Electron Tomography of Frozen-hydrated Sections of Cells and Tissues

  • Michael Marko
  • Chyong-Ere Hsieh
  • Carmen A. Mannella


The technique of cryoelectron tomography of frozen-hydrated biological specimens is opening a new window on cellular structure and organization. This imaging method provides full 3D structural information at much higher resolution (typically 5–10 nm) than is attainable by light microscopy, and can be applied to cells and organelles that are maintained in a state that is as close to native as can be achieved currently in electron microscopy. Not only can cryoelectron tomography be used to visualize directly extended cellular structures, such as membranes and cytoskeleton, but it can also provide 3D maps of the location, orientation and, perhaps, the conformation of large macromolecular complexes, the cell’s ‘molecular machinery’. This information complements that coming from single-particle cryoelectron microscopy (Frank et al., 1996, 2006) and X-ray crystallography, about the subnanometer structure of the same molecular assemblies after isolation. As with studies using single-particle cryoelectron microscopy, specimens smaller than 1 µ in size can be prepared for cryoelectron tomography by plunge-freezing (Dubochet et al., 1988). Cells or organelles can be rapidly frozen directly on an electron microscope grid in thin layers of glass-like, amorphous ice, without the formation of ice crystals that would otherwise disrupt fine structure (Kellenberger, 1987). Specimens are imaged directly, without chemical fixation, dehydration or staining with heavy metals.


Electron Tomography Knife Edge Electron Dose Indium Foil Gold Marker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Amoudi, A., Dubochet, J., Gnägi, H., Lüthi, W. and Studer, D. (2003). An oscillating cryo-knife reduces cutting-induced deformation of vitreous ultrathin sections. J. Microsc. 212:26–33.PubMedCrossRefGoogle Scholar
  2. Al-Amoudi A., Norlén, L. P. O. and Dubochet J. (2004). Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol. 148:131–135.PubMedCrossRefGoogle Scholar
  3. Al-Amoudi, A., Studer, D. and Dubochet, J. (2005). Cutting artifacts and cutting process in vitreous sections for cryo-electron microscopy. J. Struct. Biol. 150:109–121.PubMedCrossRefGoogle Scholar
  4. Baumeister, W. (2002). Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12:679–684.PubMedCrossRefGoogle Scholar
  5. Baumeister, W. and Steven, A. C. (2000). Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci. 25:624–631.PubMedCrossRefGoogle Scholar
  6. Beck, M., Förster, F., Ecke, M., Plitzko, J. M., Melchior, F., Gerisch, G., Baumeister, W. and Medalia, O. (2004). Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390.PubMedCrossRefGoogle Scholar
  7. Bernhard, W. and Leduc, E. (1967). Ultrathin frozen sections. J. Cell Biol. 34:757–771.PubMedCrossRefGoogle Scholar
  8. Böhm, J., Frangakis, A. S., Hegerl, R., Nickell, S., Typke, D. and Baumeister, W. (2000). Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97:14245–14250.PubMedCrossRefGoogle Scholar
  9. Böhm, J., Lambert, O., Frangakis, A. S., Letellier, L. Baumeister, W. and Rigaud, J. L. (2001). FhuA-mediated phage genome transfer into liposomes: a cryo-electron tomography study. Curr. Biol. 11:1168–1175.PubMedCrossRefGoogle Scholar
  10. Bongini, L., Fanelli, D., Piazza, F., De los Rios, P., Sandin, S. and Skoglund, U. (2004). Freezing immunoglobulins to see them move. Proc. Natl Acad. Sci. USA 101:6466–6471.PubMedCrossRefGoogle Scholar
  11. Brandt, S., Heikkonen, J. and Engelhardt, P. (2001a). Multiphase method for automatic alignment of transmission electron microscope images using markers. J. Struct. Biol. 133:10–22.PubMedCrossRefGoogle Scholar
  12. Brandt, S., Heikkonen, J. and Engelhardt, P. (2001b). Automatic alignment of transmission electron microscope tilt series without fiducial markers. J. Struct. Biol. 136:201–213.PubMedCrossRefGoogle Scholar
  13. Bretschneider. T., Jonkman, J., Kohler, J., Medalia, O., Barisic, K. Weber, I., Selzer, E. H. K., Baummeister, W. and Gerisch, G. (2002). Dynamic organization of the actin system in the motile cells of Dictyostelium. J. Muscle Res. Cell Motil. 23:639–649.PubMedCrossRefGoogle Scholar
  14. Buchanan, R. A., Leapman, R. D., O’Connell, M. F., Reese, T. S. and Andrews, S. B. (1993). Quantitative scanning transmission electron microscopy of ultrathin cryosections: subcellular organelles in rapidly frozen liver and cerebellar cortex. J. Struct. Biol. 110:244–255.PubMedCrossRefGoogle Scholar
  15. Chang, J.-J., McDowall, A.W., Lepault, J., Freeman, R., Walter, C.A. and Dubochet, J. (1983). Freezing, sectioning and observation artifacts of frozen hydrated sections for electron microscopy. J. Microsc. 132:109–123.Google Scholar
  16. Craig, S. and Staehelin, L. A. (1988). High pressure freezing of intact plant tissues. Evaluation and characterization of novel features of the endoplasmic reticulum and associated membrane systems. Eur. J. Cell Biol. 46:81–93.PubMedGoogle Scholar
  17. Crowther, R. A., DeRosier, D. J. and Klug, A. (1970). The reconstruction of a three-dimensional structure from its projections and its applications to electron microscopy. Proc. R. Soc. B 317:319–340.CrossRefGoogle Scholar
  18. Cyrklaff, M., Risco, C., Fernandez, J. J., Jimenez, M. V., Esteban, M., Baumeister, W. and Carrascosa, J. L. (2005). Cryo-electron tomography of Vaccinia virus. Proc. Natl Acad. Sci. USA 102:2772–2777.PubMedCrossRefGoogle Scholar
  19. Dahl, R. and Staehelin, L. A. (1989). High-pressure freezing for the preservation of biological structure: theory and practice. J. Electron Microsc. Tech. 13:165–174.PubMedCrossRefGoogle Scholar
  20. Dierksen, K., Typke, D., Hegerl, R. and Baumeister, W. (1993). Towards automatic electron tomography. II. Implementation of autofocus and low-dose procedures. Ultramicroscopy 49:109–120.CrossRefGoogle Scholar
  21. Dierksen, K., Typke, D., Hegerl, R., Walz, J., Sackmann, E. and Baumeister, W. (1995). Three-dimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. Biophys. J. 68:1416–1422.PubMedGoogle Scholar
  22. Dubochet, J., Adrian, M., Chang, J. J., Homo, J.-C., Lepault, J., McDowall, A.W. and Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21:129–228.PubMedGoogle Scholar
  23. Dubochet, J., Adrian, M., Chang, J.-J., Lepault, J. and McDowall, A. (1987). Cryoelectron microscopy of vitrified specimens. In Cryotechniques in Biological Electron Microscopy (R. A. Steinbrecht and K. Zierold, eds). Springer, Berlin, pp. 114–131.Google Scholar
  24. Dubochet, J. and Sartori Blanc, N. (2001). The cell in absence of aggregation artifacts. Micron 32:91–99.PubMedCrossRefGoogle Scholar
  25. Echlin, P. (1992). Low-temperature Microscopy and Microanalysis. Plenum, New York.Google Scholar
  26. Edelman, L. (1994). Optimal freeze-drying of cryosections and bulk specimens for X-ray microanalysis. Scanning Microsc. Suppl. 8:67–81.Google Scholar
  27. Erk, I., Nicolas, G., Carloff, A. and Lepault, J. (1998). Electron microscopy of frozen biological objetcs: a study using cryosectioning and cryosubstitution. J. Microsc. 189:236–248.PubMedCrossRefGoogle Scholar
  28. Fernández-Morán, H. (1952). Application of the ultrathin freeze sectioning technique to the study of cell structures with the electron microscope. Arch. Fysik. 4:471–483.Google Scholar
  29. Fernández-Morán, H. (1960). Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Annu. NY Acad. Sci. 85:689–713.CrossRefGoogle Scholar
  30. Forbes, M. S. (1986). Dog hairs as section manipulators. EMSA Bull. 16:67.Google Scholar
  31. Förster, F., Medalia, O., Zauberman, N., Baumeister, W. and Fass, D. (2005). Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl Acad. Sci. USA 102:4729–4734.PubMedCrossRefGoogle Scholar
  32. Frangakis, A. S., Böhm, J., Förster, F., Nickell, S., Nicastro, D., Typke, D., Hegerl, R. and Baumeister, W. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl Acad. Sci. USA 99:14153–14158.PubMedCrossRefGoogle Scholar
  33. Frangakis, A. S. and Förster, F. (2004). Computational exploration of structural information from cryo-electron tomograms. Curr. Opin. Struct. Biol. 14:325–331.PubMedCrossRefGoogle Scholar
  34. Frank, J. (1996). Three-dimensional Electron Microscopy of Macromolecules. Academic Press, San Diego.Google Scholar
  35. Frank, J. (2006). Three-dimensional Electron Microscopy of Macromolecular Assemblies—Visualization of Biological Molecules in Their Native State. Oxford University Press, New York.Google Scholar
  36. Frank, J., Wagenknecht, T., McEwen, B. F., Marko, M., Hsieh, C.-E. and Mannella, C. A. (2002). Three-dimensional imaging of biological complexity. J. Struct. Biol. 138:85–91.PubMedCrossRefGoogle Scholar
  37. Frederik, P. M., Bomans, P. H. H. and Stuart, M. C. A. (1993). Matrix effects and the induction of mass loss or bubbling by the electron beam in vitrified hydrated specimens. Ultramicroscopy 48:107–119.CrossRefGoogle Scholar
  38. Frederik, P. M., Busing, W. M. and Persson, A. (1982). Concerning the nature of the cryosectioning process. J. Microsc. 125:167–175.PubMedGoogle Scholar
  39. Frederik, P. M., Busing, W. M. and Persson, A. (1984). Surface defects on thin cryosections. Scanning Electron Microsc. 1:433–443.Google Scholar
  40. Gessler, A. E. and Fullam, E. F. (1946). Sectioning for the electron microscope accomplished by the high speed microtome. Am. J. Anat. 78:245–279.CrossRefGoogle Scholar
  41. Gilkey, J. C. and Staehelin, L. A. (1986). Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J. Electron Microsc. Tech. 3:177–210.CrossRefGoogle Scholar
  42. Grimm, R., Singh, H., Rachel, R., Typke, D., Zilling, W. and Baumeister, W. (1998). Electron tomography of ice-embedded prokaryotic cells. Biophys. J. 74:1031–1042.PubMedGoogle Scholar
  43. Grünewald, K., Desai, P., Winkler, D. C., Heyman, J. B., Belnap, D. M., Baumeister, W. and Steven, A. C. (2003). Three-dimensional structure of herpes simplex virus from cryoelectron tomography. Science 302:1396–1398.PubMedCrossRefGoogle Scholar
  44. Grünewald, K., Medallia, O., Gross, A., Steven, A. and Baumeister, W. (2002). Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys. Chem. 100:577–591.CrossRefGoogle Scholar
  45. Gupta, B. L. and Hall, T.A. (1981). The x-ray microanalysis of frozen-hydrated sections in scanning electron microscopy: an evaluation. Tissue and Cell 13:623–643.PubMedCrossRefGoogle Scholar
  46. Hama, K. and Arii, T. (1987). Three-dimensional analysis of high-voltage electron microscope tilt images: methods and problems. J. Electron Microsc. Tech. 6:185–192.CrossRefGoogle Scholar
  47. Hess, M.W., Muller, M., Debbage, P. L., Vetterlein, M. and Pavelka, M. (2000). Cryopreparation provides new insight into the effects of brefeldin A on the structure of the HepG2 Golgi apparatus. J. Struct. Biol. 130:63–72.PubMedCrossRefGoogle Scholar
  48. Hodson, S. and Marshall, J. (1970). Ultracryotomy: a technique for cutting ultrathin sections of unfixed biological tissues for electron micrscopy. J. Microsc. 91:105–117.PubMedGoogle Scholar
  49. Hohenberg, H., Tobler, M. and Müller, M. (1996). High-pressure freezing of tissue obtained by fine-needle biopsy. J. Microsc. 183:1–7.CrossRefGoogle Scholar
  50. Hsieh, C., He, W., Marko, M. and Stokes, D. L. (2004). 3D Tomographic map of desmosome from frozen-hydrated skin sections. Microsc. Microanal. 10(Suppl. 2):1188CD.Google Scholar
  51. Hsieh, C.-E., Leith, A., Mannella, C.A., Frank, J. and Marko, M. (2006). Towards high-resolution three-dimensional imaging of native mammalian tissue: electron tomography of frozen-hydrated rat liver sections. J. Struct. Biol. 153 (in press).Google Scholar
  52. Hsieh, C.-E., Marko, M., Frank, J. and Mannella, C. A. (2002). Electron tomographic analysis of frozen-hydrated tissue sections. J. Struct. Biol. 138:63–73.PubMedCrossRefGoogle Scholar
  53. Hsieh, C.-E., Marko, M., Leith, A., Frank, J. and Mannella, C. A. (2003). Electron tomographic comparison of frozen-hydrated and freeze-substituted sections of high-pressure frozen rat-liver tissue. Microsc. Microanal. 9(Suppl. 2):1178CD.Google Scholar
  54. Hutchinson, T. E., Johnson, D. E. and MacKenzie, A.P. (1978). Instrumentation for direct observation of frozen hydrated specimens in the electron microscope. Ultramicroscopy 3:315–324.PubMedCrossRefGoogle Scholar
  55. Kellenberger, E. (1987). The response of biological macromolecules and supremolecular structures to the physics of specimen cryopreparation. In Cryotechniques in Biological Electron Microscopy (R. A. Steinbrecht and K. Zierold, eds). Springer, Berlin, pp. 35–63.Google Scholar
  56. Koster, A. J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J. and Baumeister, W. (1997). Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120:276–308.PubMedCrossRefGoogle Scholar
  57. Kürner, J., Medalia, O., Linaroudis, A. A. and Baumeister, W. (2004). New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography. Exp. Cell Res. 301:38–42.PubMedCrossRefGoogle Scholar
  58. Kürner, J., Frangakis, A. S. and Baumeister, W. (2005). Cryo-electron tomography reveals the cytoskeletal structure of Spiroplasma melliferum. Science 307:436–438.PubMedCrossRefGoogle Scholar
  59. Leapman, R. D. (2005). Novel techniques in electron microscopy. Curr. Opin. Neurobiol. 14:591–598.CrossRefGoogle Scholar
  60. Leforestier, A., Dubochet, J. and Livolant. F. (2001). Bilayers of nucleosome core particles. Biophys. J. 81:2414–2421.PubMedGoogle Scholar
  61. Leis, A., Andrees, L., Gruska, M., Al-Amoudi, A., Sartori, A., Dubochet, J. and Baumeister, W. (2005). Cryo-electron tomography and fluorescence microscopy of unicellular algae in vitreous cryosections. Microsc. Microanal. 11(Suppl. 2):330CD.Google Scholar
  62. Lepault, J., Bigot, D., Studer, D. and Erk, I. (1997). Freezing of aqueous specimens: an X-ray diffraction study. J. Microsc. 187:158–166.CrossRefGoogle Scholar
  63. Lucic, V., Förster, F. and Baumeister, W. (2005b). Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74:833–865.PubMedCrossRefGoogle Scholar
  64. Lucic, V., Yang, T., Schweikert, G., Förster, F. and Baumeister, W. (2005a). Morphological characterization of molecular complexes present in the synaptic cleft. Structure 13:423–434.PubMedCrossRefGoogle Scholar
  65. Luther, P. K., Lawrence, M. C. and Crowther, R.A. (1988) A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24:7–18.PubMedCrossRefGoogle Scholar
  66. Mannella, C. A. (2006). The relevance of mitochondrial membrane topology to mitochondrial function. Biochem. Biophys. Acta 1762:140–147.PubMedGoogle Scholar
  67. Mannella, C. A., Buttle, K., Marko, M. (1997). Reconsidering mitochondrial structure: new views of an old organelle. Trends Biochem. Sci. 22:37–38.PubMedCrossRefGoogle Scholar
  68. Mannella, C. A. and Frey, T. (2000). The internal structure of mitochondria. Trends Biochem. Sci. 25:319–324.PubMedCrossRefGoogle Scholar
  69. Mannella, C. A., Pfeiffer, D. R., Bradshaw, P. C., Moraru, L. I., Slepchenko, L. B., Loew, L. M., Hsieh, C.-E., Buttle, K. and Marko, M. (2001). Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52:93–100.PubMedGoogle Scholar
  70. Marko, M., Hsieh, C.-E., Mannella, C. A. and Frank, J. (2002). Electron tomography of frozen-hydrated specimens: application to tissue sections. In Proceedings of the 15th International Congress on Electron Microscopy (Cross, R., ed.), Microscopy Society of Southern Africa, Onderspoort, SA, 2:205–206.Google Scholar
  71. Marko, M., Hsieh, C.-E., Mannella, C. A. and McEwen, B. (1999). Imaging considerations for cryo-tomography of organelles and whole cells at high accelerating voltage. Microsc. Microanal. 5(Suppl. 2):414–415.Google Scholar
  72. Marko, M., Hsieh, C., MoberlyChan, W., Mannella, C.A. and Frank, J. (2006). Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy. J. Microsc. 212:42–47.CrossRefGoogle Scholar
  73. Marko, M., Hsieh, C.-E., Rath, B. K., Mannella, C. A. and McEwen, B. F. (2000). Electron tomography of frozen-hydrated samples. Microsc. Microanal. 6(Suppl. 2):310–311.Google Scholar
  74. Mastronarde, D. N. (1997). Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120:343–352.PubMedCrossRefGoogle Scholar
  75. Mastronarde, D. N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152:36–51.PubMedCrossRefGoogle Scholar
  76. Matias, V. R. F., Al-Amoudi, A., Dubochet, J. and Beveridge, T. J. (2003). Cryo-transmission electron microscopy of frozen-hydrated sections of gram-negative bacteria. J. Bacteriol. 185:6112–6118.PubMedCrossRefGoogle Scholar
  77. McDonald, K. and Morphew, M. K. (1993). Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: 1 Drosophila melanogaster and Strongylocentrotus purpuratus embryos. Microsc. Res. Tech. 24:254–473.CrossRefGoogle Scholar
  78. McDowall, A.W., Chang, J. J., Freeman, R., Lepault, J., Walter, C.A. and Dubochet, J. (1983). Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131:1–9.PubMedGoogle Scholar
  79. McEwen, B. F. and Frank, J. (2001). Electron tomographic and other approaches for imaging molecular machines. Curr. Opin. Neurobiol. 11:594–600.PubMedCrossRefGoogle Scholar
  80. McEwen, B. F., Marko, M., Hsieh, C.-E. and Mannella, C. (2002). Use of frozen-hydrated axonemes to assess imaging parameters and resolution limits in cryoelectron tomography. J. Struct. Biol. 138:47–57.PubMedCrossRefGoogle Scholar
  81. McIntosh, J. R. (2001) Electron microscopy of cells: a new beginning for a new century. J. Cell Biol. 153:F25–F32.PubMedCrossRefGoogle Scholar
  82. McIntosh, J. R., Nicastro, D. and Mastronarde, D. (2005). New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 15:43–51.PubMedCrossRefGoogle Scholar
  83. Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G. and Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 289:1209–1213.CrossRefGoogle Scholar
  84. Michel, M., Hillman, T. and Müller, M. (1991). Cryosectioning of plant material frozen at high pressure. J. Microsc. 163:3–18.Google Scholar
  85. Michel, M., Gnägi, H. and Müller, M. (1992). Diamonds are a cryosectioner’s best friend. J. Microsc. 166:43–56.Google Scholar
  86. Moor, H. (1987). Theory and practice of high pressure freezing. In Cryotechniques in Biological Electron Microscopy (R. A. Steinbrecht and K. Zierold, eds). Springer, Berlin, pp. 175–191.Google Scholar
  87. Morphew, M. K. and McIntosh, J. R. (2003). The use of filter membranes for high-pressure freezing of cell monolayers. J. Microsc. 212:21–25.PubMedCrossRefGoogle Scholar
  88. Nicastro, D., Austin, J., Pierson, J., Gaudette, R., Schwartz, C., Ladinsky, M., Staehelin, L. A. and McIntosh, J. R. (2005b). Visualizing the macromolecular organization of chloroplast membranes using cryo-electron tomography. Microsc. Microanal. 11(Suppl. 2):150–151.Google Scholar
  89. Nicastro, D., Frangakis, A. S., Typke, D. and Baumeister, W. (2000). Cryoelectron tomography of Neurospora mitochondria. J. Struct. Biol. 129:48–56.PubMedCrossRefGoogle Scholar
  90. Nicastro, D., McIntosh, J. R. and Baumeister, W. (2005a). 3-D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography. Proc. Natl Acad. Sci. USA 102:15889–15894.PubMedCrossRefGoogle Scholar
  91. Nickell, S., Hegerl, R., Baumeister, W. and Rachel, R. (2003). Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141(1):34–42.PubMedCrossRefGoogle Scholar
  92. Norlén, L. and Al-Amoudi, A. (2004). Stratum corneum keratin structure, function and formation—the cubic rod-packing and membrane templating model. J. Invest. Dermatol. 123:715–732.PubMedCrossRefGoogle Scholar
  93. Norlén, L., Al-Amoudi, A. and Dubochet, J. (2003). A cryotransmission electron microscopy study of skin barrier formation. J. Invest. Dermatol. 120:555–560.PubMedCrossRefGoogle Scholar
  94. Penczek, P., Marko, M., Buttle, K. and Frank, J. (1995). Double-tilt electron tomography. Ultramicroscopy 60:393–410.PubMedCrossRefGoogle Scholar
  95. Plitzko, J. M., Frangakis, A. S., Foerster, F., Gross, A. and Baumeister, W. (2002). In vivo veritas: electron cryotomography of intact cells with molecular resolution. Trends Biotechnol. 20:40–44.CrossRefGoogle Scholar
  96. Rath, B. K., Hegerl, R., Leith, A., Shaikh, T. R., Wagenknecht, T. and Frank, J. (2003). Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144:95–103.PubMedCrossRefGoogle Scholar
  97. Rath, B. K., Marko, M., Radermacher, M. and Frank, J. (1997). Low-dose automated electron tomography: a recent implementation. J. Struct. Biol. 120:210–218.PubMedCrossRefGoogle Scholar
  98. Richter, K. (1994). Cutting artefacts on ultrathin cryosections of biological bulk specimens. Micron 25:297–308.PubMedCrossRefGoogle Scholar
  99. Richter, K. (1996). Aspects of cryofixation and cryosectioning for the observation of bulk biological samples in the hydrated state by cryoelectron microscopy. Scanning Microsc. (Suppl. 10):375–386.Google Scholar
  100. Richter, K., Gnägi, H. and Dubochet, J. (1991). A model for cryosectioning based on the morphology of vitrified ultrathin sections. J. Microsc. 163:19–28.PubMedGoogle Scholar
  101. Rockel B., Jakana J., Chiu W. and Baumeister W. (2002). Electron cryo-microscopy of VAT, the archaeal p97/CDC48 homologue from Thermoplasma acidophilum. J. Mol. Biol. 317:673–668.PubMedCrossRefGoogle Scholar
  102. Sali, A., Glaeser, R., Earnest, T. and Baumeister, W. (2003). From words to literature in structural proteomics. Nature 422:216–225.PubMedCrossRefGoogle Scholar
  103. Sandin S., Ofverstedt L.G., Wikstrom, A.C., Wrange, O. and Skoglund, U. (2004). Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 12:409–415.PubMedCrossRefGoogle Scholar
  104. Sartori, N., Bednar, J. and Dubochet, J. (1996). Electron-beam-induced amorphization of ice III or IX obtained by high-pressure freezing. J. Microsc. 182:163–168.CrossRefGoogle Scholar
  105. Sartori, N., Richter, K. and Dubochet, J. (1993). Vitrification depth can be increased more than 10-fold by high-pressure freezing. J. Microsc. 172:55–61.Google Scholar
  106. Sartori Blanc, N., Studer, D., Ruhl, K. and Dubochet, J. (1998). Electron beam-induced changes in vitreous sections of biological samples. J. Microsc. 192:194–201.PubMedCrossRefGoogle Scholar
  107. Sartori-Blanc, N., Senn, A., Leforestier, A., Livolant, F. and Dubochet, J. (2001) DNA in human and stallion spermatozoa forms local hexagonal packing with twist and many defects. J. Struct. Biol. 134:76–81.PubMedCrossRefGoogle Scholar
  108. Sawaguchi, A., Yao, X., Forte, J. G. and McDonald, K. L. (2003). Direct attachment of cell suspensions to high-pressure freezing specimen planchettes. J. Microsc. 212:13–20.PubMedCrossRefGoogle Scholar
  109. Schwartz, C., Nicastro, D., Ladinsky, M. S., Mastronarde, D., O’Toole E. and McIntosh, J. R. (2003). Cryo-electron tomography of frozen-hydrated sections of eukaryotic cells. Microsc. Microanal. 9(Suppl. 2):1166–1167.Google Scholar
  110. Shi, S., Sun, S.Q., Andrews, B. and Leapman, R.D. (1996). Thickness measurement of hydrated and dehydrated cryosections by EELS. Microsc. Res. Tech. 33:241–250.PubMedCrossRefGoogle Scholar
  111. Shimoni, E. and Müller, M. (1998). On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J. Microsc. 192:236–247.PubMedCrossRefGoogle Scholar
  112. Sitte, H. (1996). Advanced instrumentation and methodology related to cryoultramicrotomy: a review. Scanning Microsc. (Suppl. 10):387–466.Google Scholar
  113. Somlyo, A. V., Shuman, H. and Somlyo, A. P. (1977). Elemental distribution of striated mucle and the effects of hypertonicity. J. Cell Biol. 74:824–857.CrossRefGoogle Scholar
  114. Somlyo, A. P., Bond, M. and Somlyo, A.V. (1985). Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314:622–625.PubMedCrossRefGoogle Scholar
  115. Steinbrecht, R. A. and Zierold, K. (1987). Cryotechniques in Biological Electron Microscopy. Springer, Berlin.Google Scholar
  116. Steven A. C. and Aebi, U. (2003). The next ice age: cryo-electron tomography of intact cells. Trends Cell Biol. 13:107–110.PubMedCrossRefGoogle Scholar
  117. Stoffler, D., Feja, B., Fahrenkrog, J., Walz, J., Typke, D. and Aebi, U. (2003). Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328:119–130.PubMedCrossRefGoogle Scholar
  118. Studer, D. and Gnägi, H. (2000). Minimal compression of ultrathin sections with use of an oscillating diamond knife. J. Microsc. 197:94–100.PubMedCrossRefGoogle Scholar
  119. Studer, D., Graber, W., Al-Amoudi, A. and Eggli, P. (2001). A new approach for cryofixation by high-pressure freezing. J. Microsc. 203:285–294.PubMedCrossRefGoogle Scholar
  120. Studer, D., Michel, M. and Müller, M. (1989). High pressure freezing comes of age. Scanning Microsc. (Suppl. 3):253–269.Google Scholar
  121. Studer, D., Michel, M., Wohlwend, M., Hunziker, E. B. and Buschmann, M. D. (1995). Vitrification of articular cartilage by high-pressure freezing. J. Microsc. 179 321–332.PubMedGoogle Scholar
  122. Sun, S.Q., Shi, S.-L., Hunt, J.A., Leapman, R.D. (1995). Quantitative water mapping of cryosectioned cells by electron energy-loss spectroscopy. J. Microsc. 177:18–30.PubMedGoogle Scholar
  123. Taylor, K.A. and Glaeser, R.M. (1974). Electron diffraction of frozen, hydrated protein crystals. Science 186:1036–1037.PubMedCrossRefGoogle Scholar
  124. Taylor, K. A. and Glaeser, R. M. (1976). Electron microscopy of frozen hydrated biological specimens. J. Ultrastruct. Res. 55:448–456.PubMedCrossRefGoogle Scholar
  125. Ting, C. S., Hsieh, C., Sundararaman, S., Mannella, C. A. and Marko, M. (2005). Comparative three-dimensional imaging of environmentally critical cyanobacteria through cryoelectron tomography. Microsc. Microanal. 11(Suppl. 2): 332CD.Google Scholar
  126. Tokuyasu, K. T. (1986). Application of cryoultramicrotomy to immunocytochemistry. J. Microsc. 143:139–149.PubMedGoogle Scholar
  127. Vanhecke, D., Graber, W., Herrmann, G., Al-Amoudi, A., Eggli, P. and Studer. D. (2003). A rapid microbiopsy system to improve the preservation of biological samples prior to high-pressure freezing. J. Microsc. 212:3–12.PubMedCrossRefGoogle Scholar
  128. Van Marle, J., Dietrich, A., Jonges, K., Jonges, R, de Moor, E., Vink, A., Boon, P. and van Veen, H. (1995). EM-tomography of section collapse, a non-linear phenomenon. Microsc. Res. Tech. 31:311–316.PubMedCrossRefGoogle Scholar
  129. Vonk, J. (2000). Parameters affecting specimen flatness of two-dimensional crystals for electron crystallography. Ultramicroscopy 5:123–129.CrossRefGoogle Scholar
  130. Wagenknecht, T., Hsieh, C.-E., Rath, B., Fleischer, S. and Marko, M. (2002). Electron tomography of frozen-hydrated isolated triad junctions. Biophys. J. 83:2491–2501.PubMedCrossRefGoogle Scholar
  131. Walther, P. and Müller, M. (1997). Double-layer coating for field-emission cryo-scanning electron microscopy—present state and applications. Scanning 19:343–348.PubMedCrossRefGoogle Scholar
  132. Walz, J., Typke, D., Nitsch, M., Koster, A. J., Hegerl, R. and Baumeister, W. (1997). Electron tomography of single ice-embedded macromolecules: three-dimensional alignment and classification. J. Struct. Biol. 120:387–395.PubMedCrossRefGoogle Scholar
  133. Winkler, H. and Taylor, K.A. (2006). Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography. Ultramicroscopy 106:240–254.PubMedCrossRefGoogle Scholar
  134. Woodcock, C. L. (1994). Chromatin fibers observed in situ in frozen hydrated sections. Native fiber diameter is not correlated with nucleosome repeat length. J. Cell Biol. 125:11–19.PubMedCrossRefGoogle Scholar
  135. Zhang, P., Bos, E., Heyman, J., Gnägi, H., Kessel, M., Petere, P. J. and Subramaniam, S. (2004). Direct visualization of receptor arrays in frozen-hydrated sections and plunge-frozen specimens of E. coli engineered to overproduce the chemotaxis receptor Tsr. J. Microsc. 216:76–83.PubMedCrossRefGoogle Scholar
  136. Zhao, Q., Ofverstedt, L. G., Skoglund, U. and Isaksson, L. A. (2004). Morphological variation of individual Escherichia coli 30S ribosomal subunits in vitro and in situ, as revealed by cryo-electron tomography. Exp. Cell Res. 297:495–507.PubMedCrossRefGoogle Scholar
  137. Zierold, K. (1984). The morphology of ultrathin cryosections. Ultramicroscopy 14:201–210.CrossRefGoogle Scholar
  138. Zierold, K. (1987). Cryoultramicrotomy. In Cryotechniques in Biological Electron Microscopy (R. A. Steinbrecht and K. Zierold, eds). Springer, Berlin, pp. 132–148.Google Scholar
  139. Zierold, K. (1988). X-ray microanalysis of freeze-dried and frozen-hydrated cryosections. J. Electron Microsc. Tech. 9:65–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Michael Marko
    • 1
  • Chyong-Ere Hsieh
    • 1
  • Carmen A. Mannella
    • 1
  1. 1.Resource for Visualization of Biological ComplexityWadsworth CenterAlbanyUSA

Personalised recommendations