Skip to main content

The Electron Microscope as a Structure Projector

  • Chapter
Electron Tomography

Abstract

The intuitive understanding of the process of 3D reconstruction is based on a number of assumptions, which are easily made unconsciously; the most crucial is the belief that what is detected is some kind of projection through the structure. This ‘projection’ need not necessarily be a (weighted) sum or integral through the structure of some physical property of the latter; in principle, a monotonically varying function would be acceptable, although solving the corresponding inverse problem might not be easy. In practice, however, the usual interpretation of ‘projection’ is overwhelmingly adopted, and it was for this definition that Radon (1917) first proposed a solution. In the case of light shone through a translucent structure of varying opacity, a 3D transparency as it were, the validity of this projection assumption seems too obvious to need discussion. We know enough about the behavior of X-rays in matter to establish the conditions in which it is valid in radiography. In this chapter, we enquire whether it is valid in electron microscopy, where intuition might well lead us to suspect that it is not. Electron-specimen interactions are very different from those encountered in X-ray tomography; the specimens are themselves very different in nature, creating phase rather than amplitude contrast, and an optical system is needed to transform the information about the specimen that the electrons have acquired into a visible image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, C. C. (ed.) (2004). Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas. Wiley-VCH, Weinheim.

    Google Scholar 

  • Amos, L.A., Henderson, R. and Unwin, P. N. T. (1982). Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 39:183–231.

    Article  PubMed  CAS  Google Scholar 

  • Arnal, F., Balladore, J. L., Soum, G. and Verdier, P. (1977). Calculation of the cross-sections of electron interaction with matter. Ultramicroscopy 2:305–310.

    Article  PubMed  CAS  Google Scholar 

  • Born, M. and Wolf, E. (1999). Principles of Optics. 7th ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Bouwer, J. C., Mackey, M. R., Lawrence, A., Deerinck, T. J., Jones, Y. Z., Terada, M., Martone, M. E., Peltier, S. and Ellisman, M. H. (2004). Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement. J. Struct. Biol. 148:297–306.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, H. A., Schmid, M. F. and Chiu, W. (1984). Estimates of validity of projection approximation for three-dimensional reconstructions at high resolution. Ultramicroscopy 14:219–226.

    Article  PubMed  CAS  Google Scholar 

  • Deans, S. R. (1983). The Radon Transform and Some of Its Applications. Wiley-Interscience, New York.

    Google Scholar 

  • DeRosier, D. J. (1971). The reconstruction of three-dimensional images from electron micrographs. Contemp. Phys. 12:437–452.

    Article  CAS  Google Scholar 

  • DeRosier, D. J. and Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134.

    Article  Google Scholar 

  • Egerton, R. F. (1996). Electron Energy-loss Spectroscopy in the Electron Microscope, 2nd edn. Plenum, New York.

    Google Scholar 

  • Evans, D.A., Allport, P. P., Casse, G., Faruqi, A. R., Gallop, B., Henderson, R., Prydderch, M., Turchetta, R., Tyndel, M., Velthuis, J., Villani, G. and Waltham, N. (2005). CMOS active pixel sensors for ionising radiation. Nucl. Instrum. Meth. Phys. Res. A546:281–285.

    Google Scholar 

  • Faruqi, A. R. and Cattermole, D. M. (2005). Pixel detectors for high-resolution cryo-electron microscopy. Nucl. Instrum. Meth. Phys. Res. A549: 192–198.

    Article  CAS  Google Scholar 

  • Faruqi, A. R., Cattermole, D. M. and Raeburn, C. (2003a). Applications of pixel detectors to electron microscopy. Nucl. Instrum. Meth. Phys. Res. A512:310–317.

    Google Scholar 

  • Faruqi, A. R., Cattermole, D. M. and Raeburn, C. (2003b). Direct electron detection methods in electron microscopy. Nucl. Instrum. Meth. Phys. Res. A513:317–331.

    Google Scholar 

  • Faruqi, A. R., Cattermole, D. M., Henderson, R., Mikulec, B. and Raeburn, C. (2003c). Evaluation of a hybrid pixel detector for electron microscopy. Ultramicroscopy 94:263–276.

    Article  PubMed  CAS  Google Scholar 

  • Faruqi, A. R., Henderson, R., Prydderch, M., Allport, P. and Evans, D.A. (2005). Direct single-electron detection with a CMOS detector for electron microscopy. Nucl. Instrum. Meth. Phys. Res. A546:170–175.

    Google Scholar 

  • Frank, J. and Radermacher, M. (1986). Three-dimensional reconstruction of nonperiodic macromolecular assemblies from electron micrographs. In Advanced Techniques in Biological Electron Microscopy III (J. K. Koehler, ed.). Springer, Berlin, pp. 1–72.

    Google Scholar 

  • Glaeser, R. M. (1982). Electron microscopy. In Methods of Experimental Physics (G. Ehrenstein and H. Lecar, eds.), Vol. 20. Academic Press, New York, pp. 391–444.

    Google Scholar 

  • Glaeser, R.M. (1985). Electron crystallography of biological macromolecules. Annu. Rev. Phys. Chem. 36:243–275.

    Article  CAS  Google Scholar 

  • Glaeser, R. M. and Ceska, T. A. (1989). High-voltage electron diffraction from bacteriorhodopsin (purple membrane) is measurably dynamical. Acta Crystallogr.A 45:620–628.

    Article  PubMed  Google Scholar 

  • Glaeser, R.M. and Downing, K.H. (1993). High-resolution electron crystallography of protein molecules. Ultramicroscopy 52:478–486.

    Article  PubMed  CAS  Google Scholar 

  • Glaeser, R. M., Downing, K. H., DeRosier, D. J., Chiu, W. and Frank, J. (2007). Electron Crystallography of Biological Macromolecules. Oxford University Press, New York and Oxford.

    Google Scholar 

  • Glaser, W. (1952). Grundlagen der Elektronenoptik. Springer, Vienna.

    Google Scholar 

  • Grimm, R., Koster, A. J., Ziese, U., Typke, D. and Baumeister, W. (1996). Zero-loss energy filtering under low-dose conditions using a post-column energy filter. J. Microsc. 183: 60–68.

    Article  CAS  Google Scholar 

  • Grimm, R., Typke, D. and Baumeister, W. (1998). Improving image quality by zero-loss energy filtering: quantitative assessment by means of image cross-correlation. J. Microsc. 190:339–349.

    Article  Google Scholar 

  • Grinton, G. R. and Cowley, J.M. (1971). Phase and amplitude contrast in electron micrographs of biological material. Optik 34:221–233.

    Google Scholar 

  • Han, K. F., Gubbens, A. J., Sedat, J.W. and Agard, D. A. (1996). Optimal strategies for imaging thick biological specimens: exit wavefront reconstruction and energy-filtered imaging. J. Microsc. 183:124–132.

    Article  PubMed  CAS  Google Scholar 

  • Hawkes, P. W. (1980a). Image processing based on the linear theory of image formation. In Computer Processing of Electron Microscope Images (P.W. Hawkes, ed.). Springer, Berlin, pp. 1–33.

    Google Scholar 

  • Hawkes, P. W. (1980b). Units and conventions in electron microscopy, for use in ultramicroscopy. Ultramicroscopy 5:67–70.

    Article  Google Scholar 

  • Hawkes, P. W. (2006). Aberration correction. In Science of Microscopy (Hawkes, P. W. and Spence, J. C. H., eds). Springer, New York and Berlin, pp. 696–747.

    Google Scholar 

  • Hawkes, P. W. and Kasper, E. (1994). Principles of Electron Optics, Vol. 3. Academic Press, London.

    Google Scholar 

  • Henderson, R. and Baldwin, J. M. (1986). Treatment of the gradient of defocus in images of tilted, thin crystals. In Proceedings of the 44th Annual Meeting of EMSA (G.W. Bailey. ed.). San Francisco Press, San Francisco, pp. 6–9.

    Google Scholar 

  • Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. and Zemlin, F. (1986). Structure of purple membrane from Halobacterium halobium: Recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19:147–178.

    Article  CAS  Google Scholar 

  • Ho, M.-H., Jap, B. K. and Glaeser, R. M. (1988). Validity domain of the weak-phase-object approximation for electron diffraction of thin protein crystals. Acta Crystallogr. A 44:878–884.

    Article  PubMed  Google Scholar 

  • Hsieh, C.-E., Marko, M., Frank, J. and Mannella, C. (2002). Electron tomographic analysis of frozen hydrated tissue sections. J. Struct. Biol. 138:63–73.

    Article  PubMed  Google Scholar 

  • Jap, B. K. and Glaeser, R. M. (1980). The scattering of high-energy electrons. II: Quantitative validity domains of the single-scattering approximations for organic crystals. Acta Crystallogr. A 36:57–67.

    Article  Google Scholar 

  • Kirkland, A. I. and Hutchison, J. L. (2006) Atomic resolution transmission electron microscopy. In Science of Microscopy (P.W. Hawkes and J. C. H. Spence, eds. Springer, New York and Berlin, pp. 3–64.

    Google Scholar 

  • Lawrence, A., Bouwer, J. C., Perkins, G. and Ellisman, M. H. (2006). Transform-based back-projection for volume reconstruction. J. Struct. Biol. 154:144–167.

    Article  PubMed  CAS  Google Scholar 

  • Leapman, R. D. (2003). Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J. Microsc. 210:5–15.

    Article  PubMed  CAS  Google Scholar 

  • Leapman, R. D. (2004). Novel techniques in electron microscopy. Curr. Opin. Neurobiol. 14:591–598.

    Article  PubMed  CAS  Google Scholar 

  • Leapman, R. D., Koksis, E., Zhang, G., Talbot, T. L. and Laquerriere, P. (2004). Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100:115–125.

    Article  PubMed  CAS  Google Scholar 

  • Olins, A. L., Olins, D. E., Levy, H.A., Margle, S. M., Tinnel, E. P. and Durfee, R.C. (1989). Tomographic reconstruction from energy-filtered images of thick biological sections. J. Microsc. 154:257–265.

    PubMed  CAS  Google Scholar 

  • Plitzko, J. and Baumeister, W. (2006). Cryo-electron tomography. In Science of Microscopy (Hawkes, P.W. and Spence, J. C. H., eds.). Springer, New York and Berlin, pp. 535–604.

    Google Scholar 

  • Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc. Tech. 9:359–394.

    Article  PubMed  CAS  Google Scholar 

  • Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. K. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl. 69:262–277. For an English translation, see Deans (1983).

    Google Scholar 

  • Reichelt, R. and Engel, A. (1984). Monte Carlo calculations of elastic and inelastic electron scattering in biological and plastic materials. Ultramicroscopy 13:279–294.

    Article  CAS  Google Scholar 

  • Reimer, L. (1997). Transmission Electron Microscopy, 3rd edn. Springer, Berlin and New York.

    Google Scholar 

  • Reimer, L. and Sommer, K. H. (1968). Messungen und Berechnungen zum elektronenmikroskopischen Streukontrast für 17 bis 1200 keV-Elektronen. Z. Naturforsch. 23a: 1569–1582.

    Google Scholar 

  • Reimer, L. (ed.) (1995). Energy-filtering Transmission Electron Microscopy. Springer, Berlin.

    Google Scholar 

  • Robards A. W. and Sleytr, U. B. (1985). Low Temperature Methods in Biological Electron Microscopy. Elsevier, New York.

    Google Scholar 

  • Saxton, W. O. (1986). Focal series restoration in HREM. In Proceedings of the XIth International Congress on Electron Microscopy suppl. to J. Electron Microsc. 35, Post-deadline paper 1.

    Google Scholar 

  • Schiske, P. (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen. In Electron Microscopy 1968 (D. S. Bocciarelli, ed.), Vol. I. Tipografia Poliglotta Vaticana, Rome, pp. 147–148.

    Google Scholar 

  • Schiske, P. (1973). Image processing using additional statistical information about the object. In Image Processing and Computer-aided Design in Electron Optics (P.W. Hawkes, ed.). Academic Press, New York, pp. 82–90.

    Google Scholar 

  • Schiske, P. (1982). A posteriori correction of object tilt for the CTEM. Ultramicroscopy 9:17–26.

    Article  Google Scholar 

  • Spence, J. C. H. (2003). Experimental High-resolution Electron Microscopy, 3rd edn. Oxford University Press, New York.

    Google Scholar 

  • Steinbrecht, R. A. and Zierold, K. (eds.) (1987). Cryotechniques in Biological Electron Microscopy. Springer, Berlin.

    Google Scholar 

  • Steven, A. C. (1981). Visualization of virus structure in three dimensions. In Methods in Cell Biology, Vol. 22, Three-Dimensional Ultrastructure in Biology (J. N. Turner, ed.). Academic Press, New York, pp. 297–323.

    Google Scholar 

  • Turner, J. N. (ed.) (1981). Methods in Cell Biology, Vol. 22, Three-Dimensional Ultrastructure in Biology. Academic Press, New York.

    Google Scholar 

  • Valentine, R. C. (1966). The response of photographic emulsions to electrons. Adv. Opt. Electron Microsc. 1:180–203.

    Google Scholar 

  • Williams, D.B. and Carter, C.B. (1996). Transmission Electron Microscopy. Plenum, New York.

    Google Scholar 

  • Wolf, M., DeRosier, D. J. and Grigorieff, N. (2006). Ewald sphere correction for single-particle electron microscopy. Ultramicroscopy 106:376–382.

    Article  PubMed  CAS  Google Scholar 

  • Zeitler, E. (ed.) (1982). Cryomicroscopy and radiation damage. Ultramicroscopy 10:1–178.

    Google Scholar 

  • Zeitler, E. (ed.) (1984). Cryomicroscopy and radiation damage. II. Ultramicroscopy 14:161–316.

    Google Scholar 

  • Zemlin, F. (1989). Dynamic focusing for recording images from tilted samples in smallspot scanning with a transmission electron microscope. J. Electron Microsc. Tech. 11:251–257.

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • Baumeister, W. (2002). Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12:679–684.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W. (2004). Mapping molecular landscapes inside cells. Biol. Chem. 385:865–872.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W. (2005). From proteomic inventory to architecture. FEBS Lett. 579:933–937.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W. (2005). A voyage to the inner space of cells. Protein Sci. 14:257–269.

    Article  PubMed  CAS  Google Scholar 

  • Diociaiuti, M. (2005). Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications. J. Electron Spectrosc. Rel. Phenom. 143:189–203.

    CAS  Google Scholar 

  • Fernández, J.-J., Lawrence, A. F., Roca, J., GarcÍa, I., Ellisman, M. H. and Carazo, J.-M. (2002). High-performance electron tomography of complex biological specimens. J. Struct. Biol. 138:6–20.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J. (1973). Computer processing of electron micrographs. In Advanced Techniques in Biological Electron Microscopy (J. K. Koehler, ed.). Springer, Berlin, pp. 215–274.

    Google Scholar 

  • Frank, J. (1980). The role of correlation techniques in computer image processing. In Hawkes (1980), pp. 187–222.

    Google Scholar 

  • Frank, J. (1981). Introduction and Three-dimensional reconstruction of single molecules. In Methods in Cell Biology, Vol. 22, Three-Dimensional Ultrastructure in Biology (J.N. Turner, ed.). Academic Press, New York, pp. 119–213, 325–344.

    Google Scholar 

  • Frank, J. (1989). Image analysis of single macromolecules. Electron Microsc. Rev. 2:53–74.

    Article  PubMed  CAS  Google Scholar 

  • Frank, J. (2002). Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biomol. Struct. 331:303–319.

    Article  CAS  Google Scholar 

  • Frank, J., Wagenknecht, T., McEwen, B. F., Marko, M., Hsieh, C.-E. and Mannella, C. (2002). Three-dimensional imaging of biological complexity. J. Struct. Biol. 138:85–91.

    Article  PubMed  Google Scholar 

  • Hawkes, P. W. (ed.) (1980). Computer Processing of Electron Microscope Images. Springer, Berlin.

    Google Scholar 

  • Hawkes, P.W. and Spence, J. C. H. (eds) (2006). Science of Microscopy. Springer, New York and Berlin.

    Google Scholar 

  • Henderson, R. and Glaeser, R. M. (1985). Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16:139–150.

    Article  CAS  Google Scholar 

  • Hoppe, W. and Hegerl, R. (1980). Three-dimensional structure determination by electron microscopy (nonperiodic specimens). In Hawkes (1980), pp. 127–185.

    Google Scholar 

  • Hoppe, W. and Typke, D. (1979). Three-dimensional reconstruction of aperiodic objects in electron microscopy. In Advances in Structure Research by Diffraction Methods (W. Hoppe and R. Mason, eds.), Vol. 7. Vieweg, Braunschweig, pp. 137–190.

    Google Scholar 

  • Lewitt, R. M. (1983). Reconstruction algorithms: transform methods. Proc. IEEE 71:390–408.

    Article  Google Scholar 

  • Lucic, V., Förster, F. and Baumeister, W. (2005). Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74:833–865.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B. F. and Frank, J. (2001). Electron tomographic and other approaches for imaging molecular machines. Curr. Opin. Neurobiol. 11:594–600.

    Article  PubMed  CAS  Google Scholar 

  • Mellema, J. E. (1980). Computer reconstruction of regular biological object. In Hawkes (1980), pp. 89–126.

    Google Scholar 

  • Moody, M. F. (1990). Image analysis of electron micrographs. In Biophysical Electron Microscopy (P.W. Hawkes and U. Valdrè, eds.), Academic Press, New York, pp. 145–287.

    Google Scholar 

  • Stewart, M. (1988). Introduction to the computer image processing of electron micrographs of two-dimensionally ordered biological structures. J. Electron Microsc. Tech. 9:301–324.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, M. (1988). Computer image processing of electron micrographs of biological structures with helical symmetry. J. Electron Microsc. Tech. 9:325–358.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian, S. and Milne, J. L. S. (2004). Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33:141–155

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hawkes, P.W. (2007). The Electron Microscope as a Structure Projector. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_4

Download citation

Publish with us

Policies and ethics