Localization and Classification of Repetitive Structures in Electron Tomograms of Paracrystalline Assemblies

  • Kenneth A. Taylor
  • Jun Liu
  • Hanspeter Winkler


Electron tomography offers opportunities to study structures that are not amenable to 3D imaging by any of the classical methods, such as singleparticle reconstruction (Frank, 1996), helical reconstruction (Egelman, 2000; DeRosier and Moore, 1970) or electron crystallography (Glaeser, 1999) that require either a repetitive structure, or multiple copies of identical structures. Since electron tomography can produce a 3D image of a single copy of a structure, it is finding wide application in cell biology and material science. Paracrystalline specimens constitute another class of structure for which electron tomography can be particularly useful for obtaining detailed 3D images (Taylor et al., 1997). Paracrystals (para—Greek prefix meaning faulty) are arrays with various kinds of intrinsic disorder. Spatial averaging of such specimens usually blurs or even erases the disordered component, which may eliminate the functionally interesting feature. For this chapter, we define a paracrystalline specimen as one with partial ordering such that one component of the specimen may be highly regular while another may be irregular due to either low occupancy, lattice irregularity or both.


Electron Tomography Myosin Head Class Average Actin Monomer Tilt Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beck, M., Förster, F., Ecke, M., Plitzko, J.M., Melchior, F., Gerisch, G., Baumeister, W. and Medalia, O. (2004). Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390.PubMedCrossRefGoogle Scholar
  2. Böhm, J., Frangakis, A. S., Hegerl, R., Nickell, S., Typke, D. and Baumeister, W. (2000). Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl. Acad. Sci. USA 97:14245–14250.PubMedCrossRefGoogle Scholar
  3. Braunfeld, M. B., Koster, A. J., Sedat, J.W. and Agard, D. A. (1994). Cryo automated electron tomography: towards high-resolution reconstructions of plastic-embedded structures. J. Microsc. 174:75–84.PubMedGoogle Scholar
  4. Bullard, B. (1984). A large troponin in asynchronous insect flight muscle. J. Muscle Res. Cell Motil. 5:196.CrossRefGoogle Scholar
  5. Burgess, S.A., Walker, M. L., Thirumurugan, K., Trinick, J. and Knight, P. J. (2004). Use of negative stain and single-particle image processing to explore dynamic properties of flexible macromolecules. J. Struct. Biol. 147:247–258.PubMedCrossRefGoogle Scholar
  6. Chen, L. F., Blanc, E., Chapman, M. S. and Taylor, K.A. (2001). Real space refinement of actomyosin structures from sectioned muscle. J. Struct. Biol., 133, 221–232.PubMedCrossRefGoogle Scholar
  7. Chen, L. F., Winkler, H., Reedy, M. K., Reedy, M. C. and Taylor, K. A. (2002). Molecular modeling of averaged rigor crossbridges from tomograms of insect flight muscle. J. Struct. Biol. 138:92–104.PubMedCrossRefGoogle Scholar
  8. DeRosier, D. J. and Moore, P.B. (1970). Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52:355–369.PubMedCrossRefGoogle Scholar
  9. Dierksen, K., Typke, D., Hegerl, R., Walz, J., Sackmann, E. and Baumeister, W. (1995). Threedimensional structure of lipid vesicles embedded in vitreous ice and investigated by automated electron tomography. Biophys. J. 68:1416–1422PubMedGoogle Scholar
  10. Egelman, E. H. (2000). A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85:225–234.PubMedCrossRefGoogle Scholar
  11. Egelman, E. H. and DeRosier, D. J. (1992). Image analysis shows that variations in actin crossover spacings are random, not compensatory. Biophys. J. 63:1299–1305.PubMedCrossRefGoogle Scholar
  12. Egelman, E. H., Francis, N. and DeRosier, D. J. (1982). F-actin is a helix with a random variable twist. Nature 298:131–135.PubMedCrossRefGoogle Scholar
  13. Förster, F., Medalia, O., Zauberman, N., Baumeister, W. and Fass, D. (2005). Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl. Acad. Sci. USA 102:4729–4734.PubMedCrossRefGoogle Scholar
  14. Frangakis, A. S., Bohm, J., Förster, F., Nickell, S., Nicastro, D., Typke, D., Hegerl, R. and Baumeister, W. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl Acad. Sci. USA 99:14153–14158.PubMedCrossRefGoogle Scholar
  15. Frank, J. (1990). Classification of macromolecular assemblies studied as’ single particles’. Q. Rev. Biophys. 23:281–329.PubMedGoogle Scholar
  16. Frank, J. (1996). Three-dimensional Elecron Microscopy of Macromolecular Assemblies. Academic Press, San Diego, CA.Google Scholar
  17. Geeves, M.A. and Holmes, K. C. (1999). Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68:687–728.PubMedCrossRefGoogle Scholar
  18. Glaeser, R.M. (1999). Review: electron crystallography: present excitement, a nod to the past, anticipating the future. J. Struct. Biol. 128:3–14.PubMedCrossRefGoogle Scholar
  19. Goody, R. S., Reedy, M. C., Hofmann, W., Holmes, K. C. and Reedy, M. K. (1985). Binding of myosin subfragment 1 to glycerinated insect flight muscle in the rigor state. Biophys. J. 47:151–169.PubMedGoogle Scholar
  20. Grünewald, K., Desai, P., Winkler, D. C., Heymann, J. B., Belnap, D. M., Baumeister, W. and Steven, A. C. (2003). Three-dimensional structure of herpes simplex virus from cryoelectron tomography. Science 302:1396–1398.PubMedCrossRefGoogle Scholar
  21. Hegerl, R. and Hoppe, W. (1976). Influence of electron noise on three-dimensional image reconstruction. Z. Naturforsch. 31a:1717–1721.Google Scholar
  22. Henderson, R., Baldwin, J. M., Downing, K. H., Lepault, J. and Zemlin, F. (1986). Structure of purple membrane from Halobacterium halobium: recording, measurement and evaluation of electron micrographs at 3.5 å resolution. Ultramicroscopy 19:147–178.CrossRefGoogle Scholar
  23. Holmes, K. C., Tregear, R. T. and Barrington Leigh, J. (1980). Interpretation of the low angle X-ray diffraction from insect muscle in rigor. Proc. R. Soc. B 207:13–33.Google Scholar
  24. Hoppe, W. and Hegerl, R. (1981). Some remarks concerning the influence of electron noise on 3D reconstruction. Ultramicroscopy 6:205–206.Google Scholar
  25. Iwasaki, K., Mitsuoka, K., Fujiyoshi, Y., Fujisawa, Y., Kikuchi, M., Sekiguchi, K. and Yamada, T. (2005). Electron tomography reveals diverse conformations of integrin alphaIIbbeta3 in the active state. J. Struct. Biol. 150:259–267.PubMedCrossRefGoogle Scholar
  26. Kessel, M., Frank, J. and Goldfarb, W. (1980). Low dose electron microscopy of individual biological macromolecules. In: Electron Microscopy at Molecular Dimensions: State of the Art. and Strategies for the Future. Baumeister, W. and Vogell, W. Eds. Springer-Verlag, Berlin, pp. 154–160.Google Scholar
  27. Koster, A. J., Chen, H., Sedat, J.W. and Agard, D. A. (1992). Automated microscopy for electron tomography. Ultramicroscopy 46:207–227.PubMedCrossRefGoogle Scholar
  28. Lanzavecchia, S., Cantele, F. and Bellon, P.L. (2001). Alignment of 3D structures of macromolecular assemblies. Bioinformatics 17:58–62.PubMedCrossRefGoogle Scholar
  29. Liu, J., Reedy, M. C., Goldman, Y. E., Franzini-Armstrong, C., Sasaki, H., Tregear, R. T., Lucaveche, C., Winkler, H., Baumann, B. A. J., Squire, J. M., Irving, T. C., Reedy, M.K. and Taylor, K. A. (2004). Electron tomography of fast frozen, stretched rigor fibers reveals elastic distortions in the myosin crossbridges. J. Struct. Biol. 147:268–282.PubMedCrossRefGoogle Scholar
  30. Liu, J., Taylor, D.W., Krementsova, E. B., Trybus, K.M. and Taylor, K.A. (2006). 3-D structure of the myosin V inhibited state by cryoelectron tomography. Nature 442:208–211.PubMedGoogle Scholar
  31. Lovell, S. J., Knight, P. J. and Harrington, W. F. (1981). Fraction of myosin heads bound to thin filaments in rigor fibrils from insect flight and vertebrate muscles. Nature 293:664–666.PubMedCrossRefGoogle Scholar
  32. Mastronarde, D. N. (1997). Dual-axis tomography: an approach with alignment methods that preserve resolution. J. Struct. Biol. 120:343–352.PubMedCrossRefGoogle Scholar
  33. McEwen, B. F., Downing, K.H. and Glaeser, R.M. (1995). The relevance of dose-fractionation in tomography of radiation-sensitive specimens. Ultramicroscopy 60:357–373.PubMedCrossRefGoogle Scholar
  34. Nickell, S., Hegerl, R., Baumeister, W. and Rachel, R. (2003). Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography. J. Struct. Biol. 141:34–42.PubMedCrossRefGoogle Scholar
  35. Pascual-Montano, A., Taylor, K.A., Winkler, H., Pascual-Marqui, R.D. and Carazo, J.M. (2002). Quantitative self-organizing maps for clustering electron tomograms. J. Struct. Biol. 138:114–122.PubMedCrossRefGoogle Scholar
  36. Penczek, P., Marko, M., Buttle, K. and Frank, J. (1995). Double-tilt electron tomography. Ultramicroscopy 60:393–410.PubMedCrossRefGoogle Scholar
  37. Rath, B. K., Hegerl, R., Leith, A., Shaikh, T. R., Wagenknecht, T. and Frank, J. (2003). Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. J. Struct. Biol. 144:95–103.PubMedCrossRefGoogle Scholar
  38. Reedy, M. K. (1967). Cross-bridges and periods in insect flight muscle. Am. Zool. 7:465–481.Google Scholar
  39. Reedy, M. K., Holmes, K. C. and Tregear, R. T. (1965). Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature 207:1276–1280.PubMedCrossRefGoogle Scholar
  40. Reedy, M. K. and Reedy, M. C. (1985). Rigor crossbridge structure in tilted single filament layers and flared-X formations from insect flight muscle. J. Mol. Biol. 185:145–176.PubMedCrossRefGoogle Scholar
  41. Roseman, A. M. (2003). Particle finding in electron micrographs using a fast local correlation algorithm. Ultramicroscopy 94:225–236.PubMedCrossRefGoogle Scholar
  42. Schatz, M. and van Heel, M. (1990). Invariant classification of molecular views in electron micrographs. Ultramicroscopy 32:255–264.PubMedCrossRefGoogle Scholar
  43. Schatz, M. and van Heel, M. (1992). Invarient recognition of molecular projections in vitreous ice preparations. Ultramicroscopy 45:15–22.CrossRefGoogle Scholar
  44. Schmid, M., Dargahi, R. and Tam, M. (1993). SPECTRA: a system for processing electron images of crystals. Ultramicroscopy 48:251–264.PubMedCrossRefGoogle Scholar
  45. Schmitz, H., Reedy, M. C., Reedy, M. K., Tregear, R. T. and Taylor, K.A. (1997). Tomographic three-dimensional reconstruction of insect flight muscle partially relaxed by AMPPNP and ethylene glycol. J. Cell Biol. 139:695–707.PubMedCrossRefGoogle Scholar
  46. Schmitz, H., Reedy, M. C., Reedy, M. K., Tregear, R. T., Winkler, H. and Taylor, K. A. (1996). Electron tomography of insect flight muscle in rigor and AMPPNP at 23°C. J. Mol. Biol. 264:279–301.PubMedCrossRefGoogle Scholar
  47. Squire, J. M. (1981). The Structural Basis of Muscle Contraction. Plenum Press, New York.Google Scholar
  48. Stoffler, D., Feja, B., Fahrenkrog, B., Walz, J., Typke, D. and Aebi, U. (2003). Cryo-electron tomography provides novel insights into nuclear pore architecture: implications for nucleocytoplasmic transport. J. Mol. Biol. 328:119–130.PubMedCrossRefGoogle Scholar
  49. Taylor, K. A., Schmitz, H., Reedy, M. C., Goldman, Y. E., Franzini-Armstrong, C., Sasaki, H., Tregear, R. T., Poole, K. J. V., Lucaveche, C., Edwards, R. J., Chen, L. F., Winkler, H. and Reedy, M.K. (1999). Tomographic 3-D reconstruction of quick frozen, Ca2+-activated contracting insect flight muscle. Cell 99:421–431.PubMedCrossRefGoogle Scholar
  50. Taylor, K. A., Tang, J., Cheng, Y. and Winkler, H. (1997). The use of electron tomography for structural analysis of disordered protein arrays. J. Struct. Biol. 120:372–386.PubMedCrossRefGoogle Scholar
  51. Taylor, K.A. and Taylor, D.W. (1994). Formation of two-dimensional complexes of F-actin and crosslinking proteins on lipid monolayers: demonstration of unipolar alpha-actinin-Factin crosslinking. Biophys. J. 67:1976–1983.PubMedGoogle Scholar
  52. Taylor, K. A., Taylor, D. W. and Schachat, F. (2000). Isoforms of alpha-actinin from cardiac, smooth, and skeletal muscle form polar arrays of actin filaments. J. Cell Biol. 149:635–646.PubMedCrossRefGoogle Scholar
  53. Thomas, D. D., Cooke, R. and Barnett, V. A. (1983). Orientation and rotational mobility of spin-labelled myosin heads in insect flight muscle in rigor. J. Muscle Res. Cell Motil. 4:367–378.PubMedCrossRefGoogle Scholar
  54. Tilney, L.G., Derosier, D. J. and Mulroy, M. J. (1980). The organization of actin filaments in the stereocilia of cochlear hair cells. J. Cell Biol. 86:244–259.PubMedCrossRefGoogle Scholar
  55. Tregear, R. T., Reedy, M. C., Goldman, Y. E., Taylor, K. A., Winkler, H., Franzini-Armstrong, C., Sasaki, H., Lucaveche, C. and Reedy, M. K. (2004). Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys. J. 86:3009–3019.PubMedGoogle Scholar
  56. Unser, M., Trus, B. L. and Steven, A. C. (1987). A new resolution criterion based on spectral signal-to-noise ratios. Ultramicroscopy 23:39–51.PubMedCrossRefGoogle Scholar
  57. Van Heel, M., Schatz, M. and Orlova, E. (1992). Correlation functions revisited. Ultramicroscopy 46:307–316.CrossRefGoogle Scholar
  58. Walz, J., Typke, D., Nitsch, M., Koster, A. J., Hegerl, R. and Baumeister, W. (1997). Electron tomography of single ice-embedded macromolecules: three-dimensional alignment and classification. J. Struct. Biol. 120:387–395.PubMedCrossRefGoogle Scholar
  59. Winkler, H. and Taylor, K.A. (1996). Three-dimensional distortion correction applied to tomographic reconstructions of sectioned crystals. Ultramicroscopy 63:125–132.PubMedCrossRefGoogle Scholar
  60. Winkler, H. and Taylor, K.A. (1999) Multivariate statistical analysis of three-dimensional crossbridge motifs in insect flight muscle. Ultramicroscopy 77:141–152.CrossRefGoogle Scholar
  61. Winkler, H. and Taylor, K.A. (2003). Focus gradient correction applied to tilt series image data used in electron tomography. J. Struct. Biol. 143:24–32.PubMedCrossRefGoogle Scholar
  62. Zhu, P., Liu, J., Bess, J. J., Chertova, E., Lifson, J.D., Grisé, H., Ofek, G., Taylor, K.A. and Roux, K. H. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441:847–852.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Kenneth A. Taylor
    • 1
  • Jun Liu
    • 1
  • Hanspeter Winkler
    • 1
  1. 1.Institute of Molecular BiophysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations