Segmentation of Cell Components Using Prior Knowledge

  • Ming Jiang
  • Qiang Ji
  • Xun Wang
  • Bruce F. McEwen


Electron tomography is a method for determining 3D structure by electron microscopy, using multiple tilt views of the specimen (Lucic et al., 2005; McEwen and Marko 2001; McIntosh et al., 2005). Since electron tomography does not employ averaging or require the presence of symmetry, it can be used in biological applications to image single copies of subcellular components in situ. When specimen preparation is optimized by use of rapid freezing, and imaged either directly in the frozen-hydrated state, or after freeze substitution and plastic embedding, electron tomography provides a relatively high-resolution view of biological structure in a native, or near-native, cellular context.


Electron Tomography Active Contour Cell Component Hand Panel Active Shape Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aylward, S. and Bullitt, E. (2002). Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imag. 21:61–75.CrossRefGoogle Scholar
  2. Babu, S., Liao, P. C., Shin, M. C. and Tsap, L. V. (2004). Towards recovery of 3d chromosome structure, IEEE Workshop on Articulated and Nonrigid Motion ANM2004 (in conjunction with CVPR’04). Proceedings on a CD-ROM, Washington, DC, June 2004.Google Scholar
  3. Bajaj, C., Yu, Z. and Auer, M. (2003). Volumetric feature extraction and visualization of tomographic molecular imaging. J. Struct. Biol. 144:132–143.PubMedCrossRefGoogle Scholar
  4. Ballard, D. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13:111–122.CrossRefGoogle Scholar
  5. Bartesaghi, A., Sapiro, G., Lee, S., Lefman, J., Wahl, S., Subramaniam, S. and Orenstein, J. (2004). A new approach for 3D segmentation of cellular tomograms obtained using three-dimensional electron microscopy. In Proceedings of the 2nd IEEE International Symposium on Biomedical Imaging, pp. 5–8.Google Scholar
  6. Behiels, G., Vandermeulen, D., Maes, F., Suetens, P. and Dewaele, P. (1999). Active shape model-based segmentation of digital X-ray images. In Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1679, MICCAI’ 99, pp. 128–137.Google Scholar
  7. Böhm, J., Frangakis, A. S., Hegerl, R., Nickell, S., Typke, D. and Baumeister, W. (2000). Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. Proc. Natl Acad. Sci. USA 97:14245–14250.PubMedCrossRefGoogle Scholar
  8. Buck, T., Hammel, U. and Schwefel, H. (1997). Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1:3–17.CrossRefGoogle Scholar
  9. Chan, T. and Vese, L. (2001). Active contours without edges. IEEE Trans. Image Processing 10:266–277.CrossRefGoogle Scholar
  10. Cootes, T. F., Taylor, C. J. and Cooper, D. H. (1995). Active shape models—their training and application. Comput. Vis. Image Understand. 61:38–59.CrossRefGoogle Scholar
  11. Doucet, A., de Freitas, N. and Gordon, N. (2000). Sequential Monte Carlo Methods in Practice. Springer, Berlin.Google Scholar
  12. Duta, N. and Sonka, M. (1998). Segmentation and interpretation of MR brain images: an improved active shape model. IEEE Trans. Med. Imag. 17:1049–1067.CrossRefGoogle Scholar
  13. Elder, J. H., Krupnik, A. and Johnston, L.A. (2003). Contour grouping with prior models. IEEE Trans. Pattern Anal. Machine Intell. 25:661–674.CrossRefGoogle Scholar
  14. Elder, J. H. and Zucker, S.W. (1996). Computing contour closure. Proceeding of the 4th European Conference on Computer Vision 1. Cambridge, UK, pp. 399–412.Google Scholar
  15. Frangakis, A. S., Böhm, J., Forster, F., Nickell, S., Nicastro, D., Typke, D., Hegerl, R. and Baumeister, W. (2002). Identification of macromolecular complexes in cryoelectron tomograms of phantom cells. Proc. Natl Acad. Sci. USA 99:14153–14148.PubMedCrossRefGoogle Scholar
  16. Frangakis, A. S. and Hegerl, R. (2002). Segmentation of two and three dimensional data from electron microscopy using eigenvector analysis. J. Struct. Biol. 138:105–113.PubMedCrossRefGoogle Scholar
  17. Frangi, A., Niessen, W., Hoogeveen, R., van Walsum, T and Viergever, M. (1999). Model-based quantitation of 3D magnetic resonance angiographic images. IEEE Trans. Med. Imag. 18:946–956.CrossRefGoogle Scholar
  18. Frank, J. and Wagenknecht, T. (1984). Automatic selection of molecular images from electron micrographs. Ultramicroscopy 12:169–176.CrossRefGoogle Scholar
  19. Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M. and Leith, A. (1996). SPIDER and WEB: processing and visualization of images ion 3D electron microscopy and related fields. J. Struct. Biol. 116:190–199.PubMedCrossRefGoogle Scholar
  20. Harlow, M. L., Ress, D., Stoschek, A., Marshall, M. and McMahan, U. J. (2001). The architecture of active zone material at the frog’s neuromuscular junction. Nature 409: 479–484.PubMedCrossRefGoogle Scholar
  21. He, W., Cowin, P. and Stokes, D. (2003). Untangling desmosome knots with electron tomography. Science 302:109–113.PubMedCrossRefGoogle Scholar
  22. Hessler, D., Young, S. J., Carragher, B. O., Martone, M. E., Lamont, S., Whittaker, M., Milligan, R. A., Masliah, E., Henshaw, J. E. and Ellisman, M.H. (1992). Programs for visualization in three-dimensional microscopy. Neuroimage 1:55–68.PubMedCrossRefGoogle Scholar
  23. Hessler, D., Young, S. J. and Ellisman M. H. (1996). A flexible environment for the visualization of three-dimensional biological structures. J. Struct. Biol. 116:113–119.PubMedCrossRefGoogle Scholar
  24. Howard, J. and Hyman, A. A. (2003) Dynamics and mechanics of the microtubule plus end. Nature. 422:753–758.PubMedCrossRefGoogle Scholar
  25. Jacob, M., Blu, T. and Unse, M. (2002). 3-D reconstruction of DNA filaments from stereo cryoelectron micrographs. In Proceedings of 2002 IEEE International Symposium on Biomedical Imaging, pp. 597–600.Google Scholar
  26. Jain, A. K., Zhong, Y. and Lakshmanan, S. (1996). Object matching using deformable templates. IEEE Trans. Pattern Anal. Machine Intell. 18:267–278.CrossRefGoogle Scholar
  27. Janosi, I. M., Chretien, D. and Flyvbjerg, H. (1998). Modeling elastic properties of microtubule tips and walls. Eur. Biophys. 27:501–513.CrossRefGoogle Scholar
  28. Jiang, M., Ji, Q. and McEwen, B. F. (2004a). Model-based automated segmentation of kinetochore microtubule from electron tomography. In 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1656–1659.Google Scholar
  29. Jiang, M., Ji, Q. and McEwen, B. F. (2004b). Enhancement of microtubules in EM tomography. Proceedings of the 2004 IEEE International Symposium on Biomedical Imaging, Arlington, VA, April 15–18, 2004, pp. 1123–1126.Google Scholar
  30. Jiang, M., Ji, Q. and McEwen, B. F. (2005). Automated extraction of microtubules and their plus-ends. Seventh IEEE Workshop on Applications of Computer Vision Proceedings, Breckenridge, Colorado, January 5–7, 2005, pp. 336–341.Google Scholar
  31. Jiang, M., Ji, Q. and McEwen, B. F. (2006a). Model-based automated extraction of microtubules from electron tomography volume. IEEE Transactions on Information Technology in Biomedicine, Vol. 10, No. 3, 2006, pp. 608–617.PubMedCrossRefGoogle Scholar
  32. Jiang, M., Ji, Q. and McEwen, B. F. (2006b). Automated extraction of fine-features of kinetochore microtubules and plus-ends from electron tomography volume. IEEE Transactions on Image Processing, Vol. 15, No. 7, 2006, pp. 2035–2048.PubMedCrossRefGoogle Scholar
  33. Kremer, J. R., Mastronarde, D.N. and McIntosh, J. R. (1996). Computer visualization of threedimensional image data using IMOD. J. Struct. Biol. 116:71–76.PubMedCrossRefGoogle Scholar
  34. Li, Y., Leith, A. and Frank, J. (1997). Tinkerbell—a tool for interactive segmentation of 3D data. J. Struct. Biol. 120:266–275.PubMedCrossRefGoogle Scholar
  35. Lucic, V., Forster, F. and Baumeister, W. (2005). Structural studies by electron tomography. Annu. Rev. Biochem. 74:833–865.PubMedCrossRefGoogle Scholar
  36. Mahamud, S., Williams, L.R., Thornber, K. K. and Xu, K. (2003). Segmentation of multiple salient closed contours from real images. IEEE Trans. Pattern Anal. Machine Intell. 25:433–444.CrossRefGoogle Scholar
  37. Maiato, H., DeLuca, J., Salmon, E. D. and Earnshaw, W. C. (2004). The dynamic kinetochore microtubule interface. J. Cell Sci. 117:5461–5477.PubMedCrossRefGoogle Scholar
  38. Marko, M. and Leith, A. (1996). Sterecon—three-dimensional reconstructions from stereoscopic contouring. J. Struct. Biol. 116:93–98.PubMedCrossRefGoogle Scholar
  39. Marsh, B. J., Mastronarde, D. N., Buttle, K. F., Howell, K. E. and McIntosh, J. R. (2001). Organellar relationships in the Golgi region of the pancreatic beta cell line, HIT-T15, visualized by high resolution electron tomography. Proc. Natl Acad. Sci. USA 98:2399–2406.PubMedCrossRefGoogle Scholar
  40. McEwen, B. F., Barnard, R. M., Portuese, T. and Hsieh, C. E. (2002). Using electron tomography to determine the interaction between mammalian kinetochores and microtubules. Proc. Int. Congr. Electron Microsc. 15:179.Google Scholar
  41. McEwen, B. F. and Marko, M. (1999). Three-dimension transmission electron microscopy and its application to mitosis research. Methods Cell Biol 61:81–111.PubMedGoogle Scholar
  42. McEwen, B. F. and Marko, M. (2001). The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 49:553–563.PubMedGoogle Scholar
  43. McIntosh, R., Nicastro, D. and Mastronarde, D. (2005). New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol. 15:43–51.PubMedCrossRefGoogle Scholar
  44. Monga, O., Benayoun, S. and Faugeras, O. (1992). Using partial derivatives of 3D images to extract typical surface features. In Proceedings of The Third Annual Conference of AI, Simulation, and Planning in Highway Autonomy Systems, pp. 225–236.Google Scholar
  45. O’Toole, E., McDonald, K., Mantler, J., McIntosh, J.R., Hyman, A. and Muller-Reichert, T. (2003). Morphologically distinct microtubule ends in the mitotic centrosome of Caenorhabditis elegans. J. Cell Biol. 163:451–456.PubMedCrossRefGoogle Scholar
  46. Perez, P., Blake, A. and Gangnet, M. (2001). Jetstream: probabilistic contour extraction with particles. In Proceedings of the Eighth IEEE International Conference on Computer Vision Vol. 2, pp. 524–531.CrossRefGoogle Scholar
  47. Perkins, G., Renken, C., Martone, M. E., Young, S. J., Ellisman, M. and Frey, T. (1997). Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J. Struct. Biol. 119:260–272.PubMedCrossRefGoogle Scholar
  48. Rasband, W. and Bright, D. (1995). NIH Image. Microbeam Anal. 4:20–33.Google Scholar
  49. Ray, N., Acton, S. T. and Ley, K. (2002). Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Trans. Med. Imag. 21:1222–1235.CrossRefGoogle Scholar
  50. Renken, C., Siragusa, G., Perkins, G., Washington, L., Nulton, J., Salamon, P. and Frey, T. (2002). A thermodynamic model describing the nature of the crista junction: a structural motif in the the mitochondrion. J. Struct. Biol. 138: 137–144.PubMedCrossRefGoogle Scholar
  51. Rogers, M., Graham, J. and Malik, R. A. (2000). Exploiting weak shape constraints to segment capillary images in microangiopathy. In Proceedings of Medical Image Computing and Computer-Assisted Intervention, pp. 717–726.Google Scholar
  52. Samson, C., Blanc-Feraud, L., Aubert, G. and Zerubia, J. (2000). A level set model for image classification. Int. J. Comput. Vis. 40:187–197.CrossRefGoogle Scholar
  53. Scorrano, L., Ashiya, M., Buttle, K., Oakes, S.A., Mannella, C. A. and Korsmeyer, S. J. (2002). A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2:55–67.PubMedCrossRefGoogle Scholar
  54. Segui-Simarro, J. M., Austin, J. R., White, E.A. and Staehelin, A. (2004). Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856.PubMedCrossRefGoogle Scholar
  55. Sethian, J. A. (1996). A marching level set method for monotonically advancing fronts. Proc Natl Acad. Sci. USA 93:1591–1595.PubMedCrossRefGoogle Scholar
  56. Sethian, J. A. (1999). Level Set Methods and Fast Marching Methods, 2nd edn. Cambridge University Press, Cambridge.Google Scholar
  57. Smyth, P. P., Taylor, J. and Adams, J. E. (1996). Automatic measurement of vertebral shape using active shape models. In Proceedings of the British Machine Vision Conference, pp. 705–714.Google Scholar
  58. Sosinsky, G. E., Deerinck, T. J., Greco, R., Buitenhuys, C. H., Bartol, T. M. and Ellisman, M. H. (2005). Development of a model for microphysiological simulations: small nodes of Ranvier from peripheral nerves of mice reconstructed by electron tomography. Neuroinformatics 3:133–162.PubMedCrossRefGoogle Scholar
  59. Staib, L. H. (1990). Parametrically Deformable Contour Models for Image Analysis, PhD Thesis, Yale University, New Haven, Connecticut.Google Scholar
  60. Staib, L.H. and Duncan, J. S. (1992). Boundary finding with parametrically deformable models. IEEE Trans. Pattern Anal. Machine Intell. 4:1061–1075.CrossRefGoogle Scholar
  61. Tregear, R.T., Reedy, M.C., Goldman, Y. E., Taylor, K.A., Winkler, H., Armstrong, C. F., Sasaki, H., Lucaveche, C. and Reedy, M. K. (2004). Cross-bridge number, position, and angle in target zones of cryofixed isometrically active insect flight muscle. Biophys. J. 86: 3009–3019.PubMedGoogle Scholar
  62. Volkmann, N. (2002). A novel three dimensional variant of the watershed transform for segmentation of electron display maps. J. Struct. Biol. 138:123–129.PubMedCrossRefGoogle Scholar
  63. Wang, S., Kubota, T. and Siskind, J. M. (2003). Salient boundary detection using ratio contour. In Neural Information Processing Systems Conference (NIPS). Vancouver, Canada, pp. 1571–1578.Google Scholar
  64. Wang, X., He, L. and Wee, W. G. (2004). Deformable contour method: a constrained optimization approach. Int. J. Comput. Vis. 59:87–108.CrossRefGoogle Scholar
  65. Worring, M., Smeulders, A. W. M., Staib, L.H. and Duncan, J. S. (1996). Parameterized feasible boundaries in gradient vector fields. Comput Vis. Image Understand. 63:135–144.CrossRefGoogle Scholar
  66. Yu, T. P.Y., Stoschek, A. and Donoho, D. L. (1996). Translation-and direction-invariant denoising of 2D and 3D images: experience and algorithms. In Proceedings of the SPIE, Wavelet Applications in Signal and Image Processing IV:2825, pp. 608–619.Google Scholar
  67. Yu, Z. and Bajaj, C. (2004). Picking circular and rectangular particles based on geometric feature detection in electron micrographs. J. Struct. Biol. 145:168–180.PubMedCrossRefGoogle Scholar
  68. Zhu, Y., Carragher, B., Mouche, F. and Potter, C. S. (2003). Automatic particle detection through efficient Hough transforms. IEEE Trans. Med. Imaging, 22:1053–1062.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Ming Jiang
    • 1
  • Qiang Ji
    • 1
  • Xun Wang
    • 1
  • Bruce F. McEwen
    • 2
  1. 1.Electrical, Computer, and Systems Engineering DepartmentRensselaer Polytechnic InstituteTroyUSA
  2. 2.Resource for Visualization of Biological Complexity, Wadsworth CenterEmpire State PlazaAlbanyUSA

Personalised recommendations