Faruqi, A. R., Cattermole, D. M. et al. (2003). Evaluation of a hybrid pixel detector for electron microscopy. Ultramicroscopy 94:263–276.

    Article  PubMed  CAS  Google Scholar 

  • Feja, B. and Aebi, U. (1999). Determination of the inelastic mean free path of electrons in vitrified ice layers for on-line thickness measurements by zero-loss imaging. J. Microsc. 193:15–19.

    Article  PubMed  Google Scholar 

  • Fernandez, J. J. and Li, S. (2003). An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. J. Struct. Biol. 144:152–161.

    Article  PubMed  Google Scholar 

  • Forster, F., Medalia, O. et al. (2005). Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl Acad. Sci. USA 102:4729–4734.

    Article  PubMed  CAS  Google Scholar 

  • Frangakis, A. S., Bohm, J. et al. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl Acad. Sci. USA 99:14153–14158.

    Article  PubMed  CAS  Google Scholar 

  • Frangakis, A. S. and Hegerl, R. (2001). Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. J. Struct. Biol. 135:239–250.

    Article  PubMed  CAS  Google Scholar 

  • Frangakis, A. S. and Hegerl, R. (2002). Segmentation of two-and three-dimensional data from electron microscopy using eigenvector analysis. J. Struct. Biol. 138:105–113.

    Article  PubMed  Google Scholar 

  • Frangakis, A. S., Stoschek, A. et al. (2001). Wavelet transform filtering and nonlinear anisotropic diffusion assessed for signal reconstruction performance on multidimensional biomedical data. IEEE Trans. Biomed. Eng. 48:213–222.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J. (2002). Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biophys. Biomol. Struct. 31: 303–319.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J., Radermacher, M. et al. (1996). SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116:190–199.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J., Wagenknecht, T. et al. (2002). Three-dimensional imaging of biological complexity. J. Struct. Biol. 138:85–91.

    Article  PubMed  Google Scholar 

  • Frederik, P. M., Busing, W.M. et al. (1982). Concerning the nature of the cryosectioning process. J. Microsc. 125:167–175.

    PubMed  CAS  Google Scholar 

  • Freitag, B., Kujawa, S. et al. (2005). Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102:209–214.

    Article  PubMed  CAS  Google Scholar 

  • Fung, J. C., Liu, W. et al. (1996). Toward fully automated high-resolution electron tomography. J. Struct. Biol. 116:181–189.

    Article  PubMed  CAS  Google Scholar 

  • Grimm, R., Barmann, M. et al. (1997). Energy filtered electron tomography of ice-embeddedactin and vesicles. Biophys. J. 72:482–489.

    PubMed  CAS  Google Scholar 

  • Grimm, R., Singh, H. et al. (1998). Electron tomography of ice-embedded prokaryotic cells. Biophys. J. 74:1031–1042.

    PubMed  CAS  Google Scholar 

  • Grimm, R., Typke, D. et al. (1996). Determination of the inelastic mean free path in ice by examination of tilted vesicles and automated most probable loss imaging. Ultramicroscopy 63:169–179.

    Article  PubMed  CAS  Google Scholar 

  • Grunewald, K., Desai, P. et al. (2003). Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302:1396–1398.

    Article  PubMed  CAS  Google Scholar 

  • Grunewald, K., Medalia, O. et al. (2003). Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys. Chem. 100:577–591.

    Article  PubMed  CAS  Google Scholar 

  • Han, K. F., Sedat, J.W. et al. (1995). Mechanism of image formation for thick biological specimens: exit wavefront reconstruction and electron energy-loss spectroscopic imaging. J. Microsc. 178:107–119.

    PubMed  CAS  Google Scholar 

  • Han, K. F., Sedat, J.W. et al. (1997). Practical image restoration of thick biological specimens using multiple focus levels in transmission electron microscopy. J. Struct. Biol. 120:237–244.

    Article  PubMed  CAS  Google Scholar 

  • Hart, R. G. (1968). Electron microscopy of unstained biuological material: The polytropic montage. Science 159:1464–1467.

    Article  PubMed  CAS  Google Scholar 

  • He, W., Cowin, P. et al. (2003). Untangling desmosomal knots with electron tomography. Science 302:109–113.

    Article  PubMed  CAS  Google Scholar 

  • Hegerl, R. and Hoppe, W. (1976). Influence of electron noise on three-dimensional image reconstruction. Z. Naturforsch. 31a:1717–1721.

    Google Scholar 

  • Henderson, R. (1995). The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28: 171–193.

    PubMed  CAS  Google Scholar 

  • Heymann, J. B., Cheng, N. et al. (2003). Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy. Nat. Struct. Biol. 10:334–341.

    Article  PubMed  CAS  Google Scholar 

  • Hoppe, W. (1969). Das Endlichkeitspostulat und das Interpolationstheorem der dreidimensionalen electronenmikroscopischen Analyse aperiodischer Strukturen. Optik 29: 617–621.

    Google Scholar 

  • Horowitz, R. A., Koster, A. J. et al. (1997). Automated electron microscope tomography of frozen-hydrated chromatin: the irregular three-dimensional zigzag architecture persists in compact, isolated fibers. J. Struct. Biol. 120:353–362.

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, C. E., Marko, M. et al. (2002). Electron tomographic analysis of frozen-hydrated tissue sections. J. Struct. Biol. 138:63–73.

    Article  PubMed  Google Scholar 

  • Humbel, B. M., Weber, K. et al. (1991). Versatile controlling system for cryopreparation techniques in electron microscopy. J. Electron Microsc. Tech. 17:450–455.

    Article  PubMed  CAS  Google Scholar 

  • Koster, A. J., A. van der Bos, et al. (1987). An autofocus method for a TEM. Ultramicroscopy 21: 209–222.

    Article  Google Scholar 

  • Koster, A. J., Chen, H. et al. (1992). Automated microscopy for electron tomography. Ultramicroscopy 46:207–227.

    Article  PubMed  CAS  Google Scholar 

  • Koster, A. J., Grimm, R. et al. (1997). Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120:276–308.

    Article  PubMed  CAS  Google Scholar 

  • Koster, A. J., der Ruijter, W. J. et al. (1989). Autofocus method for a TEM using minimum electron dose. Ultramicroscopy 27:251–272.

    Article  Google Scholar 

  • Kremer, J. R., Mastronarde, D. N. et al. (1996). Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116:71–76.

    Article  PubMed  CAS  Google Scholar 

  • Kurner, J., Frangakis, A. S. et al. (2005). Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307:436–448.

    Article  PubMed  CAS  Google Scholar 

  • Kurner, J., Medalia, O. et al. (2004). New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography. Exp. Cell Res. 301:38–42.

    Article  PubMed  CAS  Google Scholar 

  • Leapman, R. D. and Sun, S. (1995). Cryo-electron energy loss spectroscopy: observations on vitrified hydrated specimens and radiation damage. Ultramicroscopy 59:71–79.

    Article  PubMed  CAS  Google Scholar 

  • Lepault, J., Booy, F. P. et al. (1983). Electron microscopy of frozen biological suspensions. J. Microsc. 129: 89–102.

    PubMed  CAS  Google Scholar 

  • Lepault, J., Erk, I. et al. (1991). Time-resolved cryo-electron microscopy of vitrified muscular components. J. Microsc. 161:47–57.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Penczek, P. A. et al. (1995). A marker-free alignment method for electron tomography. Ultramicroscopy 58:393–402.

    Article  PubMed  CAS  Google Scholar 

  • Lucic, V., Yang, T. et al. (2005). Morphological characterization of molecular complexes present in the synaptic cleft. Structure (Camb.) 13:423–334.

    Article  CAS  Google Scholar 

  • Mannella, C. A. (2006). The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762:140–147.

    PubMed  CAS  Google Scholar 

  • Mannella, C. A., Pfeiffer, D. R. et al. (2001). Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52:93–100.

    Article  PubMed  CAS  Google Scholar 

  • Marabini, R., Rietzel, E. et al. (1997). Three-dimensional reconstruction from reduced sets of very noisy images acquired following a single-axis tilt schema: application of a new three-dimensional reconstruction algorithm and objective comparison with weighted backprojection. J. Struct. Biol. 120:363–371.

    Article  PubMed  CAS  Google Scholar 

  • Marco, S., Boudier, T. et al. (2004). Electron tomography of biological samples. Biochemistry 69:1219–1225.

    PubMed  CAS  Google Scholar 

  • Marsh, B. J., Volkmann, N. et al. (2004). Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc. Natl Acad. Sci. USA 101:5565–5570.

    Article  PubMed  CAS  Google Scholar 

  • Mastronarde, D. N. (1997). Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120:343–352.

    Article  PubMed  CAS  Google Scholar 

  • Matias, V. R., Al-Amoudi, A. et al. (2003). Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185:6112–6118.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B. F., Downing, K. H. et al. (1995). The relevance of dose-fractionation in tomography of radiation-sensitive specimens. Ultramicroscopy 60:357–373.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B. F. and Frank, J. (2001). Electron tomographic and other approaches for imaging molecular machines. Curr. Opin. Neurobiol. 11:594–600.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B. F., Marko, M. et al. (2002). Use of frozen-hydrated axonemes to assess imaging parameters and resolution limits in cryoelectron tomography. J. Struct. Biol. 138:47–57.

    Article  PubMed  Google Scholar 

  • McIntosh, R., Nicastro, D. et al. (2005). New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 15:43–51.

    Article  PubMed  CAS  Google Scholar 

  • Medalia, O., Typke, D. et al. (2002a). Cryoelectron microscopy and cryoelectron tomography of the nuclear pre-mRNA processing machine. J. Struct. Biol. 138:74–84.

    Article  PubMed  CAS  Google Scholar 

  • Medalia, O., Weber, I. et al. (2002b). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298:1209–1213.

    Article  PubMed  CAS  Google Scholar 

  • Messaoudi, C., Boudier, T. et al. (2003). Use of cryo-negative staining in tomographic reconstruction of biological objects: application to T4 bacteriophage. Biol. Cell 95:393–398.

    Article  PubMed  Google Scholar 

  • Midgley, P. A. and Weyland M. (2003). 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96:413–431.

    Article  PubMed  CAS  Google Scholar 

  • Moritz, M., Braunfeld, M. B. et al. (1995). Three-dimensional structural characterization of centrosomes from early Drosophila embryos. J. Cell Biol. 130:1149–1159.

    Article  PubMed  CAS  Google Scholar 

  • Muller, E. G., Snydsman, B. E. et al. (2005). The organization of the core proteins of the yeast spindle pole body. Mol. Biol. Cell. 16:3341–3352.

    Article  PubMed  CAS  Google Scholar 

  • Murk, J. L., Humbel, B. M. et al. (2003). Endosomal compartmentalization in three dimensions: implications for membrane fusion. Proc. Natl Acad. Sci. USA 100:13332–13337.

    Article  PubMed  CAS  Google Scholar 

  • Nicastro, D., Frangakis, A. S. et al. (2000). Cryo-electron tomography of Neurospora mitochondria. J. Struct. Biol. 129:48–56.

    Article  PubMed  CAS  Google Scholar 

  • Nickell, S., Forster, F. et al. (2005). TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149:227–234.

    Article  PubMed  Google Scholar 

  • Nickell, S., Hegerl, R. et al. (2003). Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141:34–42.

    Article  PubMed  Google Scholar 

  • Nitsch, M., Walz, J. et al. (1998). Group II chaperonin in an open conformation examined by electron tomography. Nat. Struct. Biol. 5:855–857.

    Article  PubMed  CAS  Google Scholar 

  • Owen, C. H. and Landis, W. J. (1996). Alignment of electron tomographic series by correlation without the use of gold particles. Ultramicroscopy 63:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Patwardhan, A. (2003). Transmission electron microscopy of weakly scattering objects described by operator algebra. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20:1210–1222.

    Article  PubMed  Google Scholar 

  • Penczek, P., Marko, M. et al. (1995). Double-tilt electron tomography. Ultramicroscopy 60:393–410.

    Article  PubMed  CAS  Google Scholar 

  • Penczek, P. A. (2002). Three-dimensional spectral signal-to-noise ratio for a class of reconstruction algorithms. J. Struct. Biol. 138:34–46.

    Article  PubMed  Google Scholar 

  • Perkins, G. A., Renken, C.W. et al. (1997). Electron tomography of large, multicomponent biological structures. J. Struct. Biol. 120:219–27.

    Article  PubMed  CAS  Google Scholar 

  • Radermacher, M. (1992). Weighted Back-projection Methods. Plenum Press, New York.

    Google Scholar 

  • Radermacher, M. (1994). Three-dimensional reconstruction from random projections: orientational alignment via Radon transforms. Ultramicroscopy 53:121–136.

    Article  PubMed  CAS  Google Scholar 

  • Radon, J. (1917). Über die Bertimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. König. Sächs. Ges. Wiss. Math. Phs. Klasse 69:262–277.

    Google Scholar 

  • Rath, B. K., Hegerl, R. et al. (2003). Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144:95–103.

    Article  PubMed  CAS  Google Scholar 

  • Rath, B. K., Marko, M. et al. (1997). Low-dose automated electron tomography: a recent implementation. J. Struct. Biol. 120:210–218.

    Article  PubMed  CAS  Google Scholar 

  • Ress, D. B., Harlow, M. L. et al. (2004). Methods for generating high-resolution structural models from electron microscope tomography data. Structure (Camb.) 12:1763–1774.

    Article  CAS  Google Scholar 

  • Rockel, B., Walz, J. et al. (1999). Structure of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum as studied by electron tomography. FEBS Lett. 451:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Rose, H. (2005). Prospects for aberration-free electron microscopy. Ultramicroscopy 103:1–6.

    Article  PubMed  CAS  Google Scholar 

  • Russell, R. B., Alber, F. et al. (2004). A structural perspective on protein-protein interactions. Curr. Opin. Struct. Biol. 14:313–324.

    Article  PubMed  CAS  Google Scholar 

  • Sali, A., Glaeser, R. et al. (2003). From words to literature in structural proteomics. Nature 422:216–225.

    Article  PubMed  CAS  Google Scholar 

  • Sandin, S., Ofverstedt, L. G. et al. (2004). Structure and flexibility of individual immunoglobulin G molecules in solution. Structure (Camb.) 12:409–415.

    Article  CAS  Google Scholar 

  • Sawada, H., Tomita, T., Naruse, M., Honda, T., Hambridge, P., Hartel, P., Haider, M., Hetherington, C., Doole, R., Kirkland, A., Hutchison, J., Titchmarsh, J. and Cockayne, D. (2005) Experimental evaluation of a spherical aberration-corrected TEM and STEM. J. Electron Microsc. (Tokyo) 54:119–121.

    Article  Google Scholar 

  • Saxton, W. O. and Baumeister, W. (1982). The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127:127–138.

    PubMed  CAS  Google Scholar 

  • Saxton, W.O., Baumeister, W. et al. (1984). Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13(1-2):57–70.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, M. B., Brink, J. et al. (1996). Performance of a slow-scan CCD camera for macromolecular imaging in a 400 kV electron cryomicroscope. Micron 27:129–139.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, M. B., Jakana, J. et al. (1997). A strategy for electron tomographic data collection and crystallographic reconstruction of biological bundles. J. Struct. Biol. 120:245–256.

    Article  PubMed  CAS  Google Scholar 

  • Sitte, H. (1996). Advanced instrumentation and methodology related to cryoultramicrotomy: a review. Scanning Microsc. Suppl. 10:387–463; discussion 463–466.

    PubMed  CAS  Google Scholar 

  • Skoglund, U., Ofverstedt, L. G. et al. (1996). Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: a test application with adenovirus. J. Struct. Biol. 117:173–188.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo, A. P. and Shuman, H. (1982). Electron probe and electron energy loss analysis in biology. Ultramicroscopy 8:219–233.

    Article  PubMed  CAS  Google Scholar 

  • Sorzano, C. O., Marabini, R. et al. (2001). The effect of overabundant projection directions on 3D reconstruction algorithms. J. Struct. Biol. 133:108–118.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C. and Aebi, U. (2003). The next ice age: cryo-electron tomography of intact cells. Trends Cell Biol. 13:107–110.

    Article  PubMed  CAS  Google Scholar 

  • Steven, A. C., Heymann, J. B. et al. (2005). Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Curr. Opin. Struct. Biol. 15:227–236.

    Article  PubMed  CAS  Google Scholar 

  • Stoffler, D., Feja, B. et al. (2003). Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328:119–130.

    Article  PubMed  CAS  Google Scholar 

  • Studer, D. and Gnaegi, H. (2000). Minimal compression of ultrathin sections with use of an oscillating diamond knife. J. Microsc. 197:94–100.

    Article  PubMed  CAS  Google Scholar 

  • Studer, D., Michel, M. et al. (1989). High pressure freezing comes of age. Scanning Microsc Suppl. 3: 253–268; discussion 268–269.

    PubMed  CAS  Google Scholar 

  • Subramaniam, S. and Milne, J. L. (2004). Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33:141–155.

    Article  PubMed  CAS  Google Scholar 

  • Talmon, Y. (1987). Cryotechniques in biological electron microscopy. In Electron beam radiation damage to organic and biological cryospecimens (R. A. Steinbrecht and K. Zierold, eds). Berlin, Springer-Verlag, pp. 64–86.

    Google Scholar 

  • Talmon, Y., Burns, J. L. et al. (1990). Time-resolved cryotransmission electron microscopy. J. Electron Microsc. Tech 14:6–12.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, K.A., Schmitz, H. et al. (1999). Tomographic 3D reconstruction of quick-frozen, Ca2+-activated contracting insect flight muscle. Cell 99:421–431.

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima, C. and Unwin, N. (1988). Contrast transfer for frozen-hydrated specimens: determination from pairs of defocused images. Ultramicroscopy 25:279–291.

    Article  PubMed  CAS  Google Scholar 

  • Typke, D., Downing, K. H. et al. (2004). Electron microscopy of biological macromolecules: bridging the gap between what physics allows and what we currently can get. Microsc. Microanal. 10:21–27.

    Article  PubMed  CAS  Google Scholar 

  • Typke, D., Nordmeyer, R. A. et al. (2005). High-throughput film-densitometry: an efficient approach to generate large data sets. J. Struct. Biol. 149:17–29.

    Article  PubMed  Google Scholar 

  • Unser, M., Sorzano, C.O. et al. (2005). Spectral signal-to-noise ratio and resolution assessment of 3D reconstructions. J. Struct. Biol. 149:243–255.

    Article  PubMed  CAS  Google Scholar 

  • Van Aert, S., den Dekker, A. J. et al. (2002). High-resolution electron microscopy and electron tomography: resolution versus precision. J. Struct. Biol. 138:21–33.

    Article  PubMed  CAS  Google Scholar 

  • Volkmann, N. (2002). A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. J. Struct. Biol. 138:123–129.

    Article  PubMed  CAS  Google Scholar 

  • von Schack, M. L., Fakan, S. et al. (1993). Cryofixation and cryosubstitution: a useful alternative in the analyses of cellular fine structure. Eur. J. Histochem. 37:5–18.

    Google Scholar 

  • Wagenknecht, T., Hsieh, C. E. et al. (2002). Electron tomography of frozen-hydrated isolated triad junctions. Biophys. J. 83:2491–2501.

    PubMed  CAS  Google Scholar 

  • Walz, J., Koster, A. J. et al. (1999). Capsids of tricorn protease studied by electron cryomicroscopy. J. Struct. Biol. 128:65–68.

    Article  PubMed  CAS  Google Scholar 

  • Walz, J., Tamura, T. et al. (1997a). Tricorn protease exists as an icosahedral supermolecule in vivo. Mol. Cell 1:59–65.

    Article  PubMed  CAS  Google Scholar 

  • Walz, J., Typke, D. et al. (1997b). Electron tomography of single ice-embedded macromolecules: three-dimensional alignment and classification. J. Struct. Biol. 120:387–395.

    Article  PubMed  CAS  Google Scholar 

  • White, H.D., Thirumurugan, K. et al. (2003). A second generation apparatus for time-resolved electron cryo-microscopy using stepper motors and electrospray. J. Struct. Biol. 144:246–252.

    Article  PubMed  CAS  Google Scholar 

  • Winkler, H. and Taylor, K.A. (2003). Focus gradient correction applied to tilt series image data used in electron tomography. J. Struct. Biol. 143:24–32.

    Article  PubMed  Google Scholar 

  • Zhang, P., Beatty, A. et al. (2001). Automated data collection with a Tecnai 12 electron microscope: applications for molecular imaging by cryomicroscopy. J. Struct. Biol. 135:251–261.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P., Borgnia, M. J. et al. (2003). Automated image acquisition and processing using a new generation of 4K × 4K CCD cameras for cryo electron microscopic studies of macromolecular assemblies. J. Struct. Biol. 143:135–144.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P., Bos, E. et al. (2004). Direct visualization of receptor arrays in frozen-hydrated sections and plunge-frozen specimens of E. coli engineered to overproduce the chemotaxis receptor Tsr. J. Microsc. 216:76–83.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P., Land, W. et al. (2005). Electron tomography of degenerating neurons in mice with abnormal regulation of iron metabolism. J. Struct. Biol. 150:144–153.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Q., Ofverstedt, L.G. et al. (2004). Morphological variation of individual Escherichia coli 50S ribosomal subunits in situ, as revealed by cryo-electron tomography. Exp. Cell Res. 300:190–201.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, Q. S., Braunfeld, M. B. et al. (2004). An improved strategy for automated electron microscopic tomography. J. Struct. Biol. 147:91–101.

    Article  PubMed  Google Scholar 

  • Zhu, J., Penczek, P. A. et al. (1997). Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. J. Struct. Biol. 118:197–219.

    Article  PubMed  CAS  Google Scholar 

  • Ziese, U., Geerts, W. J. et al. (2003). Correction of autofocusing errors due to specimen tilt for automated electron tomography. J. Microsc. 211:179–85.

    Article  PubMed  CAS  Google Scholar 

  • Ziese, U., Janssen, A. H. et al. (2002). Automated high-throughput electron tomography by precalibration of image shifts. J. Microsc. 205:187–200.

    Article  PubMed  CAS  Google Scholar 

  • Ziese, U., C. Kubel, et al. (2002). Three-dimensional localization of ultrasmall immuno-gold labels by HAADF-STEM tomography. J. Struct. Biol. 138:58–62.

    Article  PubMed  CAS  Google Scholar 

  • Zuo, J.M. (2000). Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc. Res. Tech. 49:245–268.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koster, A.J., Bárcena, M. (2007). Cryotomography: Low-dose Automated Tomography of Frozen-hydrated Specimens. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_5

Download citation

Publish with us

Policies and ethics