Advertisement

Nonlinear Optical Properties of Polymers

  • W. M. K. P. Wijekoon
  • K.-S. Lee
  • P. N. Prasad

Keywords

Nonlinear Optical Property Optical Kerr Gate DFWM Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Bloembergen, Nonlinear Optics (Benjamin/Cummings, New York, 1965).Google Scholar
  2. 2.
    Y. R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984).Google Scholar
  3. 3.
    P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1992).Google Scholar
  4. 4.
    Nonlinear Optical Properties of Organic Molecules and Crystals, edited by D. S. Chemla and J. Zyss (Academic, Orlando, FL, 1987), Vols. I and II.Google Scholar
  5. 5.
    B. F. Levine and C. G. Bethea, J. Chem. Phys. 63, 2666 (1975).Google Scholar
  6. 6.
    P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, Phys. Rev. Lett. 8, 21 (1962).Google Scholar
  7. 7.
    F. Zernike and J. E. Midwinter, Applied Nonlinear Optics (Wiley, New York, 1973).Google Scholar
  8. 8.
    J. Jerphagnon and S. K. Kurtz, J. Appl. Phys. 41, 1667 (1970).Google Scholar
  9. 9.
    D. A. Kleinman, Phys. Rev. 126, 1977 (1962).Google Scholar
  10. 10.
    W. M. K. P. Wijekoon, Y. Zhang, S. P. Karna, P. N. Prasad, A. C. Griffin, and A. M. Bhatti, J. Opt. Soc. Am. B 9, 1832 (1992).Google Scholar
  11. 11.
    M. A. Mitchell, J. E. Mulvaney, H. K. Hall, Jr., C. S. Willand, H. Hampsch, and D. J. Williams, Polym. Bull. 28, 381 (1992).Google Scholar
  12. 12.
    G. R. Meredith, J. VanDusen, and D. J. Williams, Macromolecules 15,1385 (1982).Google Scholar
  13. 13.
    K. D. Singer, J. Sohn, and S. Lalama, Appl. Phys. Lett. 49, 248 (1986).Google Scholar
  14. 14.
    M. Mortazavi, A. Knoesen, S. Kowel and B. Higgins, J. Opt. Soc. Am. B 6, 733 (1989).Google Scholar
  15. 15.
    K. D. Singer, M. Kuzyk, W. Holland, J. Sohn, S. S. Lalama, R. Comizzoli, H. Katz, and M. Schilling, Appl. Phys. Lett. 53, 1800 (1988).Google Scholar
  16. 16.
    H. Katz, K. Singer, J. Sohn, C. Dirk, L. King, and H. Gordon, J. Am. Chem. Soc. 109, 6561 (1987).Google Scholar
  17. 17.
    G. Gadret, F. Kajzar, and P. Raimond, Proc. SPIE 1560, 251 (1991).Google Scholar
  18. 18.
    C. Ye, T. J. Marks, J. Yang, and J. K. Wong, Macromolecules 20, 2322 (1987).Google Scholar
  19. 19.
    Y. Shuto, M. Amano, and T. Kaino, Jpn. J. Appl. Phys. 30, 320 (1991).Google Scholar
  20. 20.
    M. Eich, H. Looser, D. Yoon, R. Twieg, G. Bjorklund, and G. Baumert, J. Opt. Soc. Am. B 6, 1590 (1989).Google Scholar
  21. 21.
    C. Ye, N. Minami, T. J. Marks, J. Yang, and J. K. Wong, Macromol-ecules 21, 2899 (1988).Google Scholar
  22. 22.
    L. Hayden, G. Sauter, F. Ore, P. Pasillas, J. Hoover, G. Lindsay, and R. Henry, J. Appl. Phys. 68, 456 (1990).Google Scholar
  23. 23.
    D. Dai, T. J. Marks, J. Yang, P. Lundquist, and G. K. Wong, Macro-molecules 23, 1891 (1990).Google Scholar
  24. 24.
    D. Dai, M. A. Hubbard, J. Park, T. J. Marks, J. Wang, P. Lundquist, and G. K. Wong, Mol. Cryst. Liq. Cryst. 189, 93 (1990).Google Scholar
  25. 25.
    D. H. Choi, W. M. K. P. Wijekoon, H. M. Kim, and P. N. Prasad, Chem. Mater. 6, 234 (1994).Google Scholar
  26. 26.
    D. H. Choi, H. M. Kim, W. M. K. P. Wijekoon, and P. N. Prasad, Chem. Mater. 4, 1253 (1992).Google Scholar
  27. 27.
    M. Amano, T. Kaino, F. Yamamota, and Y. Takeuchi, Mol. Cryst. Liq. Cryst. 182, 81 (1990).Google Scholar
  28. 28.
    M. A. Hubbard, T. J. Marks, J. Yang, and G. K. Wong, Chem. Mater. 1,167 (1989).Google Scholar
  29. 29.
    D. M. Burland, R. D. Miller, C. A. Walsh, Chem. Rev. 94, 31 (1994).Google Scholar
  30. 30.
    K. Kajikawa, H. Nagamori, H. Takezoe, A. Fukuda, S. Ukishima, Y. Takahashi, M. Iijima, and E. Fukuda, Jpn. J. Appl. Phys. 30, L1737 (1991).Google Scholar
  31. 31.
    I. Teraoka, D. Jungbauer, B. Reck, D. Yoon, R. Twieg, and C. Wilson, J. Appl. Phys. 69, 2568 (1991).Google Scholar
  32. 32.
    M. Chen, L. R. Dalton, L. P. Xu, S. Q. Shi, and W. H. Steir, Macromolecules 25, 4032 (1992).Google Scholar
  33. 33.
    Y. Shi, W. H. Steir, M. Chen, L. Yu, and L. R. Dalton, Appl. Phys. Lett. 60, 2577 (1992).Google Scholar
  34. 34.
    B. K. Mandal, J. Kumar, J. Huang, and S. Tripathy, Makromol. Chem. Rapid. Commun. 12, 63 (1991).Google Scholar
  35. 35.
    B. K. Mandal, Y. M. Chen, V. Y. Lee, J. Kumar, and S. Tripathy, Appl. Phys. Lett. 58, 2459 (1991).Google Scholar
  36. 36.
    C. P. J. Van der Vorst and S. J. Picken, J. Opt. Soc. Am. B 7, 320 (1989).Google Scholar
  37. 37.
    M. Eich, G. Bjorklund, and G. Yoon, Polym. Adv. Technol. 1, 189 (1990).Google Scholar
  38. 38.
    C. Xu, B. Wu, L. R. Dalton, P. Ramon, Y. Shi, and W. Steier, Macromolecules 25, 6716 (1992).Google Scholar
  39. 39.
    M. Chen, L. R. Dalton, L. P. Xu, X. Shi, and W. Steier, Macromol- ecules 25, 4032 (1992).Google Scholar
  40. 40.
    J. Lon, M. Hubbard, T. J. Marks, W. Lin, and G. K. Wong, Chem. Mater. 4, 1148 (1992).Google Scholar
  41. 41.
    D. R. Robello, C. S. Willand, C. S. Scozzafava, A. Ulman, and D. J. Williams, in Materials for Nonlinear Optics. Chemical Perspectives, ACS Symposium Series No. 455, edited by S. Marder, J. Sohn, and G. Stucky (American Chemical Society, Washington, D. C. 1991), p. 279.Google Scholar
  42. 42.
    B. K. Mandal, J. Y. Lee, X. Xhu, Y. M. Chen, E. Prakienavincha, J. Kumar, and S. K. Tripathy, Syn. Met. 41-43, 3143 (1991).Google Scholar
  43. 43.
    B. K. Mandal, Y. M. Chen, V. Lee, J. Kumar, and S. K. Tripathy, Appl. Phys. Lett. 58, 2459 (1991).Google Scholar
  44. 44.
    H. Hsiung, Appl. Phys. Lett. 59, 2495 (1991).Google Scholar
  45. 45.
    T. L. Penner, H. R. Motschmann, A. J. Armstrong, M. C. Ezenyi- limba, and D. J. Williams, Nature 367, 49 (1994).Google Scholar
  46. 46.
    K. Clays, N. J. Armstrong, M. C. Ezenyilimba, and T. L. Penner, Chem. Mater. 5, 1032 (1993).Google Scholar
  47. 47.
    K. Clays, N. J. Armstrong, and T. L. Penner, J. Opt. Soc. Am. B 10, 886 (1993).Google Scholar
  48. 48.
    H. R. Motschmann, T. L. Penner, A. J. Armstrong, and M. C. Eze- nyilimba, J. Phys. Chem. 97, 3933 (1993).Google Scholar
  49. 49.
    S. H. Ou, J. A. Mann, J. B. Lando, L. Zhou, and K. D. Singer, Appl. Phys. Lett. 61, 2284 (1992).Google Scholar
  50. 50.
    S. R. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambirian, Nature 388, 845 (1997).Google Scholar
  51. 51.
    J. L. Oudar and D. S. Chemla, J. Chem. Phys. 66, 2664 (1977).Google Scholar
  52. 52.
    S. R. Marder, L. T. Cheng, B. G. Tiemann, A. C. Friedli, M. Blan- chard-Desce, J. W. Perry, and J. Skindhøj, Science 263, 511 (1994).Google Scholar
  53. 53.
    F. Kajzar, K.-S. Lee, and A. K.-Y. Jen, Adv. Poym. Sci. 161, 1 (2003).Google Scholar
  54. 54.
    L. R. Dalton, Adv. Polym. Sci. 158, 1 (2002).Google Scholar
  55. 55.
    A. K.-Y. Jen, K. Y. Wong, V. P. Rao, K. Drost, and Y. M. Cai, J. Electron. Mater. 23, 653 (1994).Google Scholar
  56. 56.
    Y. M. Cai and A. K.-Y. Jen, Appl. Phys. Lett. 117, 7295 (1995).Google Scholar
  57. 57.
    H. Ma, X. Wang, X. Wu, S. Liu, and A. K.-Y. Jen, Macromolecules 31,4049 (1998).Google Scholar
  58. 58.
    A. K.-Y. Jen, X. Wu, and H. Ma, Chem. Mater. 10, 471 (1998).Google Scholar
  59. 59.
    H. Ma, A. K.-Y. Jen, J. Wu, S. Liu, C. F. Shu, L. R. Dalton, S. R. Marder, and S. Thayumanavan, Chem. Mater. 11, 2218 (1999).Google Scholar
  60. 60.
    L. R. Dalton, Opt. Eng. 39, 589 (2000).Google Scholar
  61. 61.
    C.-K. Park, J. Zieba, C.-F. Zhao, B. Swedek, W. M. K. P. Wijekoon, and P. N. Prasad, Macromolecules 28, 3713 (1995).Google Scholar
  62. 62.
    S. Jin, M. Wubbenhorst, J. Van Turnhout, and W. Mijs, Macromol. Chem. Phys. 197, 4135 (1996).Google Scholar
  63. 63.
    K.-J. Moon, H.-K. Shim, K.-S. Lee, J. Zieba, and P. N. Prasad, Macromolecules 29, 861 (1996).Google Scholar
  64. 64.
    K.-S. Lee, S.-W. Choi, H. Y. Woo, K.-J. Moon, H.-K. Shim, M.-Y. Jeong, and T.-K. Lim, J. Opt. Soc. Am. B 15, 393 (1998).Google Scholar
  65. 65.
    H. Y. Woo, J.-K. Shim, and K.-S. Lee, Macromol. Chem. Phys. 199, 1427 (1998). NONLINEAR OPTICAL PROPERTIES OF POLYMERS/819Google Scholar
  66. 66.
    H. Y. Woo, H.-K. Shim, and K.-S. Lee, Polym. J. 32, 8 (2000).Google Scholar
  67. 67.
    C.-B. Yoon, B.-J. Jung, and H.-K. Shim, Synth. Met. 117, 233 (2001).Google Scholar
  68. 68.
    T. Beltrami, M. Bosch, R. Centore, S. Concilio, P. Gunter, and A. Sirigu, Polymer 42, 4025 (2001).Google Scholar
  69. 69.
    M. Becker, L. Sapochak, L. R. Dalton, W. Steier, and A. K.-Y. Jen, Chem. Mater. 6, 104 (1994).Google Scholar
  70. 70.
    H. Saadeh, A. Gharari, D. Yu, and L. Yu, Macromolecules 30, 5403 (1997).Google Scholar
  71. 71.
    K. Van der Broeck, T. Verbiest, M. Van Beylen, A. Persoons, and C. Samyn, Macromol. Chem. Phys. 200, 2629 (1999).Google Scholar
  72. 72.
    H. Y. Woo, H.-K. Shim, K.-S. Lee, M.-Y. Jeong, and T.-K. Lim, Chem. Mater. 11, 218 (1999).Google Scholar
  73. 73.
    W. N. Leng, Y. H. Zhou, Q. H. Wu, and J. Z. Liu, Polymer 42, 9253 (2001).Google Scholar
  74. 74.
    T.-D. Kim, K.-S. Lee, G. U. Lee, and D.-K. Kim, Polymer 41, 5237 (2000).Google Scholar
  75. 75.
    T.-D. Kim, K.-S. Lee, Y. H. Jeong, J. H. Ju, and S. Chang, Synth. Met. 117,307 (2001).Google Scholar
  76. 76.
    E. Gubbelmans, T. Verbiest, M. Van Beylen, A. Persoons, and C. Samyn, Polymer 43, 1581 (2002).Google Scholar
  77. 77.
    K. Van der Broeck, T. Verbiest, J. Degryse, M. Van Beylen, A. Persoons, and C. Samyn, Poymer 42, 3315 (2001).Google Scholar
  78. 78.
    N. Song, L. Men, J. P. Gao, Y. Bai, A. M. R. Beaudin, G. Yu, and Z. Y. Wang, Chem. Mater. 16, 3708 (2004)Google Scholar
  79. 79.
    J. Y. Do, S. K. Park, J.-J. Ju, S. Park, and M.-H. Lee, Opt. Mater. 26, 223 (2004).Google Scholar
  80. 80.
    J. Y. Do, S. K. Park, J.-J. Ju, S. Park, and M.-H. Lee, Polym. Adv. Tech. 16, 221 (2005).Google Scholar
  81. 81.
    K.-S. Lee, K.-J. Moon, H. Y. Woo, and H.-K. Shim, Adv. Mater. 9, 978 (1997).Google Scholar
  82. 82.
    M.-H. Lee, J.-J. Ju, M.-S. Kim, J. Y. Do, S. K. Park, S. Park, and J. Kim, J. Nonlinear Opt. Phys. Mater. 13, 391 (2004).Google Scholar
  83. 83.
    N. Nemoto, F. Miyata, Y. Nagase, J. Abe, M. Hasegawa, and Y. Shirai, Chem. Mater. 8, 1527 (1996).Google Scholar
  84. 84.
    C. Heldann, M. Schulze, and G. Wegner, Macromolecules 29, 4686 (1996).Google Scholar
  85. 85.
    C. Weder, B. H. Glomm, P. Neuenschwander, U. W. Suter, P. Pretre, P. Kaatz, and P. Gunter, Adv. Nonlinear Opt. 4, 63 (1997).Google Scholar
  86. 86.
    Y.-W. Kim, J.-I. Jin, M. Y. Jin, K.-Y. Choi, J.-J. Kim, and T. Zyung, Polymer 38, 2269 (1997).Google Scholar
  87. 87.
    F. Miyata, N. Nemoto, Y. Nagase, J. Abe, M. Hasegawa, and Y. Shirai, Macromol. Chem. Phys. 199, 1465 (1998).Google Scholar
  88. 88.
    N. Nempto, F. Miyata, T. Kamiyama, Y. Nagase, J. Abe, and Y. Shirai, Macromol. Chem. Phys. 200, 2309 (1999).Google Scholar
  89. 89.
    B.-K. So, K.-S. Lee, S.-M. Lee, M.-K. Lee, and T. K. Lim, Opt. Mater. 21, 87 (2002).Google Scholar
  90. 90.
    Z. Sekkat, C. S. Kang, E. F. Aust, G. Wegner, and W. Knoll, Chem. Mater. 7, 142 (1995).Google Scholar
  91. 91.
    N. Nemoto, F. Miyata, Y. Nagase, J. Abe, M. Hasegawa, and F. Shirai, Macromolecules 29, 2365 (1996).Google Scholar
  92. 92.
    K. Noniewicz and Z. K. Brzozowski, Reat. Funct. Polym. 33, 343 (1997).Google Scholar
  93. 93.
    J. Luo, J. Qin, and H. Kang, Polym. Int. 49, 1302 (2000).Google Scholar
  94. 94.
    J.-Y. Lee W.-J. Lee, C. S. Baek, and H.-B. Bang, Bull. Korean Chem. Soc. 25, 1941 (2004).CrossRefGoogle Scholar
  95. 95.
    S. Yokoyama, T. Nakahama, A. Otomo, and S. Mashiko, Thin Solid Films 331, 248 (1998).Google Scholar
  96. 96.
    S. Yokoyama, T. Nakahama, A. Otomo, and S. Mashiko, J. Am. Chem. Soc. 112, 3174 (2000).Google Scholar
  97. 97.
    J.-H. Lee and K.-S. Lee, Bull. Korean Chem. Soc. 21, 847 (2000).Google Scholar
  98. 98.
    H. L. Bozec, T. L. Bouder, O. Maury, A. Bondon, I. Ledoux, S. Deveau, and J. Zyss, Adv. Mater. 13, 1677 (2001).Google Scholar
  99. 99.
    H. Ma, B. Chen, T. Sassa, L. R. Dolton, and A. K.-Y. Jen, J. Am. Chem. Soc. 123, 986 (2001).Google Scholar
  100. 100.
    H. Ma and A. K.-Y, Jen, Adv. Mater. 13, 1201 (2001).Google Scholar
  101. 101.
    P. Busson, J. O¨rtegren, H. Ihre, U. W. Gedde, A. Hult, G. Andersson, A. Eriksson, and M. Lindgren, Macromolecules 35, 1663 (2002).Google Scholar
  102. 102.
    M. E. Van der Boom, Angew. Chem. Int. Ed. 41, 3363 (2002).Google Scholar
  103. 103.
    H. Ma, S. Liu, J. Luo, S. Suresh, L. Liu, S. H. Kang, M. Haller, T. Sassa, L. R. Dolton, and A. K.-Y. Jen, Adv. Funct. Mater. 12, 565 (2002).Google Scholar
  104. 104.
    J. Luo, S. Liu, M. Haller, L. Liu, H. Ma, and A. K.-Y. Jen, Adv. Mater. 14, 1763 (2002).Google Scholar
  105. 105.
    Y. V. Pereverzev, O. V. Prezhdo, and L. R. Dalton, Chem. Phys. Lett. 373,207 (2003).Google Scholar
  106. 106.
    T. L. Bouder, O. Maury, A. Bondon, K. Costuas, E. Amouyal, I. Ledoux, J. Zyss, and H. L. Bozec, J. Am. Chem. Soc. 125, 12284 (2003).Google Scholar
  107. 107.
    O. Y.-H. Tai, C. H. Wang, H. Ma, and A. K.-Y. Jen, J. Chem. Phys. 121,6086 (2004).Google Scholar
  108. 108.
    J. Luo, M. Haller, H. Ma, S. Liu, T.-D. Kim, Y. Tian, B. Chen, S.-H. Jang, L. R. Dalton, and A. K.-Y. Jen, J. Phys. Chem. B 108, 8523 (2004).Google Scholar
  109. 109.
    H. C. Jeong, M. J. Piao, S. H. Lee, M.-Y. Jeong, K. M. Kang, G. Park, S.-J. Jeon, and B. R. Cho, Adv. Funct. Mater. 14, 64 (2004).Google Scholar
  110. 110.
    A. J. Brouwer and R. M. J. Liskamp, Eur. J. Org. Chem. 487 (2005).Google Scholar
  111. 111.
    Y. Bai, N. Song, J. P. Gao, X. Sun, X. Wang, G. Yu, and Z. Y. Wang, J. Am. Chem. Soc. 127, 2060 (2005).Google Scholar
  112. 112.
    J. F. Nye, Physical Properties of Crystals (Clarendon, Oxford, 1960).Google Scholar
  113. 113.
    S. Cyvin, J. Rauch, and J. Decius, J. Chem. Phys. 43, 4083 (1965).Google Scholar
  114. 114.
    M. J. Soileau, W. E. Williams, and E. W. Van Stryland, IEEE J. Quantum Electron. 19, 731 (1983).Google Scholar
  115. 115.
    D. Grischkowsky, Phy. Rev. Lett. 24, 866 (1970).Google Scholar
  116. 116.
    J. H. Marburger, in Progress of Quantum Electronics, edited by J. H. Sandom and S. Stenholm (Pergamon, New York, 1977), p. 35.Google Scholar
  117. 117.
    M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, Opt. Lett. 14, 955 (1989).Google Scholar
  118. 118.
    M. Goppert-Mayer, Ann. Phys. 9, 273 (1931).Google Scholar
  119. 119.
    W. Kaiser and C. G. B. Garret, Phys. Rev. Lett. 7, 229 (1961).Google Scholar
  120. 120.
    R. Menzel, Photonics; Linear and Nonlinear Interactions of Laser Light and Matter (Springer, Berlin, 2001).Google Scholar
  121. 121.
    J. D. Bhawalkar, G. S. He, and P. N. Prasad, Rep. Prog. Phys. 59, 1041 (1996).Google Scholar
  122. 122.
    T.-C. Lin, S.-J. Chung, K.-S. Kim, X. Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, and P. N. Prasad, Adv. Polym. Sci. 161,157 (2003); Ref. therein.Google Scholar
  123. 123.
    M. Albota, D. Beljonne, J. C. Bredas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Mader, D. McCord- Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subranmaim, W. W. Webb, X.-Y. Wu, and C. Wu, Science 281, 1653 (1998).Google Scholar
  124. 124.
    C. Wu and W. W. Webb, J. Opt. Soc. Am. B 13, 481 (1996).Google Scholar
  125. 125.
    H.-B. Sun, S. Matsuo, and H. Misawa, Appl. Phys. Lett. 74, 786 (1999).Google Scholar
  126. 126.
    M. Straub and M. Gu, Opt. Lett. 27, 1824 (2002).Google Scholar
  127. 127.
    S. Shoji, H.-B. Sun, and S. Kawata, Appl. Phys. Lett. 83, 608 (2003).Google Scholar
  128. 128.
    H.-B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M.-S. Kim, K.-S. Lee, and S. Kawata, Appl. Phys. Lett. 85, 3708 (2004).Google Scholar
  129. 129.
    S. Esener and P. M. Rentzepis, Proc. SPIE 1449, 144 (1991).Google Scholar
  130. 130.
    J. H. Strickler and W. W. Webb, Opt. Lett. 16, 1780 (1991).Google Scholar
  131. 131.
    H. J. Strickler and W. W. Webb, Adv. Mater. 5, 479 (1993).Google Scholar
  132. 132.
    B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Rockel. M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, Natuer 398, 51 (1999).Google Scholar
  133. 133.
    S. Kawata and Y. Kawata, Chem. Rev. 100, 1777 (2000).Google Scholar
  134. 134.
    Y. Kawata, M. Nakano, S.-C. Lee, Opt. Eng. 40, 2247 (2001).Google Scholar
  135. 135.
    B. J. Siwick, O. Kalinina, E. Kumacheva, R. J. D. Miller, and J. Noolandi, J. Appl. Phys. 90, 5328 (2001).Google Scholar
  136. 136.
    S. Klein, A. Barsella, H. Leblond, H. Bulou, A. Fort, C. Andraud, G. Lemercier, J. C. Mulatier, and K. Dorkenoo, Appl. Phys. Lett. 86, 211118 (2005).Google Scholar
  137. 137.
    T. Sherwood, C. Young, J. Takayesu, K.A. Jen, L. Dalton, and A. Chen, Proc. SPIE 5724, 356 (2005).Google Scholar
  138. 138.
    L. Luo, C. Li, S. Wang, W. Huang, C. Wu, H. Yang, H. Jiang, Q. Gong, Y. Yang, and S. Feng, J. Opt. A: Appl. Opt. 3, 489 (2001).Google Scholar
  139. 139.
    S. Maruo and K. Ikuta, Proc. SPIE 3937, 106 (2000).Google Scholar
  140. 140.
    H.-B. Sun, T. Kawakami, Y. Xu, J.-Y. Ye, S. Matuso, H. Misawa, M. Miwa, and R. kaneko, Opt. Lett. 25, 1110 (2000).Google Scholar
  141. 141.
    H.-B. Sun, K. Takada, and S. Kawata, Appl. Phys. Lett. 79, 3173 (2001).Google Scholar
  142. 142.
    S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, Nature 412, 697 (2001).Google Scholar
  143. 143.
    A. Mukherjee, Appl. Phys. Lett. 62, 3423 (1993).Google Scholar
  144. 144.
    G. S. He, C. F. Zhao, J. D. Bhawalkar, and P. N. Prasad, Appl. Phys. Lett. 67, 3703 (1995).Google Scholar
  145. 145.
    G. S. He, J. D. Bhawalkar, C. F. Zhao, C.-K. Park, and P. N. Prasad, Opt. Lett. 20, 2393 (1995).Google Scholar
  146. 146.
    A. Abbotto, L. Beverina, R. Bozio, S. Bradamante, C. Ferrante, G. A. Pagani, and R. Signorini, Adv. Mater. 12, 1963 (2000).Google Scholar
  147. 147.
    G. Zhou, D. Wang, X. Wang, X. Xu, X. Cheng, Z. Shao, X. Zhao, Q. Fang, and M. Jiang, Opt. Laser Tech. 33, 529 (2001).Google Scholar
  148. 148.
    A. Abbotto, L. Beverina, R. Bozio, S. Bradamante, G. A. Pagani, and R. Signorini, Synth. Met. 121, 1755 (2001).Google Scholar
  149. 149.
    D. Wang, G. Zhou, Y. Ren, S. Yang, X. Xu, X. Zhao, Z. Shao, and M. Jiang, Opt. Eng. 41, 1899 (2002).Google Scholar
  150. 150.
    K. Shirota, H.-B. Sun, and S. Kawata, Appl. Phys. Lett. 84, 1632 (2004).Google Scholar
  151. 151.
    G. S. He, J. D. Bhawalker, C. F. Zhao, and P. N. Prasad, Appl. Phys. Lett. 67, 2433 (1995).Google Scholar
  152. 152.
    G. S. He, L. Yuan, N. Cheng, J. D. Bhawalkar, P. N. Prasad, L. L. Brott, S. J. Clarson, and B. A. Reinhardt, J. Opt. Soc. Am. B 14, 1097 (1997).Google Scholar
  153. 153.
    J. E. Ehrlich, X. L. Wu, L.-Y. Lee, Z.-Y. Hu, H. Roecker, S. R. Marder, and J. Perry, Opt. Lett. 22, 1843 (1997).Google Scholar
  154. 154.
    C. W. Spangler, J. Mater. Chem. 9, 2013 (1999).Google Scholar
  155. 155.
    G. S. He, T.-C. Lin, P. N. Prasad, C.-C. Cho, and L.-J. Yu, Appl. Phys. Lett. 82, 4717 (2003).Google Scholar
  156. 156.
    M. G. Silly, L. Porrès, O. Mongin, P.-A. Chollet, and M. Blanchard- Desce, Chem. Phys. Lett. 379, 74 (2003).Google Scholar
  157. 157.
    T.-C. Lin, G. S. He, P. N. Prasad, and L.-S. Tan, J. Mater. Chem. 14, 982 (2004).Google Scholar
  158. 158.
    Z. Yang, Z. Wu, J. Ma, A. Xia, Q. Li, C. Liu, and Q. Gong, Appl. Phys. Lett. 86, 061903 (2005).Google Scholar
  159. 159.
    W. Denk, J. H. Strikler, and W. W. Webb, Science 248, 73 (1990).Google Scholar
  160. 160.
    H. Ohata, H. Yamada, T. Niioka, M. Yamamaoto, and K. Momose, J. Pharmacol. Sci. 93, 242 (2003).Google Scholar
  161. 161.
    S. M. Dunham, H. E. Pudavar, P. N. Prasad, and M. K. Stachowiak, J. Phys. Chem. B 108, 10540 (2004).Google Scholar
  162. 162.
    E. E. Serrano and V. B. Knight, Proc. SPIE 5705, 225 (2005).Google Scholar
  163. 163.
    K. Baba, T. Y. Ohulchanskyy, Q. Zheng, T.-C. Lin, E. J. Bergey, and P. N. Prasad, MRS Symp. Proc. 845, 209 (2005).Google Scholar
  164. 164.
    J. D. Bhawalkar, N. D. Kumar, C. F. Zhao, and P. N. Prasad, J. Clin. Med. Surg. 15, 201 (1997).Google Scholar
  165. 165.
    P. K. Frederiksen, M. Jørgensen, and P. R. Ogiby, J. Am. Chem. Soc. 123,1215 (2001).Google Scholar
  166. 166.
    I. Roy, T. Y. Ohulchanskyy, H. E. Pudaver, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty, and P. N. Prasad, J. Am. Chem. Soc. 125, 7860 (2003).Google Scholar
  167. 167.
    M. Fournier, C. Pépin, D. Houde, R. Oueller, and J. E. van Lier, Photochem. Photobiol. Sci. 3, 120 (2004).Google Scholar
  168. 168.
    M. Drobizhev, Y. Stepanenko, Y. Dzenis, A. Karotki, A. Rebane, P. N. Taylor, and H. L. Anderson, J. Phys. Chem. B 109, 7223 (2005).Google Scholar
  169. 169.
    M. A. Oar, J. M. Serin, W. R. Dichtel, M. J. Fechet, T. Y. Ohulchans- kyy, and P. N. Prasad, Chem. Mater. 17, 2267 (2005).Google Scholar
  170. 170.
    C. W. Spangler, J. R. Starkey, F. Meng, A. Gong, M. Drobizhev, A. Rebane, and B. Moss, Proc. SPIE 5689, 141 (2005).Google Scholar
  171. 171.
    C. Stuteret, J. P. Herman, R. Frey, F. Fradere, J. Ducuing, R. H. Daughman, and R. R. Chance, Phys. Rev. Lett. 36, 956 (1976).Google Scholar
  172. 172.
    G. M. Carter, J. V. Hryniewicz, M. K. Thakur, Y. J. Chen, and S. E. Mayler, Appl. Phys. Lett. 49, 998 (1986).Google Scholar
  173. 173.
    J. Bolger, T. G. Harvey, W. Ji, A. K. Kar, S. Molyneux, B. S. Wherrett, D. Bloor, and P. Norman, J. Opt. Soc. Am. B 9, 1552 (1992).Google Scholar
  174. 174.
    M. Ohsugi, S. Takaragi, H. Matsuda, A. Okada, H. Masaki, and H. Nakanishi, Proc. SPIE 1337, 162 (1990).Google Scholar
  175. 175.
    P. A. Chollet, F. Kazjar, and J. Messier, in Nonlinear Optics of Organics and Semiconductors, edited by T. Kobayashi (Springer, Berlin, 1988), p. 171.Google Scholar
  176. 176.
    P. A. Chollet, F. Kazjar, and J. Messier, Thin Solid Films 132, 1 (1985).Google Scholar
  177. 177.
    J. M. Nunzi and F. Charra, J. Appl. Phys. 62, 2198 (1987).Google Scholar
  178. 178.
    T. Doi, S. Okada, H. Matsuda, A. Masaki, N. Minami, H. Nakanishi, and K. Hayamizu, presented at the 52nd Meeting of the Japanese Society of Applied Physics, 1991.Google Scholar
  179. 179.
    P. N. Prasad, Proc. SPIE 1017, 2 (1988).Google Scholar
  180. 180.
    J. Le Moigne, A. Thierry, P. A. Chollet, F. Kazjar, and J. Messier, J. Chem. Phys. 88, 6647 (1988).Google Scholar
  181. 181.
    J. Le Moigne, A. Thierry, and F. Kazjar, Proc. SPIE 1125, 9 (1990).Google Scholar
  182. 182.
    T. Kanetake, K. Ishikawa, T. Hesegawa, T. Koda, K. Takeda, H. Hesegawa, K. Kubodera, and H. Kobayashi, Appl. Phys. Lett. 54,2287 (1989).Google Scholar
  183. 183.
    F. Kazjar and J. Messier, Thin Solid Films 132, 11 (1985).Google Scholar
  184. 184.
    F. Kazjar and J. Messier, Polym. J. 19, 275 (1987).Google Scholar
  185. 185.
    H. Matsuda, S. Okada, and H. Nakanishi, in Proceedings of the Fifth International Conference on Photoactive Solids, Okazaki, Japan, 1991, p. 264.Google Scholar
  186. 186.
    L. Yang, R. Dorsinville, Q. Wang, W. Zou, P. Ho, N. Yang, R. Alfano, R. Zamboni, R. Danieli, G. Ruini, and C. Taliani, J. Opt. Soc. Am. B 6,753 (1989).Google Scholar
  187. 187.
    T. Sugiyama, T. Wada, and H. Sasabe, Synth. Met. 28, C323 (1989).Google Scholar
  188. 188.
    Y. Pang and P. N. Prasad, J. Chem. Phys. 93, 2201 (1990).Google Scholar
  189. 189.
    B. P. Singh, M. Samoc, H. Nalva, and P. N. Prasad, J. Chem. Phys. 92, 2756 (1990).Google Scholar
  190. 190.
    H. Sasabe, T. Wadw, T. Sigiyama, H. Ohkawa, A. Yamada, and A. F. Garito, in Conjugated Polymeric Materials in Electronics, Optoelec- tronics and Molecular Electronics, edited by J. L. Bredas and R. R. Chance (Kluwer, London, 1990), p. 399.Google Scholar
  191. 191.
    H. Matsuda, M. Sato, S. Okada, H. Nakanishi, M. Kato, and T. Nishiyama, Polym. Prepr. Jpn. 28, 1035 (1989).Google Scholar
  192. 192.
    F. Kazjar, J. Messier, C. Sentein, R. L. Elsenbaumer, and G. G. Miller, Proc. SPIE 1147, 36 (1989).Google Scholar
  193. 193.
    T. Kaino, K. Kubodra, H. Kobayashi, T. Kurihara, S. Saito, T. Tsutsui, T. Takito, and H. Murata, Appl. Phys. Lett. 53, 2002 (1988).Google Scholar
  194. 194.
    P. N. Prasad, Thin Sold Films 152, 275 (1987).Google Scholar
  195. 195.
    P. Logsdon, J. Pfleger, and P. N. Prasad, Synth. Met. 26, 369 (1988).Google Scholar
  196. 196.
    M. Sinlair, D. McBranch, D. Moses and A. Heeger, Synth. Met. 28, D645 (1989).Google Scholar
  197. 197.
    E. Wintner, F. Krausz, and G. Leising, Synth. Met. 28, D159 (1989).Google Scholar
  198. 198.
    G. A. Olah, E. Zadok, R. Edler, D. H. Adamson, W. Kasha, and G. Suryaprakash, J. Am. Chem. Soc. 111, 9123 (1989).Google Scholar
  199. 199.
    D. Neher, A. Wolf, C. Bubeck, and G. Wegner, Chem. Phys. Lett. 163,116 (1989).Google Scholar
  200. 200.
    H. Vanherzeele, J. Meth, S. Jenekhe, and M. Roberts, J. Opt. Soc. Am. B 9, 524 (1982).Google Scholar
  201. 201.
    B. P. Singh, P. N. Prasad, and F. E. Karasz, Polymer 29, 1940 (1988).Google Scholar
  202. 202.
    D. D. Bradley and Y. Mori, Jpn. J. Appl. Phys. 28, 174 (1989).Google Scholar
  203. 203.
    K. Kamiyama, M. Era, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. 29, L840 (1990).Google Scholar
  204. 204.
    Y. Pang, M. Samoc, and P. N. Prasad, J. Chem. Phys. 94, 5282 (1991).Google Scholar
  205. 205.
    J. Swiatkiewicz, P. N. Prasad, F. E. Krausz, A. A. Druy, and P. Glatkwski, Appl. Phys. Lett. 56, 892 (1990).Google Scholar
  206. 206.
    C. J. Wung, W. M. K. P. Wijekoon, and P. N. Prasad, Polymer 34, 1174 (1993).Google Scholar
  207. 207.
    K. Kamiyama, M. Era, T. Tsutsui, and S. Sato, Jpn. J. Appl. Phys. 29, L840 (1990).Google Scholar
  208. 208.
    K. Wong, S. Han, and Z. Vardeny, J. Appl. Phys. 70, 1896 (1991).Google Scholar
  209. 209.
    S. K. Goshal, Chem. Phys. Lett. 158, 65 (1989).Google Scholar
  210. 210.
    J. R. Lindle, F. J. Bartoli, C. A. Hoffmann, O. K. Kim, Y. S. Lee, J. S. Shirk, and Z. F. Kafafi, Appl. Phys. Lett. 65, 712 (1990).Google Scholar
  211. 211.
    K. S. Lee and M. Samoc, Polymer 32, 361 (1991).Google Scholar
  212. 212.
    S. A. Jenekhe, J. A. Osaheni, H. Vanherzeele, and J. Meth, Chem. Mater. 4, 683 (1992).Google Scholar
  213. 213.
    L. Yu, D. W. Polis, M. R. McLean, and L. R. Dalton, in Electro- responsive Molecular and Polymeric Systems, edited by T. A. Skotheim (Dekker, New York, 1991), Vol. II, p. 113.Google Scholar
  214. 214.
    H. S. Nalva, T. Hamada, A. Kakuta, and A. Mukoh, Jpn. J. Appl. Phys. 32, L193 (1993).Google Scholar
  215. 215.
    P. N. Prasad, Proc. SPIE 1328, 186 (1990).Google Scholar
  216. 216.
    C. J. Wung, Ph.D. dissertation, State University of New York at Buffalo, Buffalo, 1991.Google Scholar
  217. 217.
    P. Shukla, P. M. Cotts, R. D. Miller, S. Ducharme, R. Asthana, and J. Zavislan, Mol. Cryst. Liq. Cryst. 183, 241 (1990).Google Scholar
  218. 218.
    J. C. Baumert, G. C. Bjorklund, D. H. Dundt, M. C. Jurich, H. Looser, R. D. Miller, J. Rabolt, R. Sooriyakumaran, J. D. Swalean, and R. J. Twieg, Appl. Phys. Lett. 53, 1147 (1988).Google Scholar
  219. 219.
    F. Kazjar, J. Messier, and C. Rosilio, J. Appl. Phys. 60, 3040 (1986).Google Scholar
  220. 220.
    L. Yang, Q. Wang, P. Ho, R. Dorsville, R. Alfano, W. Zou, and N. Yang, Appl. Phys. Lett. 53, 1245 (1988).Google Scholar
  221. 221.
    C. L. Callender, C. A. Carere, J. Albert, L. L. Zhou, and D. J. Worsfold, J. Opt. Soc. Am. B 9, 518 (1992).Google Scholar
  222. 222.
    K. S. Wong, S. G. Han, Z. V. Vardeny, J. Shinar, Y. Pang, I. Maghsoodi, T. J. Barton, S. Grigoras, and B. Parbhoo, Appl. Phys. Lett. 58, 1695 (1991).Google Scholar
  223. 223.
    W. J. Blau, H. J. Byrne, D. J. Cardin, T. J. Dennis, J. P. Hare, H. W. Kroto, R. Taylor, and D. R. Walton, Phys. Rev. Lett. 67, 1423 (1991). NONLINEAR OPTICAL PROPERTIES OF POLYMERS/821Google Scholar
  224. 224.
    X. K. Wong, T. G. Zhang, W. P. Lin, S. Z. Liu, G. K. Wong, M. M. Kappes, R. P. H. Chang, and J. B. Ketterson, Appl. Phys. Lett. 60, 810 (1992).Google Scholar
  225. 225.
    F. Henari, J. Collaghan, H. Stiel, W. Blau, and D. J. Cardin, Chem. Phys. Lett. 199, 144 (1992).Google Scholar
  226. 226.
    J. S. Meth, H. Vanherzeele, and Y. Wang, Chem. Phys. Lett. 188, 492 (1992).Google Scholar
  227. 227.
    Y. Wang and L. T. Chen, J. Chem. Phys. 96, 1530 (1992).Google Scholar
  228. 228.
    M. J. Rosker, H. O. Mercy, T. Y. Chang, J. T. Khoury, K. Hansen, and R. L. Whetten, Chem. Phys. Lett. 196, 427 (1992).Google Scholar
  229. 229.
    H. Hoshi, N. Nakamura, Y. Maruyama, T. Nakagawa, S. Suzuki, H. Shiromaru, and A. Achiba, Jpn. J. Appl. Phys. 30, L1397 (1991).Google Scholar
  230. 230.
    G. B. Talapatra, N. Manickam, M. Samoc, M. E. Orczyk, S. P. Karna, and P. N. Prasad, J. Phys. Chem. 96, 5206 (1992).Google Scholar
  231. 231.
    S. C. Yang, Q. Gong, Z. Xia, Y. Zou, Y. Wu, D. Qiang, Y. Sun, and Z. Gu, Appl. Phys. B 55, 51 (1992).Google Scholar
  232. 232.
    Q. Gong, Y. Sun, Z. Xia, Z. Gu, X. Zhou, and D. Qiang, J. Appl. Phys. 71,3025 (1992).Google Scholar
  233. 233.
    J. P. Herman, Opt. Commun. 9, 74 (1973).Google Scholar
  234. 234.
    C. Maloney and W. Blau, J. Opt. Soc. Am. B 4, 1035 (1987).Google Scholar
  235. 235.
    S. H. Stevenson, D. S. Donald, and G. R. Meridith, in Nonlinear Optical Properties of Polymers, Materials, Research Society Sympo- sium Proceedings Vol. 109, edited by A. J. Heeger, J. Orenstein, and D. R. Ulrich (Materials Research Society, Pittsburgh, 1988), p. 103.Google Scholar
  236. 236.
    M. E. Orczyk, J. Swiatkiewicz, N. Manickam, M. Tomoaia-Cotisel, and P. N. Prasad, Appl. Phys. Lett. 60, 2837 (1992).Google Scholar
  237. 237.
    Z. H. Kafafi, J. R. Lidle, R. G. S. Pong, F. J. Bartoli, L. J. Lingg, and J. Milliken, Chem. Phys. Lett. 188, 492 (1992).Google Scholar
  238. 238.
    Z. Z. Ho, C. Y. Ju, and W. M. Hetherington III, J. Appl. Phys. 62, 716 (1987).Google Scholar
  239. 239.
    M. Hosoda, T. Wada, A. Yamada, A. F. Garito, and H. Sasabe, Nonlinear Opt. 3, 183 (1992).Google Scholar
  240. 240.
    J. S. Shirk, J. R. Lindle, F. J. Bartoli, C. A. Hoffman, Z. H. Kafafi, and A. W. Snow, Appl. Phys. Lett. 55, 1287 (1989).Google Scholar
  241. 241.
    H. Matsuda, S. Okada, a. Masaki, H. Nakanishi, Y. Suda, K. Shige- hara, and A. Yamada, Proc. SPIE 1337, 105 (1990).Google Scholar
  242. 242.
    J. S. Shirk, J. R. Lindle, F. J. Bartoli, and M. F. Boyle, J. Phys. Chem. 96,5847 (1992).Google Scholar
  243. 243.
    M. Castevenss, M. Samoc, J. Pfleger, and P. N. Prasad, J. Chem. Phys. 92, 2019 (1990).Google Scholar
  244. 244.
    H. S. Nalwa, A. Kakuta, and A. Mukoh, Chem. Phys. Lett. 203, 109 (1993).Google Scholar
  245. 245.
    H. S. Nalwa, A. Kakuta, and A. Mukoh, J. Phys. Chem. 97, 1097 (1993).Google Scholar
  246. 246.
    J. S. Shirk, J. R. Lindle, F. J. Bartoli, Z. H. Kafafi, A. W. Snow, and M. E. Boyle, Int. J. nonlinear Opt. Phys. 1, 699 (1992).Google Scholar
  247. 247.
    B. A. Reinhardt, L. L. Brott, S. T. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S. He, and P. N. Prasad, Chem. Mater. 10, 1683 (1998).Google Scholar
  248. 248.
    O.-K. Kim, K.-S. Lee, H. Y. Woo, K.-S. Kim, G. S. He, J. Swiatkiewicz, and P. N. Prasad, Chem. Mater. 12, 284 (2000).Google Scholar
  249. 249.
    B. R. Cho, K. H. Son, S. H. Lee, Y.-S. Song, Y.-K. Lee, S.-J. Jeon, J. H. Choi, H. Lee, and M. Cho, J. Am. Chem. Soc. 123, 10039 (2001).Google Scholar
  250. 250.
    S.-J. Chung, K.-S. Kim, T.-C. Lin, G. S. He, J. Swiatkiewicz, and P. N. Prasad, J. Phys. Chem. B 103, 10741 (1999).Google Scholar
  251. 251.
    A. Adronov, J. M. J. Frechet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, Chem. Mater. 12, 2838 (2000).Google Scholar
  252. 252.
    F. E. Hernandez, K. D. Belfield, and I. Cohanoschi, Chem. Phys. Lett. 391,22 (2004).Google Scholar
  253. 253.
    O. Mongin, L. Porrès, L. Moreaux, J. Mertz, and M. Blanchard-Dece, Org. Lett. 4, 719 (2002).Google Scholar
  254. 254.
    L. Porres, O. Mongin, C. Katan, M. Charlot, T. Pons, J. Mertz, and M. Blanchard-Desce, Org. Lett. 6, 47 (2004).Google Scholar
  255. 255.
    F. Meng, B. Li, S. Qian, K. Chen, and H. Tian, Chem. Lett. 33, 470 (2004).Google Scholar
  256. 256.
    K. D. Belfield, A. R. Morales, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, Chem. Mater. 16, 2267 (2004).Google Scholar
  257. 257.
    K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, and J. Percino, Chem. Mater.16, 4634 (2004).Google Scholar
  258. 258.
    Y. Lu, F. Hasegawa, T. Goto, S. Ohkuma, S. Fukuhara, Y. Kawazu, K. Torani, T. Yamashita, and T. Watanabe, J. Lumin. 110, 1 (2004).Google Scholar
  259. 259.
    Y. Iwase, K. Kamada, K. Ohta, and K. Kondo, J. Mater. Chem. 13, 1575 (2003).Google Scholar
  260. 260.
    Q. Zheng, G. S. He, and P. N. Prasad, J. Mater. Chem. 15, 579 (2005).Google Scholar
  261. 261.
    M. Charlot, L. Porrès, C. D. Entwistle, A. Beeby, T. B. Marder, and M. Blanchard-Desce, Phys. Chem. Chem. Phys. 7, 600 (2005).Google Scholar
  262. 262.
    S. K. Lee, W. J. Yang, J. J. Choi, C. H. Kim, S.-J. Jeon, and B. R. Cho, Org. Lett. 7, 323 (2005).Google Scholar
  263. 263.
    M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Rockel, S. Thayumanavan, S. R. Marder, D. Beljonne, and J. L. Brédas, J. Am. Chem. Soc. 122, 9500 (2000).Google Scholar
  264. 264.
    S. J. K. Pond, O. Tsutsumi, M. Rumi, O. Kwon, E. Zojer, J. L. Brédas, S. R. Marder, and J. W. Perry, J. Am. Chem. Soc. 126, 9291 (2004).Google Scholar
  265. 265.
    K.-S. Lee, J.-H. Lee, K.-S. Kim, H.-Y. Woo, O.-K. Kim, H. Choi, M. Cha, G. S. He, J. Swiatkiewcz, P. N. Prasad, M.-A. Chung, and S.- D. Jung, Nonlinear Opt. 27, 87 (2001).Google Scholar
  266. 266.
    K.-S. Lee, M.-S. Kim, H.-K. Yang, H.-B. Sun, S. Kawata, and P. Fleitz, Mol. Cryst. Liq. Cryst. 424, 35 (2004).Google Scholar
  267. 267.
    M.-S. Kim, H.-K. Yang, R. H. Kim, K.-S. Lee, M. Cha, H. Choi, H.-B. Sun, S. Kawata. J. Nonlinear Opt. Phys. Mater. 13, 467 (2004).Google Scholar
  268. 268.
    H.-K. Yang, M.-S. Kim, S.-W. Kang, K.-S. Kim, K.-S. Lee, S. H. Park, D.-Y. Yang, H. J.Kong, H.-B. Sun, S. Kawata, and P. Fleitz, J. Photopolym. Sci. Tech. 17, 385 (2004).Google Scholar
  269. 269.
    K.-S. Lee, S.-W. Kang, and J. Y. Kim, unpublished results.Google Scholar
  270. 270.
    W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, and B. R. Cho. J. Am. Chem. Soc. 123, 10658 (2001).Google Scholar
  271. 271.
    B. R. Cho, M. J. Piao, K. H. Son, S. H. Lee, S. J. Yoon, S.-J. Jeon, and M. Cho, Chem. Eur. J. 8, 3907 (2002).Google Scholar
  272. 272.
    W. J. Yang, C. H. Kim, M.-Y. Jeong, S. K. Lee, M. J. Piao, S.-J. Jeon, and B. R. Cho. Chem. Mater. 16, 2783 (2004).Google Scholar
  273. 273.
    S.-J. Chung, T.-C. Lin, K.-S. Kim, G. S. He, J. Swiatkiewicz, P. N. Prasad, G. A. Baker, and F. V. Bright, Chem. Mater. 13, 4071 (2001).Google Scholar
  274. 274.
    X. Zhou, A. M. Ren, J.-K. Feng, and X.-J. Liu, Chem. Phys. Lett. 362, 541 (2002).Google Scholar
  275. 275.
    G. P. Bartholomew, M. Rumi, S. J. K. Pond, J. W. Perry, S. Tretiak, and G. C. Bazan, J. Am. Chem. Soc. 126, 11529 (2004)Google Scholar
  276. 276.
    W. J. Yang, D. Y. Kim, C. H. Kim, M.-J. Jeong, S. K. Lee, S.-J. Jeon, and B. R. Cho, Org. Lett. 6, 1389 (2004).Google Scholar
  277. 277.
    C. Li, C. Liu, Q. Li, and Q. Gong, Chem. Phys. Lett. 400, 569 (2004).Google Scholar
  278. 278.
    S.-W. Kang, J. Y. Kim, R. H. Kim, B.-K. So, K.-S. Lee, I.-W. Hwang, D. Kim, P. Fleitz, H.-B. Sun, and S. Kawata, Proc. SPIE 5621, 1 (2004).Google Scholar
  279. 279.
    Y.-Z. Cui, Q. Fang, G. Xue, G.-B. Xu, L. Yin, and W.-T. Yu, Chem. Lett. 34, 644 (2005).Google Scholar
  280. 280.
    A. Adronov, J. M. J. Fréchet, G. S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, and P. N. Prasad, Chem. Mater. 12, 2838 (2000).Google Scholar
  281. 281.
    M. Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z. Suo, and C. W. Spangler, J. Phys. Chem. B 107, 7540 (2003).Google Scholar
  282. 282.
    M. Hara, S. Samori, X. Cai, S. Tojo, T. Arai, A. Momotake, J. Hayakawa, M. Ueda, K. Kawai, M. Endo, M. Fujitsuka, and T. Majima, J. Am. Chem. Soc. 126, 14217 (2004).Google Scholar
  283. 283.
    M. Drobizhev, A. Rebane, Z. Suo, and C. W. Spangler, J. Lumin. 111, 291 (2005).Google Scholar
  284. 284.
    M. A. Oar, J. M. Serin, W. R. Dichtel, M. J. Fréchet, T. Y. Ohul- chanskyy, and P. N. Prasad, Chem. Mater. 17, 2267. (2005).Google Scholar
  285. 285.
    R. K. Meyer, R. E. Benner, Z. V. Vardeny, M. Liess, M. Ozaki, K. Yoshino, Y. Ding, and T. Barton, Synth. Met. 84, 549 (1997).Google Scholar
  286. 286.
    G. S. He, C. Weder, P. Smith, and P. N. Prasad, J. Quantum Electron. 34,2279 (1998).Google Scholar
  287. 287.
    M. G. Harrison, G. Urbasch, R. F. Mahrt, H. Giessen, H. Bässler, and U. Scherf, Chem. Phys. Lett. 313, 755 (1999).Google Scholar
  288. 288.
    P. Najechalski, Y. Morel, O. Stéphan, and P. L. Baldeck, Chem. Phys. Lett. 343, 44 (2001).Google Scholar
  289. 289.
    S.-J. Chung, G. S. Maciel, H. E. Pudavar, T.-C. Lin, G. S. He, J. Swiatkiewicz, P. N. Prasad, D. W. Lee, and J.-I. Jin, J. Phys. Chem. A 106, 7512 (2002).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • W. M. K. P. Wijekoon
    • 1
  • K.-S. Lee
    • 2
  • P. N. Prasad
    • 3
  1. 1.Applied MaterialsSanta Clara
  2. 2.Department of Polymer Science and EngineeringHannam UniversityKorea
  3. 3.Department of ChemistryThe State University of New York at BuffaloBuffalo

Personalised recommendations