Skip to main content

Sample Shrinkage and Radiation Damage of Plastic Sections

  • Chapter
Electron Tomography

Abstract

Just as fossil insects embalmed in amber are extraordinarily preserved, so are biological samples that have been embedded in plastic for electron microscopy. The success of embedding samples in plastic lies in the astounding resilience of the sections in the electron microscope, albeit after initial changes. The electron microscope image results from projection of the sample density in the direction of the beam, i.e. through the depth of the section, and therefore is independent of physical changes in this direction. In contrast, the basis of electron tomography is the constancy of the physical state of the whole section during the time that different views at incremental tilt angle steps are recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amos, L. A., Henderson, R. and Unwin, P. N. (1982). Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog. Biophys. Mol. Biol. 39: 183–231.

    Article  PubMed  CAS  Google Scholar 

  • Bedi, K. S. (1987). A simple method of measuring the thickness of semi-thin and ultra-thin sections. J. Microsc. 148:107–111.

    PubMed  CAS  Google Scholar 

  • Bennett, P. M. (1974). Decrease in section thickness on exposure to the electron beam; the use of tilted sections in estimating the amount of shrinkage. J. Cell Sci. 15:693–701.

    PubMed  CAS  Google Scholar 

  • Berriman, J., Bryan, R. K., Freeman, R. and Leonard, K.R. (1984). Methods for specimen thickness determination in electron microscopy. Ultramicroscopy 13:351–364.

    Article  PubMed  CAS  Google Scholar 

  • Berriman, J. and Leonard, K.R. (1986). Methods for specimen thickness determination in electron microscopy. II. Changes in thickness with dose. Ultramicroscopy 19:349–366.

    Article  PubMed  CAS  Google Scholar 

  • Bouwer, J. C., Mackey, M. R., Lawrence, A., Deerinck, T. J., Jones, Y. Z., Terada, M., Martone, M. E., Peltier, S. and Ellisman, M. H. (2004). Automated most-probable loss tomography of thick selectively stained biological specimens with quantitative measurement of resolution improvement. J. Struct. Biol. 148:297–306.

    Article  PubMed  CAS  Google Scholar 

  • Braunfeld, M. B., Koster, A. J., Sedat, J.W. and Agard, D. A. (1994). Cryo automated electron tomography: towards high-resolution reconstructions of plastic-embedded structures. J. Microsc. 174:75–84.

    PubMed  CAS  Google Scholar 

  • Cosslett, A. (1960). The effect of the electron beam on thin sections. In Proceedings of the 1st European Conference on Electron Microscopy. Delft, Vol. 2, pp. 678–681.

    Google Scholar 

  • Craig, R., Alamo, L. and Padron, R. (1992). Structure of the myosin filaments of relaxed and rigor vertebrate striated muscle studied by rapid freezing electron microscopy. J. Mol. Biol. 228:474–487.

    Article  PubMed  CAS  Google Scholar 

  • Deng, Y., Marko, M., Buttle, K. F., Leith, A., Mieczkowski, M. and Mannella, C.A. (1999). Cubic membrane structure in amoeba (Chaos carolinensis) mitochondria determined by electron microscopic tomography. J. Struct. Biol. 127:231–239.

    Article  PubMed  CAS  Google Scholar 

  • Dorset, D. L. and Parsons, D. F. (1975). The thickness determination of wet protein microcrystals: use of Laue zones in cross-grating diffraction patterns. J. Appl. Phys. 46:938–940.

    Article  CAS  Google Scholar 

  • Egerton, R. F., Li, P. and Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35:399–409.

    Article  PubMed  CAS  Google Scholar 

  • Giddings, T. H., Jr, O’Toole, E.T., Morphew, M., Mastronarde, D.N., McIntosh, J. R. and Winey, M. (2001). Using rapid freeze and freeze-substitution for the preparation of yeast cells for electron microscopy and three-dimensional analysis. Methods Cell Biol. 67:27–42.

    Article  PubMed  CAS  Google Scholar 

  • Gillis, J.M. and Wibo, M. (1971). Accurate measurement of the thickness of ultrathin sections by interference microscopy. J. Cell Biol. 49:947–949.

    Article  PubMed  CAS  Google Scholar 

  • Glaeser, R. M. and Taylor, K. A. (1978). Radiation damage relative to transmission electron microscopy of biological specimens at low temperature: a review. J. Microsc. 112:127–138.

    PubMed  CAS  Google Scholar 

  • Glauert, A. M. (1998). Biological Specimen Preparation for Transmission Electron Microscopy. Portland Press.

    Google Scholar 

  • Grubb, D.T. (1974). Radiation damage and electron microscopy of organic polymers. J. Mater. Sci. 9:1715–1736.

    Article  CAS  Google Scholar 

  • Gunning, B. E. S. and Hardham, A. R. (1977). Estimation of the average section thickness in ribbons of ultra-thin sections. J. Microsc. 109:337–340.

    Google Scholar 

  • Harlow, M., Ress, D., Koster, A., Marshall, R. M., Schwarz, M. and McMahan, U. J. (1998). Dissection of active zones at the neuromuscular junction by EM tomography. J. Physiol. Paris 92:75–78.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, M. L., Ress, D., Stoschek, A., Marshall, R. M. and McMahan, U. J. (2001). The architecture of active zone material at the frog’s neuromuscular junction. Nature 409:479–484.

    Article  PubMed  CAS  Google Scholar 

  • Hayat, M.A. (2000). Principles and Techniques of Electron Microscopy. Cambridge University Press.

    Google Scholar 

  • Hayward, S. B. and Glaeser, R.M. (1979). Radiation damage of purple membrane at low temperature. Ultramicroscopy 4:201–210.

    Article  CAS  Google Scholar 

  • He, W., Cowin, P. and Stokes, D. L. (2003). Untangling desmosomal knots with electron tomography. Science 302:109–113.

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J. E. (1989). Development of the quick-freeze, deep-etch, rotary-replication technique of sample preparation for 3-D electron microscopy. Prog. Clin. Biol. Res. 295:71–83.

    PubMed  CAS  Google Scholar 

  • Heuser, J. E., Keen, J. H., Amende, L. M., Lippoldt, R. E. and Prasad, K. (1987). Deep-etch visualization of 27S clathrin: a tetrahedral tetramer. J. Cell Biol. 105:1999–2009.

    Article  PubMed  CAS  Google Scholar 

  • Hirose, K., Lenart, T. D., Murray, J. M., Franzini-Armstrong, C. and Goldman, Y. E. (1993). Flash and smash: rapid freezing of muscle fibers activated by photolysis of caged ATP. Biophys. J. 65:397–408.

    PubMed  CAS  Google Scholar 

  • Horowitz, R. A., Agard, D. A., Sedat, J.W. and Woodcock, C. L. (1994). The three-dimensional architecture of chromatin in situ: electron tomography reveals fibers composed of a continuously variable zig-zag nucleosomal ribbon. J. Cell Biol. 125:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Jesior, J. C. (1982). A new approach for the visualization of molecular arrangement in biological micro-crystals. Ultramicroscopy 8:379–384.

    Article  PubMed  CAS  Google Scholar 

  • Jesior, J. C. and Wade, R. H. (1987). Electron-irradiation-induced flattening of negatively stained 2D protein crystals. Ultramicroscopy 21:313–319.

    Article  PubMed  CAS  Google Scholar 

  • Koster, A. J., Grimm, R., Typke, D., Hegerl, R., Stoschek, A., Walz, J. and Baumeister, W. (1997). Perspectives of molecular and cellular electron tomography. J. Struct. Biol. 120:276–308.

    Article  PubMed  CAS  Google Scholar 

  • Kremer, J. R., O’Toole, E.T., Wray, G. P., Mastronarde, D. M., Mitchell, S. J. and McIntosh, J. R. (1990). Characterization of beam-induced thinning and shrinkage of semi-thick section in H.V.E.M. In Proceedings of the XIIth International Congress for Electron Microscopy (Peachey, L.D. and Williams, D.B., eds). San Francisco Press Inc., San Francisco, pp. 752–753.

    Google Scholar 

  • Ladinsky, M. S., Mastronarde, D. N., McIntosh, J. R., Howell, K. E. and Staehelin, L. A. (1999). Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144:1135–1149.

    Article  PubMed  CAS  Google Scholar 

  • Lamvik, M. K. (1991). Radiation damage in dry and frozen hydrated organic material. J. Microsc. 161:171–181.

    Google Scholar 

  • Landis, W. J., Hodgens, K. J., Song, M. J., Arena, J., Kiyonaga, S., Marko, M., Owen, C. and McEwen, B. F. (1996). Mineralization of collagen may occur on fibril surfaces: evidence from conventional and high-voltage electron microscopy and three-dimensional imaging. J. Struct. Biol. 117:24–35.

    Article  PubMed  CAS  Google Scholar 

  • Lefman, J., Zhang, P., Hirai, T., Weis, R. M., Juliani, J., Bliss, D., Kessel, M., Bos, E., Peters, P. J. and Subramaniam, S. (2004). Three-dimensional electron microscopic imaging of membrane invaginations in Escherichia coli overproducing the chemotaxis receptor Tsr. J. Bacteriol. 186:5052–5061.

    Article  PubMed  CAS  Google Scholar 

  • Lenzi, D., Crum, J., Ellisman, M. H. and Roberts, W. M. (2002). Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse. Neuron 36:649–659.

    Article  PubMed  CAS  Google Scholar 

  • Lenzi, D., Runyeon, J.W., Crum, J., Ellisman, M. H. and Roberts, W.M. (1999). Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J. Neurosci. 19:119–132.

    PubMed  CAS  Google Scholar 

  • Liu, J., Reedy, M. C., Goldman, Y. E., Franzini-Armstrong, C., Sasaki, H., Tregear, R. T., Lucaveche, C., Winkler, H., Baumann, B. A., Squire, J. M., Irving, T. C., Reedy, M. K. and Taylor, K. A. (2004a). Electron tomography of fast frozen, stretched rigor fibers reveals elastic distortions in the myosin crossbridges. J. Struct. Biol. 147:268–282.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J., Taylor, D.W. and Taylor, K.A. (2004b). A 3-D reconstruction of smooth muscle alpha-actinin by CryoEm reveals two different conformations at the actin-binding region. J. Mol. Biol. 338:115–125.

    Article  PubMed  CAS  Google Scholar 

  • Lucic, V., Forster, F. and Baumeister, W. (2005). Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 74:833–865.

    Article  PubMed  CAS  Google Scholar 

  • Luther, P. K., Lawrence, M. C. and Crowther, R.A. (1988). A method for monitoring the collapse of plastic sections as a function of electron dose. Ultramicroscopy 24:7–18.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, B. J. (2005). Lessons from tomographic studies of the mammalian Golgi. Biochim. Biophys. Acta 1744:273–292.

    Article  PubMed  CAS  Google Scholar 

  • Marsh, B. J., Volkmann, N., McIntosh, J. R. and Howell, K. E. (2004). Direct continuities between cisternae at different levels of the Golgi complex in glucose-stimulated mouse islet beta cells. Proc. Natl Acad. Sci. USA 101:5565–5570.

    Article  PubMed  CAS  Google Scholar 

  • McEwen, B. F. and Frank, J. (2001). Electron tomographic and other approaches for imaging molecular machines. Curr. Opin. Neurobiol. 11:594–600.

    Article  PubMed  CAS  Google Scholar 

  • McIntosh, R., Nicastro, D. and Mastronarde, D. (2005). New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 15:43–51.

    Article  PubMed  CAS  Google Scholar 

  • Muller, W. H., Koster, A. J., Humbel, B. M., Ziese, U., Verkleij, A. J., van Aelst, A. C., van der Krift, T. P., Montijn, R. C. and Boekhout, T. (2000). Automated electron tomography of the septal pore cap in Rhizoctonia solani. J. Struct. Biol. 131:10–18.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S. (1980). Morphometry for determination of size distribution of peroxisomes in thick sections by high-voltage electron microscopy: I. Studies on section thickness. J. Electron Microsc. (Tokyo) 29:230–235.

    CAS  Google Scholar 

  • Padron, R., Alamo, L., Craig, R. and Caputo, C. (1988). A method for quick-freezing live muscles at known instants during contraction with simultaneous recording of mechanical tension. J. Microsc. 151:81–102.

    PubMed  CAS  Google Scholar 

  • Peachey, L.D. (1958). Thin sections. I. A study of section thickness and physical distortion produced during microtomy. J. Biophys. Biochem. Cytol. 4:233–242.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, G. A., Renken, C. W., Song, J. Y., Frey, T. G., Young, S. J., Lamont, Martone, S. M., Lindsey, E. S. and Ellisman, M. H. (1997). Electron tomography of large, multicomponent biological structures. J. Struct. Biol. 120:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, G. A., Renken, C.W., van der Klei, I. J., Ellisman, M. H., Neupert, W. and Frey, T. G. (2001). Electron tomography of mitochondria after the arrest of protein import associated with Tom19 depletion. Eur. J. Cell Biol. 80:139–150.

    Article  PubMed  CAS  Google Scholar 

  • Rader, R. S. and Lamvik, M. L. (1992). High conductivity amorphous Ti88Si22 substrates for low temperature electron microscopy. J. Microsc. 168:71–77.

    CAS  Google Scholar 

  • Rath, B. K., Marko, M., Radermacher, M. and Frank, J. (1997). Low-dose automated electron tomography: a recent implementation. J. Struct. Biol. 120:210–218.

    Article  PubMed  CAS  Google Scholar 

  • Reimer, L. (1989). Transmission Electron Microscopy. Springer-Verlag, Berlin.

    Google Scholar 

  • Saxton, W. O., Baumeister, W. and Hahn, M. (1984). Three-dimensional reconstruction of imperfect two-dimensional crystals. Ultramicroscopy 13:57–70.

    Article  PubMed  CAS  Google Scholar 

  • Shimoni, E. and Muller, M. (1998). On optimizing high-pressure freezing: from heat transfer theory to a new microbiopsy device. J. Microsc. 192:236–247.

    Article  PubMed  CAS  Google Scholar 

  • Sjostrom, M., Squire, J. M., Luther, P., Morris, E. and Edman, A. C. (1991). Cryoultramicrotomy of muscle: improved preservation and resolution of muscle ultrastructure using negatively stained ultrathin cryosections. J. Microsc. 163:29–42.

    PubMed  CAS  Google Scholar 

  • Slot, J. W. and Geuze, H. J. (1985). A new method of preparing gold probes for multiple-labeling cytochemistry. Eur. J. Cell Biol. 38:87–93.

    PubMed  CAS  Google Scholar 

  • Small, J.V. (1968). Measurements of section thickness. In Proceedings of the 4th European Congress on Electron Microscopy (S. Bocciareli, ed.). Vol. 1, pp. 609–610.

    Google Scholar 

  • Sosa, H., Popp, D., Ouyang, G. and Huxley, H.E. (1994). Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. Biophys. J. 67:283–292.

    PubMed  CAS  Google Scholar 

  • Spencer, M. (1982). Fundamentals of Light Microscopy. IUPAB Biophysics Series.

    Google Scholar 

  • Stenn, K. and Bahr, G. F. (1970). Specimen damage caused by the beam of the transmission electron microscope, a correlative reconsideration. J. Ultrastruct. Res. 31:526–550.

    Article  PubMed  CAS  Google Scholar 

  • Studer, D., Graber, W., Al-Amoudi, A. and Eggli, P. (2001). A new approach for cryofixation by high-pressure freezing. J. Microsc. 203:285–294.

    Article  PubMed  CAS  Google Scholar 

  • Trachtenberg, S., Pinnick, B. and Kessel, M. (2000). The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: cryoelectron tomography of freeze-substituted cells and projection studies of negatively stained envelopes. J. Struct. Biol. 130:10–26.

    Article  PubMed  CAS  Google Scholar 

  • Unwin, P.N. (1974). Electron microscopy of the stacked disk aggregate of tobacco mosaic virus protein. II. The influence of electron irradiation of the stain distribution. J. Mol. Biol. 87:657–670.

    Article  PubMed  CAS  Google Scholar 

  • Uzawa, S., Li, F., Jin, Y., McDonald, K. L., Braunfeld, M. B., Agard, D. A. and Cande, W. Z. (2004). Spindle pole body duplication in fission yeast occurs at the G1/S boundary but maturation is blocked until exit from S by an event downstream of cdc10+. Mol. Biol. Cell. 15:5219–5230.

    Article  PubMed  CAS  Google Scholar 

  • van Marle, J., Dietrich, A., Jonges, K., Jonges, R. de Moor E., Vink, A., Boon, P. and van Veen, H. (1995). EM-tomography of section collapse, a non-linear phenomenon. Microsc. Res. Tech. 31:311–316.

    Article  PubMed  Google Scholar 

  • Williams, M.A. and Meek, G. A. (1966). Studies on thickness variation in ultrathin sections for electron microscopy. J. R. Microsc. Soc. 85:337–352.

    Google Scholar 

  • Winkler, H. and Taylor, K.A.(2006). Accurate marker-free alignment with simultaneous geometry determination and reconstruction of tilt series in electron tomography. Ultramicroscopy 106:240–254.

    Article  PubMed  CAS  Google Scholar 

  • Yang, G. C. H. and Shea, S. M. (1975). The precise measurement of the thickness of ultrathin sections by a ‘re-sectioned’ section technique. J. Microsc. 1103:385–392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Luther, P.K. (2007). Sample Shrinkage and Radiation Damage of Plastic Sections. In: Frank, J. (eds) Electron Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-69008-7_2

Download citation

Publish with us

Policies and ethics