Advertisement

The Electron Microscope as a Structure Projector

  • Peter W. Hawkes

Abstract

The intuitive understanding of the process of 3D reconstruction is based on a number of assumptions, which are easily made unconsciously; the most crucial is the belief that what is detected is some kind of projection through the structure. This ‘projection’ need not necessarily be a (weighted) sum or integral through the structure of some physical property of the latter; in principle, a monotonically varying function would be acceptable, although solving the corresponding inverse problem might not be easy. In practice, however, the usual interpretation of ‘projection’ is overwhelmingly adopted, and it was for this definition that Radon (1917) first proposed a solution. In the case of light shone through a translucent structure of varying opacity, a 3D transparency as it were, the validity of this projection assumption seems too obvious to need discussion. We know enough about the behavior of X-rays in matter to establish the conditions in which it is valid in radiography. In this chapter, we enquire whether it is valid in electron microscopy, where intuition might well lead us to suspect that it is not. Electron-specimen interactions are very different from those encountered in X-ray tomography; the specimens are themselves very different in nature, creating phase rather than amplitude contrast, and an optical system is needed to transform the information about the specimen that the electrons have acquired into a visible image.

Keywords

Specimen Thickness Energy Spread Structure Projector Purple Membrane Partial Coherence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahn, C. C. (ed.) (2004). Transmission Electron Energy Loss Spectrometry in Materials Science and the EELS Atlas. Wiley-VCH, Weinheim.Google Scholar
  2. Amos, L.A., Henderson, R. and Unwin, P. N. T. (1982). Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 39:183–231.PubMedCrossRefGoogle Scholar
  3. Arnal, F., Balladore, J. L., Soum, G. and Verdier, P. (1977). Calculation of the cross-sections of electron interaction with matter. Ultramicroscopy 2:305–310.PubMedCrossRefGoogle Scholar
  4. Born, M. and Wolf, E. (1999). Principles of Optics. 7th ed., Cambridge University Press, Cambridge.Google Scholar
  5. Bouwer, J. C., Mackey, M. R., Lawrence, A., Deerinck, T. J., Jones, Y. Z., Terada, M., Martone, M. E., Peltier, S. and Ellisman, M. H. (2004). Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement. J. Struct. Biol. 148:297–306.PubMedCrossRefGoogle Scholar
  6. Cohen, H. A., Schmid, M. F. and Chiu, W. (1984). Estimates of validity of projection approximation for three-dimensional reconstructions at high resolution. Ultramicroscopy 14:219–226.PubMedCrossRefGoogle Scholar
  7. Deans, S. R. (1983). The Radon Transform and Some of Its Applications. Wiley-Interscience, New York.Google Scholar
  8. DeRosier, D. J. (1971). The reconstruction of three-dimensional images from electron micrographs. Contemp. Phys. 12:437–452.CrossRefGoogle Scholar
  9. DeRosier, D. J. and Klug, A. (1968). Reconstruction of three-dimensional structures from electron micrographs. Nature 217:130–134.CrossRefGoogle Scholar
  10. Egerton, R. F. (1996). Electron Energy-loss Spectroscopy in the Electron Microscope, 2nd edn. Plenum, New York.Google Scholar
  11. Evans, D.A., Allport, P. P., Casse, G., Faruqi, A. R., Gallop, B., Henderson, R., Prydderch, M., Turchetta, R., Tyndel, M., Velthuis, J., Villani, G. and Waltham, N. (2005). CMOS active pixel sensors for ionising radiation. Nucl. Instrum. Meth. Phys. Res. A546:281–285.Google Scholar
  12. Faruqi, A. R. and Cattermole, D. M. (2005). Pixel detectors for high-resolution cryo-electron microscopy. Nucl. Instrum. Meth. Phys. Res. A549: 192–198.CrossRefGoogle Scholar
  13. Faruqi, A. R., Cattermole, D. M. and Raeburn, C. (2003a). Applications of pixel detectors to electron microscopy. Nucl. Instrum. Meth. Phys. Res. A512:310–317.Google Scholar
  14. Faruqi, A. R., Cattermole, D. M. and Raeburn, C. (2003b). Direct electron detection methods in electron microscopy. Nucl. Instrum. Meth. Phys. Res. A513:317–331.Google Scholar
  15. Faruqi, A. R., Cattermole, D. M., Henderson, R., Mikulec, B. and Raeburn, C. (2003c). Evaluation of a hybrid pixel detector for electron microscopy. Ultramicroscopy 94:263–276.PubMedCrossRefGoogle Scholar
  16. Faruqi, A. R., Henderson, R., Prydderch, M., Allport, P. and Evans, D.A. (2005). Direct single-electron detection with a CMOS detector for electron microscopy. Nucl. Instrum. Meth. Phys. Res. A546:170–175.Google Scholar
  17. Frank, J. and Radermacher, M. (1986). Three-dimensional reconstruction of nonperiodic macromolecular assemblies from electron micrographs. In Advanced Techniques in Biological Electron Microscopy III (J. K. Koehler, ed.). Springer, Berlin, pp. 1–72.Google Scholar
  18. Glaeser, R. M. (1982). Electron microscopy. In Methods of Experimental Physics (G. Ehrenstein and H. Lecar, eds.), Vol. 20. Academic Press, New York, pp. 391–444.Google Scholar
  19. Glaeser, R.M. (1985). Electron crystallography of biological macromolecules. Annu. Rev. Phys. Chem. 36:243–275.CrossRefGoogle Scholar
  20. Glaeser, R. M. and Ceska, T. A. (1989). High-voltage electron diffraction from bacteriorhodopsin (purple membrane) is measurably dynamical. Acta Crystallogr.A 45:620–628.PubMedCrossRefGoogle Scholar
  21. Glaeser, R.M. and Downing, K.H. (1993). High-resolution electron crystallography of protein molecules. Ultramicroscopy 52:478–486.PubMedCrossRefGoogle Scholar
  22. Glaeser, R. M., Downing, K. H., DeRosier, D. J., Chiu, W. and Frank, J. (2007). Electron Crystallography of Biological Macromolecules. Oxford University Press, New York and Oxford.Google Scholar
  23. Glaser, W. (1952). Grundlagen der Elektronenoptik. Springer, Vienna.Google Scholar
  24. Grimm, R., Koster, A. J., Ziese, U., Typke, D. and Baumeister, W. (1996). Zero-loss energy filtering under low-dose conditions using a post-column energy filter. J. Microsc. 183: 60–68.CrossRefGoogle Scholar
  25. Grimm, R., Typke, D. and Baumeister, W. (1998). Improving image quality by zero-loss energy filtering: quantitative assessment by means of image cross-correlation. J. Microsc. 190:339–349.CrossRefGoogle Scholar
  26. Grinton, G. R. and Cowley, J.M. (1971). Phase and amplitude contrast in electron micrographs of biological material. Optik 34:221–233.Google Scholar
  27. Han, K. F., Gubbens, A. J., Sedat, J.W. and Agard, D. A. (1996). Optimal strategies for imaging thick biological specimens: exit wavefront reconstruction and energy-filtered imaging. J. Microsc. 183:124–132.PubMedCrossRefGoogle Scholar
  28. Hawkes, P. W. (1980a). Image processing based on the linear theory of image formation. In Computer Processing of Electron Microscope Images (P.W. Hawkes, ed.). Springer, Berlin, pp. 1–33.Google Scholar
  29. Hawkes, P. W. (1980b). Units and conventions in electron microscopy, for use in ultramicroscopy. Ultramicroscopy 5:67–70.CrossRefGoogle Scholar
  30. Hawkes, P. W. (2006). Aberration correction. In Science of Microscopy (Hawkes, P. W. and Spence, J. C. H., eds). Springer, New York and Berlin, pp. 696–747.Google Scholar
  31. Hawkes, P. W. and Kasper, E. (1994). Principles of Electron Optics, Vol. 3. Academic Press, London.Google Scholar
  32. Henderson, R. and Baldwin, J. M. (1986). Treatment of the gradient of defocus in images of tilted, thin crystals. In Proceedings of the 44th Annual Meeting of EMSA (G.W. Bailey. ed.). San Francisco Press, San Francisco, pp. 6–9.Google Scholar
  33. Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. and Zemlin, F. (1986). Structure of purple membrane from Halobacterium halobium: Recording, measurement and evaluation of electron micrographs at 3.5 Å resolution. Ultramicroscopy 19:147–178.CrossRefGoogle Scholar
  34. Ho, M.-H., Jap, B. K. and Glaeser, R. M. (1988). Validity domain of the weak-phase-object approximation for electron diffraction of thin protein crystals. Acta Crystallogr. A 44:878–884.PubMedCrossRefGoogle Scholar
  35. Hsieh, C.-E., Marko, M., Frank, J. and Mannella, C. (2002). Electron tomographic analysis of frozen hydrated tissue sections. J. Struct. Biol. 138:63–73.PubMedCrossRefGoogle Scholar
  36. Jap, B. K. and Glaeser, R. M. (1980). The scattering of high-energy electrons. II: Quantitative validity domains of the single-scattering approximations for organic crystals. Acta Crystallogr. A 36:57–67.CrossRefGoogle Scholar
  37. Kirkland, A. I. and Hutchison, J. L. (2006) Atomic resolution transmission electron microscopy. In Science of Microscopy (P.W. Hawkes and J. C. H. Spence, eds. Springer, New York and Berlin, pp. 3–64.Google Scholar
  38. Lawrence, A., Bouwer, J. C., Perkins, G. and Ellisman, M. H. (2006). Transform-based back-projection for volume reconstruction. J. Struct. Biol. 154:144–167.PubMedCrossRefGoogle Scholar
  39. Leapman, R. D. (2003). Detecting single atoms of calcium and iron in biological structures by electron energy-loss spectrum-imaging. J. Microsc. 210:5–15.PubMedCrossRefGoogle Scholar
  40. Leapman, R. D. (2004). Novel techniques in electron microscopy. Curr. Opin. Neurobiol. 14:591–598.PubMedCrossRefGoogle Scholar
  41. Leapman, R. D., Koksis, E., Zhang, G., Talbot, T. L. and Laquerriere, P. (2004). Three-dimensional distributions of elements in biological samples by energy-filtered electron tomography. Ultramicroscopy 100:115–125.PubMedCrossRefGoogle Scholar
  42. Olins, A. L., Olins, D. E., Levy, H.A., Margle, S. M., Tinnel, E. P. and Durfee, R.C. (1989). Tomographic reconstruction from energy-filtered images of thick biological sections. J. Microsc. 154:257–265.PubMedGoogle Scholar
  43. Plitzko, J. and Baumeister, W. (2006). Cryo-electron tomography. In Science of Microscopy (Hawkes, P.W. and Spence, J. C. H., eds.). Springer, New York and Berlin, pp. 535–604.Google Scholar
  44. Radermacher, M. (1988). Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc. Tech. 9:359–394.PubMedCrossRefGoogle Scholar
  45. Radon, J. (1917). Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Ber. Verh. K. Sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl. 69:262–277. For an English translation, see Deans (1983).Google Scholar
  46. Reichelt, R. and Engel, A. (1984). Monte Carlo calculations of elastic and inelastic electron scattering in biological and plastic materials. Ultramicroscopy 13:279–294.CrossRefGoogle Scholar
  47. Reimer, L. (1997). Transmission Electron Microscopy, 3rd edn. Springer, Berlin and New York.Google Scholar
  48. Reimer, L. and Sommer, K. H. (1968). Messungen und Berechnungen zum elektronenmikroskopischen Streukontrast für 17 bis 1200 keV-Elektronen. Z. Naturforsch. 23a: 1569–1582.Google Scholar
  49. Reimer, L. (ed.) (1995). Energy-filtering Transmission Electron Microscopy. Springer, Berlin.Google Scholar
  50. Robards A. W. and Sleytr, U. B. (1985). Low Temperature Methods in Biological Electron Microscopy. Elsevier, New York.Google Scholar
  51. Saxton, W. O. (1986). Focal series restoration in HREM. In Proceedings of the XIth International Congress on Electron Microscopy suppl. to J. Electron Microsc. 35, Post-deadline paper 1.Google Scholar
  52. Schiske, P. (1968). Zur Frage der Bildrekonstruktion durch Fokusreihen. In Electron Microscopy 1968 (D. S. Bocciarelli, ed.), Vol. I. Tipografia Poliglotta Vaticana, Rome, pp. 147–148.Google Scholar
  53. Schiske, P. (1973). Image processing using additional statistical information about the object. In Image Processing and Computer-aided Design in Electron Optics (P.W. Hawkes, ed.). Academic Press, New York, pp. 82–90.Google Scholar
  54. Schiske, P. (1982). A posteriori correction of object tilt for the CTEM. Ultramicroscopy 9:17–26.CrossRefGoogle Scholar
  55. Spence, J. C. H. (2003). Experimental High-resolution Electron Microscopy, 3rd edn. Oxford University Press, New York.Google Scholar
  56. Steinbrecht, R. A. and Zierold, K. (eds.) (1987). Cryotechniques in Biological Electron Microscopy. Springer, Berlin.Google Scholar
  57. Steven, A. C. (1981). Visualization of virus structure in three dimensions. In Methods in Cell Biology, Vol. 22, Three-Dimensional Ultrastructure in Biology (J. N. Turner, ed.). Academic Press, New York, pp. 297–323.Google Scholar
  58. Turner, J. N. (ed.) (1981). Methods in Cell Biology, Vol. 22, Three-Dimensional Ultrastructure in Biology. Academic Press, New York.Google Scholar
  59. Valentine, R. C. (1966). The response of photographic emulsions to electrons. Adv. Opt. Electron Microsc. 1:180–203.Google Scholar
  60. Williams, D.B. and Carter, C.B. (1996). Transmission Electron Microscopy. Plenum, New York.Google Scholar
  61. Wolf, M., DeRosier, D. J. and Grigorieff, N. (2006). Ewald sphere correction for single-particle electron microscopy. Ultramicroscopy 106:376–382.PubMedCrossRefGoogle Scholar
  62. Zeitler, E. (ed.) (1982). Cryomicroscopy and radiation damage. Ultramicroscopy 10:1–178.Google Scholar
  63. Zeitler, E. (ed.) (1984). Cryomicroscopy and radiation damage. II. Ultramicroscopy 14:161–316.Google Scholar
  64. Zemlin, F. (1989). Dynamic focusing for recording images from tilted samples in smallspot scanning with a transmission electron microscope. J. Electron Microsc. Tech. 11:251–257.PubMedCrossRefGoogle Scholar

Further Reading

  1. Baumeister, W. (2002). Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12:679–684.PubMedCrossRefGoogle Scholar
  2. Baumeister, W. (2004). Mapping molecular landscapes inside cells. Biol. Chem. 385:865–872.PubMedCrossRefGoogle Scholar
  3. Baumeister, W. (2005). From proteomic inventory to architecture. FEBS Lett. 579:933–937.PubMedCrossRefGoogle Scholar
  4. Baumeister, W. (2005). A voyage to the inner space of cells. Protein Sci. 14:257–269.PubMedCrossRefGoogle Scholar
  5. Diociaiuti, M. (2005). Electron energy loss spectroscopy microanalysis and imaging in the transmission electron microscope: example of biological applications. J. Electron Spectrosc. Rel. Phenom. 143:189–203.Google Scholar
  6. Fernández, J.-J., Lawrence, A. F., Roca, J., GarcÍa, I., Ellisman, M. H. and Carazo, J.-M. (2002). High-performance electron tomography of complex biological specimens. J. Struct. Biol. 138:6–20.PubMedCrossRefGoogle Scholar
  7. Frank, J. (1973). Computer processing of electron micrographs. In Advanced Techniques in Biological Electron Microscopy (J. K. Koehler, ed.). Springer, Berlin, pp. 215–274.Google Scholar
  8. Frank, J. (1980). The role of correlation techniques in computer image processing. In Hawkes (1980), pp. 187–222.Google Scholar
  9. Frank, J. (1981). Introduction and Three-dimensional reconstruction of single molecules. In Methods in Cell Biology, Vol. 22, Three-Dimensional Ultrastructure in Biology (J.N. Turner, ed.). Academic Press, New York, pp. 119–213, 325–344.Google Scholar
  10. Frank, J. (1989). Image analysis of single macromolecules. Electron Microsc. Rev. 2:53–74.PubMedCrossRefGoogle Scholar
  11. Frank, J. (2002). Single-particle imaging of macromolecules by cryo-electron microscopy. Annu. Rev. Biomol. Struct. 331:303–319.CrossRefGoogle Scholar
  12. Frank, J., Wagenknecht, T., McEwen, B. F., Marko, M., Hsieh, C.-E. and Mannella, C. (2002). Three-dimensional imaging of biological complexity. J. Struct. Biol. 138:85–91.PubMedCrossRefGoogle Scholar
  13. Hawkes, P. W. (ed.) (1980). Computer Processing of Electron Microscope Images. Springer, Berlin.Google Scholar
  14. Hawkes, P.W. and Spence, J. C. H. (eds) (2006). Science of Microscopy. Springer, New York and Berlin.Google Scholar
  15. Henderson, R. and Glaeser, R. M. (1985). Quantitative analysis of image contrast in electron micrographs of beam-sensitive crystals. Ultramicroscopy 16:139–150.CrossRefGoogle Scholar
  16. Hoppe, W. and Hegerl, R. (1980). Three-dimensional structure determination by electron microscopy (nonperiodic specimens). In Hawkes (1980), pp. 127–185.Google Scholar
  17. Hoppe, W. and Typke, D. (1979). Three-dimensional reconstruction of aperiodic objects in electron microscopy. In Advances in Structure Research by Diffraction Methods (W. Hoppe and R. Mason, eds.), Vol. 7. Vieweg, Braunschweig, pp. 137–190.Google Scholar
  18. Lewitt, R. M. (1983). Reconstruction algorithms: transform methods. Proc. IEEE 71:390–408.CrossRefGoogle Scholar
  19. Lucic, V., Förster, F. and Baumeister, W. (2005). Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74:833–865.PubMedCrossRefGoogle Scholar
  20. McEwen, B. F. and Frank, J. (2001). Electron tomographic and other approaches for imaging molecular machines. Curr. Opin. Neurobiol. 11:594–600.PubMedCrossRefGoogle Scholar
  21. Mellema, J. E. (1980). Computer reconstruction of regular biological object. In Hawkes (1980), pp. 89–126.Google Scholar
  22. Moody, M. F. (1990). Image analysis of electron micrographs. In Biophysical Electron Microscopy (P.W. Hawkes and U. Valdrè, eds.), Academic Press, New York, pp. 145–287.Google Scholar
  23. Stewart, M. (1988). Introduction to the computer image processing of electron micrographs of two-dimensionally ordered biological structures. J. Electron Microsc. Tech. 9:301–324.PubMedCrossRefGoogle Scholar
  24. Stewart, M. (1988). Computer image processing of electron micrographs of biological structures with helical symmetry. J. Electron Microsc. Tech. 9:325–358.PubMedCrossRefGoogle Scholar
  25. Subramanian, S. and Milne, J. L. S. (2004). Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33:141–155CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Peter W. Hawkes
    • 1
  1. 1.CEMES-CNRSToulouse cedexFrance

Personalised recommendations