Carbon Nanotube Polymer Composites: Recent Developments in Mechanical Properties

  • M. C. Weisenberger
  • Rodney Andrews
  • T. Rantell


Carbon Nanotubes Carbon Fiber Composite Fiber Composite Property Interfacial Shear Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 354, 56-58 (1991).Google Scholar
  2. 2.
    Sinnott, S. B. & Andrews, R. Carbon Nanotubes: Synthesis, Proper- ties, and Applications. Crit. Rev. Solid State Mater. Sci. 26, 145-249 (2001).Google Scholar
  3. 3.
    Lambin, P. Electronic structure of carbon nanotubes. Comptes Rendus Physique 4, 1009-1019 (2003).Google Scholar
  4. 4.
    Kaneto, K., Tsuruta, M., Sakai, G., Cho, W. Y. & Ando, Y. Electrical conductivities of multi-wall carbon nano tubes. Synth. Metals 103, 2543-2546 (1999).Google Scholar
  5. 5.
    Berber, S., Kwon, Y. K. & Tomanek, D. Unusually high thermal conductivities of carbon nanotubes. Phys. Rev. Lett. 84, 4613-4616 (2000).Google Scholar
  6. 6.
    Kim, P., Shi, L., Majamdar, A. & McEuen, P. L. Thermal transport measurments of individual multiwalled nanotubes. Phys. Rev. Lett. 87,215502-1 (2001).Google Scholar
  7. 7.
    Saito, R., Dresselhaus, G. & Dresselhaus, M. S. Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).Google Scholar
  8. 8.
    Salvetat-Delmotte, J.-P. & Rubio, A. Mechanical properties of carbon nanotubes: a fiber digest for beginners. Carbon 40,1729-1734 (2001).Google Scholar
  9. 9.
    Thess, A. et al. Crystalline ropes of metallic carbon nanotubes. Science 273, 483-487 (1996).Google Scholar
  10. 10.
    Andrews, R., Jacques, D., Qian, D. & Rantell, T. Multiwall carbon nanotubes: synthesis and application. Acc. Chem. Res. 35, 1008-1017 (2002).Google Scholar
  11. 11.
    Donnet, J.-B., Wang, T. K., Peng, J. C. M. & Rebouillat, S. (eds.) Carbon Fibers Third Edition, Revised and Expanded (Marcel Dekker Inc., New York, 1998).Google Scholar
  12. 12.
    Cadek, M. et al. Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett. 4, 353-356 (2004).Google Scholar
  13. 13.
    Yu, M.-F. et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637-640 (2000).Google Scholar
  14. 14.
    Yu, M.-F., Yakobson, B. I. & Ruoff, R. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. J. Phys. Chem. 104, 8764-8767 (2000).Google Scholar
  15. 15.
    Hwang, G. L., Shieh, Y.-T. & Hwang, K. C. Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer compos- ites. Adv. Funct. Mater. 14, 487-491 (2004).Google Scholar
  16. 16.
    Zhang, Y., Gu, H. & Lijima, S. Single-wall carbon nanotubes syn- thesized by laser ablation in a nitrogen atmosphere. Appl. Phys. Lett. 73,3827-3829 (1998).Google Scholar
  17. 17.
    Andrews, R. et al. Continuous production of aligned carbon nano- tubes: a step closer to commercial realization. Chem. Phys. Lett. 303, 467-474 (1999).Google Scholar
  18. 18.
    Krishnan, A., Dujardin, E., Ebbesen, T. W., Yianilos, P. N. & Treacy, M. M. J. Young’s modulus of single-walled nanotubes. Phys. Rev. B 58,14013-14019 (1998).Google Scholar
  19. 19.
    Lier, G. V., Alsenoy, C. V., Doren, V. V. & Geerlings, P. Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene. Chem. Phys. Lett. 326, 181-185 (2000).Google Scholar
  20. 20.
    Schadler, L. S., Giannaris, S. C. & Ajayan, P. M. Load transfer in carbon nanotube epoxy composites. Appl. Phys. Lett. 73, 3842-3844 (1998).Google Scholar
  21. 21.
    Nardelli, M. B., Yakobson, B. I. & Bernholc, J. Brittle and ductile behavior in carbon nanotubes. Phys. Rev. Lett. 81, 4656-4659 (1998).Google Scholar
  22. 22.
    Walters, D. A. et al. Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74, 3803-3805 (1999).Google Scholar
  23. 23.
    Treacy, M. M. J., Ebbesen, T. W. & Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381,678-680 (1996).Google Scholar
  24. 24.
    Demczyk, B. G. et al. Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater. Sci. Eng. A334, 173-178 (2002).Google Scholar
  25. 25.
    Wagner, H. D., Lourie, O., Feldman, Y. & Tenne, R. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 72, 188-190 (1998).Google Scholar
  26. 26.
    Sandler, J. et al. Carbon-nanofibre-reinforced poly(ether ether ke- tone) fibres. J. Mater. Science 38, 2135-2141 (2003).Google Scholar
  27. 27.
    Applied Sciences (2005). Properties of Pyrograf I, http://www.apsci.- com/ngm-pyro1.html
  28. 28.
    Bacon, R. Growth, structure, and properties of graphitic whiskers. J. Appl. Phys. 31, 283-290 (1960).Google Scholar
  29. 29.
    Hexcel. (2005). Continuous carbon fiber data, http://www.hexcelfi- Markets/Products/Continuous/ _Productlist.htm
  30. 30.
    Toray (2005). Carbon fiber data, index2.html
  31. 31.
    Siochi, E. J. et al. Melt processing of SWCNT-polyimide nanocom- posite fibers. Compos. Part B: Eng. 35, 439-446 (2004).Google Scholar
  32. 32.
    Zeng, J., Saltysiak, B., Johnson, W. S., Schiraldi, D. A. & Kumar, S. Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites. Compos. Part B: Eng. 35, 173-178 (2004).Google Scholar
  33. 33.
    Gorga, R. E. & Cohen, R. E. Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J. Polym. Sci.: Part B: Polym. Phys. 42, 2690-2702 (2004).Google Scholar
  34. 34.
    Advani, S. G. & Fan, Z. in Materials Processing and Design: Mod- eling, Simulation, and Applications, NUMIFORM 2004 (eds. Ghosh, S., Castro, J. C. & Lee, J. K.) 1619-1623 (American Institute of Physics, 2004).Google Scholar
  35. 35.
    Shaffer, M. S. P., Fan, X. & Windle, A. H. Dispersion and packing of carbon nanotubes. Carbon 36, 1603-1612 (1998).Google Scholar
  36. 36.
    Shaffer, M. S. P. & Windle, A. H. Analogies between polymer solutions and carbon nanotube dispersions. Macromolecules 32, 6864-6866 (1999).Google Scholar
  37. 37.
    Zeng, J., Saltysiak, B., Johnson, W. S., Schiraldi, D. A. & Kumar, S. Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites. Compos. Part B: Eng. 35, 173-178 (2004).Google Scholar
  38. 38.
    Weisenberger, M. C., Grulke, E. A., Jacques, D., Rantell, T. & Andrews, R. Enhanced mechanical properties of polyacrylonitrile/ multiwall carbon nanotube composite fibers. J. Nanosci. Nanotech- nol. 3, 535-539 (2003).Google Scholar
  39. 39.
    Ding, W. et al. Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Lett. 3, 1593-1597 (2003).Google Scholar
  40. 40.
    Dalton, A. B. et al. Super-tough carbon-nanotube fibres. Nature 423, 703 (2003).Google Scholar
  41. 41.
    Fisher, F. T., Bradshaw, R. D. & Brinson, L. C. Fiber waviness in nanotube-reinforced polymer composites-I: Modulus predictions using effective nanotube properties. Compos. Sci. Technol. 63, 1689-1703 (2003).Google Scholar
  42. 42.
    Hammel, E. et al. Carbon nanofibres for composite applications. Carbon 42, 1153-1158 (2004).Google Scholar
  43. 43.
    Kearns, J. C. & Shambaugh, R. L. Polypropylene fibers reinforced with carbon nanotubes. J. Appl. Polym. Sci. 86, 2079-2084 (2002).Google Scholar
  44. 44.
    Fuchs, F. J. In 45th Annual Technical Conference of Society of Vacuum Coaters ISSN 0737-5921, 64-67 (2002).Google Scholar
  45. 45.
    Sandler, J. K. W. et al. A comparative study of melt spun polyamide- 12 fibres reinforced with carbon nanotubes and nanofibres. Polymer 45,2001-2015 (2004).Google Scholar
  46. 46.
    Gong, X., Liu, J., Baskaran, S., Voise, R. D. & Young, J. S. Surfac- tant-assisted processing of carbon nanotube/polymer composites. Chem. Mater. 12, 1049-1052 (2000).Google Scholar
  47. 47.
    Velasco-Santos, C., Martinez-Hernandex, A. L., Fisher, F. T., Ruoff, R. S. & Castano, V. M. Dynamical-mechanical and thermal analysis of carbon nanotube-methyl-ethyl methacrylate nanocomposites. J. Phys. D: Appl. Phys. 36, 1423-1428 (2003).Google Scholar
  48. 48.
    Poulin, P., Vigolo, B. & Launois, P. Films and fibers of oriented single wall nanotubes. Carbon 40, 1741-1749 (2002).Google Scholar
  49. 49.
    Velasco-Santos, C., Martinez-Hernandez, A. L., Fisher, F. T., Ruoff, R. S. & Castano, V. M. Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functio- nalization. Chem. Mater. 15, 4470-4475 (2003).Google Scholar
  50. 50.
    Haggenmueller, R., Gommans, H. H., Rinzler, A. G., Fischer, J. E. & Winey, K. I. Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330,219-225 (2000).Google Scholar
  51. 51.
    Bubert, H. et al. Characterization of the uppermost layer of plasma- treated carbon nanotubes. Diamond Related Mater. 12, 811-815 (2003).Google Scholar
  52. 52.
    Kim, B. & Sigmund, W. M. Functionalized multiwall carbon nano- tube/gold nanoparticle composites. Langmuir 20, 8239-8242 (2004).Google Scholar
  53. 53.
    Esumi, K., Ishigami, A., Nakajima, A., Sawadi, K. & Honda, H. Carbon 34, 279 (1996).Google Scholar
  54. 54.
    Eitan, A., Jiang, K., Dukes, D., Andrews, R. & Schadler, L. S. Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites. Chem. Mater. 15, 3195-3201 (2003).Google Scholar
  55. 55.
    Valentini, L., Armentano, I., Puglia, D. & Kenny, J. M. Dynamics of amine functionalized nanotubes/epoxy composites by dielectric re- laxation spectroscopy. Carbon 42, 323-329 (2004).Google Scholar
  56. 56.
    Kyke, C. A., Stewart, M. P., Maya, F. & Tour, J. M. Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications. Synlett 1, 155-160 (2004).Google Scholar
  57. 57.
    Holzinger, M. et al. Sidewall functionalization of carbon nanotubes. Angew. Chem. Int., Ed. 40, 4002-4005 (2001).Google Scholar
  58. 58.
    Moghaddam, M. J. et al. Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett. 4, 89-93 (2004).Google Scholar
  59. 59.
    Pantarotto, D. et al. Synthesis, structural characterization and im- munological properties of carbon nanotubes functionalized with pep- tides. J. Am. Chem. Soc. 125, 6160-6164 (2003).Google Scholar
  60. 60.
    Dyke, C. A. & Tour, J. M. Solvent-free functionalization of carbon nanotubes. J. Am. Chem. Soc. 125, 1156-1157 (2003).Google Scholar
  61. 61.
    Lozano, K., Yang, S. & Jones, R. E. Nanofiber toughened polyethyl- ene composites. Carbon 42, 2329-2331 (2004).Google Scholar
  62. 62.
    Jin, Z., Pramoda, K. P., Xu, G. & Goh, S. H. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites. Chem. Phys. Lett. 337, 43-47 (2001).Google Scholar
  63. 63.
    Kashiwagi, T. et al. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid Commun. 23, 761-765 (2002).Google Scholar
  64. 64.
    Jin, L., Bower, C. & Zhou, O. Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197-1199 (1998).Google Scholar
  65. 65.
    Shaffer, M. S. P. & Windle, A. H. Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv. Mater. 11, 937-941 (1999).Google Scholar
  66. 66.
    Ruan, S. L., Gao, P., Yang, X. G. & Yu, T. X. Toughening high performance ultrahigh molecular weight polyethylene using multi- walled carbon nanotubes. Polymer 44, 5643-5654 (2003).Google Scholar
  67. 67.
    Ajayan, P. M., Stephan, O., Colliex, C. & Traught, D. Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube com- posite. Science 265, 1212-1214 (1994).Google Scholar
  68. 68.
    Cadek, M. et al. in Molecular Nanostructures: XVII Int’l. Winter- school/Euroconference on Electronic Properties of Novel Materials (eds. Kuzmany, H., Fink, J., Mehring, M. & Roth, S.) 269-272 (American Institute of Physics, 2003).Google Scholar
  69. 69.
    Coleman, J. N. et al. High-performance nanotube-reinforced plastics: understanding the mechanism of strength increase. Adv. Funct. Mater. 14, 791-798 (2004).Google Scholar
  70. 70.
    Ryan, K. P. et al. Carbon-nanotube nucleated crystallinity in a con- jugated polymer based composite. Chem. Phys. Lett. 391, 329-333 (2004).Google Scholar
  71. 71.
    Cadek, M., Coleman, J. N., Barron, V., Hedicke, K. & Blau, W. J. Morphological and mechanical properties of carbon-nanotube- reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 81, 5123-5125 (2002).Google Scholar
  72. 72.
    Stephan, C. et al. Characterization of singlewalled carbon nanotubes- PMMA composites. Synth. Metals 108, 139-149 (2000).Google Scholar
  73. 73.
    Assouline, E. et al. Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J. Polym. Sci.: Part B: Polym. Phys. 41, 520-527 (2003).Google Scholar
  74. 74.
    Thostenson, E. T. & Chou, T.-W. Aligned multi-walled carbon nano- tube-reinforced composites: processing and mechanical characteriza- tion. J. Phys. D: Appl. Phys. 35, L77-L80 (2002).Google Scholar
  75. 75.
    Lourie, O., Cox, D. M. & Wagner, H. D. Buckling and collapse of embedded carbon nanotubes. Phys. Rev. Lett. 81, 1638-1641 (1998).Google Scholar
  76. 76.
    Tibbetts, G. & McHugh, J. J. Mechanical properties of vapor-grown carbon fiber composites with thermoplastic matrices. J. Mater. Res. 14,2871-2880 (1999).Google Scholar
  77. 77.
    Koratkar, N., Wei, B. & Ajayan, P. Carbon nanotube films for damping applications. Adv. Mater. 14, 997-1000 (2002).Google Scholar
  78. 78.
    Koratkar, N. A., Wei, B. & Ajayan, P. M. Multifunctional structural reinforcement featuring carbon nanotube films. Compos. Sci. Tech- nol. 63, 1525-1531 (2003).Google Scholar
  79. 79.
    Coleman, J. N. et al. Improving the mechanical properties of single- walled carbon nanotube sheets by intercalation of polymeric adhe- sives. Appl. Phys. Lett. 82, 1682-1684 (2003).Google Scholar
  80. 80.
    Wang, Z. J. Z. et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Mater. Sci. Eng. A271, 395-400 (1999).Google Scholar
  81. 81.
    Ajayan, P. M. Aligned carbon nanotubes in a thin polymer film. Adv. Mater. 7, 489-491 (1995).Google Scholar
  82. 82.
    Moore, E. M., Ortiz, D. L., Marla, V. T., Shambaugh, R. L. & Grady, B. P. Enhancing the strength of polypropylene fibers with carbon nanotubes. J. Appl. Polym. Sci. 93, 2926-2933 (2004).Google Scholar
  83. 83.
    Kumar, S., Doshi, H., Srinivasarao, M., Park, J. O. & Schiraldi, D. A. Fibers from polypropylene/nano carbon fiber composites. Polymer 43,1701-1703 (2002).Google Scholar
  84. 84.
    Vigolo, B., Poulin, P., Lucas, M., Luanois, P. & Bernier, P. Appl. Phys. Lett. 81, 1210-1212 (2002).Google Scholar
  85. 85.
    Barisci, J. N. et al. Properties of carbon nanotube fibers spun from DNA-stabilized dispersions. Adv. Funct. Mater. 12, 133-138 (2004).Google Scholar
  86. 86.
    Sreekumar, T. V. et al. Polyacrylonitrile single-walled carbon nano- tube composite fibers. Adv. Mater. 16, 58-61 (2004).Google Scholar
  87. 87.
    Kumar, S. et al. Synthesis, structure, and properties of PBO/SWNT composites. Macromolecules 35, 9039-9043 (2002).Google Scholar
  88. 88.
    Ding, B., Kim, H. Y., Lee, S. C., Lee, D. R. & Choi, K. J. Preparation and characterization of nanoscaled poly(vinyl alcohol) fibers via electrospinning. Fibers Polym. 3, 73-79 (2002).Google Scholar
  89. 89.
    Ko, F. et al. Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv. Mater. 15, 1161-1165 (2003).Google Scholar
  90. 90.
    Seoul, C., Kim, Y.-T. & Berk, C.-K. Electrospinning of poly(vinyli- dence fluoride)/dimethylformamide solutions with carbon nanotubes. J. Polym. Sci.: Part B: Polym. Chem. 41, 1572-1577 (2003).Google Scholar
  91. 91.
    Mallick, P. K. Fiber Reinforced Composites: Materials, Manufactur- ing, and Design (Marcel Dekker, Inc., New York, 1993).Google Scholar
  92. 92.
    Lucas, M. et al. in Structural and Electronic Properties of Molecular Nanostructures (ed. Kuzmany, H.) 579-582 (American Institute of Physics, 2002).Google Scholar
  93. 93.
    Bower, C., Rosen, R., Jin, L., Han, J. & Zhou, O. Deformation of carbon nanotubes in nanotube-polymer composites. Appl. Phys. Lett. 74,3317-3319 (1999).Google Scholar
  94. 94.
    Ajayan, P. M., Schadler, L. S., Giannaris, C. & Rubio, A. Single- walled carbon nanotube-polymer composites: strength and weakness. Adv. Mater. 12, 750-753 (2000).Google Scholar
  95. 95.
    Cooper, C. A., Young, R. J. & Halsall, M. Investigation into the deformation of carbon nanotubes and their composites through the use of Raman spectroscopy. Compos. Part A: Appl. Sci. Manufact. 32, 401-411 (2001).Google Scholar
  96. 96.
    Wood, J. R., Zhao, Q. & Wagner, H. D. Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy. Compos. Part A: Appl. Sci. Manufact. 32, 391-399 (2001).Google Scholar
  97. 97.
    Hobbie, E. K., Wang, H., Kim, H., Lin-Gibson, S. & Grulke, E. A. Orientation of carbon nanotubes in a sheared polymer melt. Phys. Fluids 15, 1196-1202 (2003).Google Scholar
  98. 98.
    Lin-Gibson, S., Pathak, J. A., Grulke, E. A., Wang, H. & Hobbie, E. K. Elastic flow instability in nanotube suspensions. Phys. Rev. Lett. 92,0483021-0483024 (2004).Google Scholar
  99. 99.
    Qian, D., Dickey, C., Andrews, R. & Rantell, T. Load transfer and deformation mechanisms in carbon nanotube-polystyrene compos- ites. Appl. Phys. Lett. 76, 1-4 (2000).Google Scholar
  100. 100.
    Lourie, O. & Wagner, H. D. Transmission electron microscopy ob- servations of fracture of single-wall carbon nanotubes under axial tension. Appl. Phys. Lett. 73, 3527-3529 (1998).Google Scholar
  101. 101.
    Dalton, A. B. et al. Continuous carbon nanotube composite fibers: properties, potential applications, and problems. J. Mater. Chem. 14, 1-3 (2004).Google Scholar
  102. 102.
    Marrs, B., Andrews, R., Pienkowski, D. & Rantell, T. in Orthopaedic Research Society (San Francisco, 2004).Google Scholar
  103. 103.
    Ren, Y., Li, F., Cheng, H.-M. & Liao, K. Tension-tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced epoxy composite. Carbon 41, 2159-2179 (2003).Google Scholar
  104. 104.
    Singh, S., Pei, Y., Miller, R. & Sundararajan, P. R. Long-range, entangled carbon nanotube networks in polycarbonate. Adv. Funct. Mater. 13, 868-872 (2003).Google Scholar
  105. 105.
    Sandler, J. K. W. et al. A comparative study of melt spun polyamide-12 fibres reinforced with carbon nanotubes and nanofibres. Polymer 45,2001-2015 (2004).Google Scholar
  106. 106.
    Bradshaw, R. D., Fisher, F. T. & Brinson, L. C. Fiber waviness in nanotube-reinforced polymer composites. II. Modeling via numerical approximation of the dilute strain concentration tensor. Compos. Sci. Technol. 63, 1705-1722 (2003).Google Scholar
  107. 107.
    Berhan, L., Li, Y. B. & Sastry, A. M. Effect of nanorope waviness on the effective moduli of nanotube sheets. J. Appl. Phys. 95, 5027-5034 (2004).Google Scholar
  108. 108.
    Yi, Y. B., Berhan, L. & Sastry, A. M. Statistical geometry of random fibrous networks, revisited: waviness, dimensionality, and percola- tion. J. Appl. Phys. 96, 1318-1327 (2004).Google Scholar
  109. 109.
    Thostenson, E. T. & Chou, T.-W. On the elastic properties of carbon nanotube-based composites: modelling and characterization. J. Phys. D: Appl. Phys. 36, 573-582 (2003).Google Scholar
  110. 110.
    Frankland, S. J. V. & Harik, V. M. Analysis of carbon nanotube pull- out from a polymer matrix. Surf. Sci. 525, L103-L108 (2003).Google Scholar
  111. 111.
    Liao, K. & Li, S. Interfacial characteristics of a carbon nanotube- polystyrene composite system. Appl. Phys. Lett. 79,4225-4227 (2001).Google Scholar
  112. 112.
    Garg, A. & Sinnott, S. B. Effect of chemical functionalization on the mechanical properties of carbon nanotubes. Chem. Phys. Lett. 295, 273-278 (1998).Google Scholar
  113. 113.
    Namilae, S., Chandra, N. & Shet, C. Mechanical behavior of functio- nalized nanotubes. Chem. Phys. Lett. 387, 247-252 (2004).Google Scholar
  114. 114.
    Barber, A. H., Cohen, S. R. & Wagner, H. D. Measurement of carbon nanotube-polymer interfacial strength. Appl. Phys. Lett. 82, 4140-4142 (2003).Google Scholar
  115. 115.
    Narh, K. A. & Zhu, L. Numerical simulation of the effect of nanotube orientation on tensile modulus of carbon-nanotube-reinforced poly- mer composites. Polym. Int. 53, 1461-1466 (2004).Google Scholar
  116. 116.
    Hilding, J., Grulke, E. A., Zhang, Z. G. & Lockwood, F. Dispersion of carbon nanotubes in liquids. J. Dispers. Sci. Technol. 24,1-41 (2003).Google Scholar
  117. 117.
    Cox, H. L. The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72-79 (1952).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. C. Weisenberger
    • 1
  • Rodney Andrews
    • 2
  • T. Rantell
    • 3
  1. 1.University of Kentucky Center for Applied Energy ResearchLexington
  2. 2.University of Kentucky Center for Applied Energy ResearchLexington
  3. 3.University of Kentucky Center for Applied Energy ResearchLexington

Personalised recommendations