Polymers and Supercritical Fluids

  • Annette D. Shine


Cloud Point Interfacial Tension Phase Behavior Supercritical Fluid Supercritical Carbon Dioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McHugh, M.A. and V.J. Krukonis, Supercritical fluid extraction: principles and practice. 2nd ed. 1994, Boston: Butterworth- Heinemann. 512.Google Scholar
  2. 2.
    Bungert, B., G. Sadowski, and W. Arlt, Separations and material processing in solutions with dense gases. Industrial & Engineering Chemistry Research, 1998. 37(8): p. 3208-3220.Google Scholar
  3. 3.
    Cooper, A.I., Porous materials and supercritical fluids. Advanced Materials, 2003. 15(13): p. 1049-1059.Google Scholar
  4. 4.
    Kazarian, S.G., Polymers and supercritical fluids: Opportunities for vibrational spectroscopy. Macromolecular Symposia, 2002. 184: p. 215-228.Google Scholar
  5. 5.
    Tomasko, D.L., et al., A review of CO2 applications in the processing of polymers. Industrial & Engineering Chemistry Research, 2003. 42 (25): p. 6431-6456.Google Scholar
  6. 6.
    Weidner, E., M. Petermann, and Z. Knez, Multifunctional composites by high-pressure spray processes. Current Opinion in Solid State & Materials Science, 2003. 7(4,5): p. 385-390.Google Scholar
  7. 7.
    Kikic, I. and F. Vecchione, Supercritical impregnation of polymers. Current Opinion in Solid State & Materials Science, 2003. 7(4,5): p. 399-405.Google Scholar
  8. 8.
    Kendall, J.L., et al., Polymerizations in supercritical carbon dioxide. Chemical Reviews, 1999. 99(2): p. 543-563.Google Scholar
  9. 9.
    Woods, H.M., et al., Materials processing in supercritical carbon dioxide: surfactants, polymers and biomaterials. Journal of Materials Chemistry, 2004. 14(11): p. 1663-1678.Google Scholar
  10. 10.
    Reverchon, E., M.C. Volpe, and G. Caputo, Supercritical fluid pro- cessing of polymers: composite particles and porous materials elab- oration. Current Opinion in Solid State & Materials Science, 2003. 7 (4,5): p. 391-397.Google Scholar
  11. 11.
    Beckman, E.J., Supercritical and near-critical CO2 in green chem- ical synthesis and processing. Journal of Supercritical Fluids, 2004. 28 (2,3): p. 121-191.Google Scholar
  12. 12.
    Cooper, A.I., Polymer synthesis and processing using supercritical carbon dioxide. Journal of Materials Chemistry, 2000. 10 (2): p. 207-234.Google Scholar
  13. 13.
    Jung, J. and M. Perrut, Particle design using supercritical fluids: Literature and patent survey. Journal of Supercritical Fluids, 2001. 20 (3): p. 179-219.Google Scholar
  14. 14.
    Rindfleisch, F., T.P. DiNoia, and M.A. McHugh, Solubility of poly- mers and copolymers in supercritical CO2. Journal of Physical Chemistry, 1996. 100(38): p. 15581-15587.Google Scholar
  15. 15.
    Shen, Z., et al., CO2-solubility of oligomers and polymers that con- tain the carbonyl group. Polymer, 2003. 44(5): p. 1491-1498.Google Scholar
  16. 16.
    Debenedetti, P.G., I.B. Petsche, and R.S. Mohamed, Clustering in supercritical mixtures - theory, applications and simulations. Fluid Phase Equilibria, 1989. 52: p. 347-356.Google Scholar
  17. 17.
    Sanchez, I.C. and R.H. Lacombe, Statistical thermodynamics of polymer-solutions. Macromolecules, 1978. 11(6): p. 1145-1156.Google Scholar
  18. 18.
    Condo, P.D., et al., Glass-transition behavior including retrograde vitrification of polymers with compressed fluid diluents. Macromol- ecules, 1992. 25(23): p. 6119-6127.Google Scholar
  19. 19.
    Kalospiros, N.S. and M.E. Paulaitis, Molecular thermo- dynamic model for solvent-induced glass transitions in polymer supercritical-fluid systems. Chemical Engineering Science, 1994. 49 (5): p. 659-668.Google Scholar
  20. 20.
    Chapman, W.G., et al., New reference equation of state for associat- ing liquids. Industrial & Engineering Chemistry Research, 1990. 29 (8): p. 1709-1721.Google Scholar
  21. 21.
    Orbey, H., C.P. Bokis, and C.C. Chen, Equation of state modeling of phase equilibrium in the low-density polyethylene process: The Sanchez-Lacombe, statistical associating fluid theory, and polymer-Soave-Redlich-Kwong equations of state. Industrial & Engineering Chemistry Research, 1998. 37(11): p. 4481-4491.Google Scholar
  22. 22.
    Deloos, T.W., W. Poot, and G.A.M. Diepen, Fluid phase-equilibria in the system polyethylene þ ethylene .1. systems of linear polyethylene þ ethylene at high-pressure. Macromolecules, 1983. 16 (1): p. 111-117.Google Scholar
  23. 23.
    Condo, P.D., E.J. Colman, and P. Ehrlich, Phase-equilibria of linear polyethylene with supercritical propane. Macromolecules, 1992. 25 (2): p. 750-753.Google Scholar
  24. 24.
    Xiong, Y. and E. Kiran, High-pressure phase-behavior in polyethyl- ene N-butane binary and polyethylene N-butane Co2 ternary-systems. Journal of Applied Polymer Science, 1994. 53(9): p. 1179-1190.Google Scholar
  25. 25.
    Kiran, E., W.H. Zhuang, and Y.L. Sen, Solubility and demixing of polyethylene in supercritical binary fluid mixtures - carbon-dioxide cyclohexane, carbon-dioxide toluene, carbon-dioxide pentane. Jour-nal of Applied Polymer Science, 1993. 47(5): p. 895-909.Google Scholar
  26. 26.
    Anderson, R.D. and J.E. Ramano, Process and apparatus for flash spinning of fibrillated flexifilamentary material. 1966.Google Scholar
  27. 27.
    Swelheim, T., J.D.S. Arons, and G.A.M. Diepen, Fluid Phase Equi- libria in System Polyethene-Ethene. Recueil Des Travaux Chimiques Des Pays-Bas, 1965. 84(2): p. 261.Google Scholar
  28. 28.
    Hasch, B.M., et al., High-pressure phase-behavior of mixtures of poly(ethylene-co-methyl Acrylate) with low-molecular-weight hydro-carbons. Journal of Polymer Science Part B-Polymer Physics, 1992. 30 (12): p. 1365-1373.Google Scholar
  29. 29.
    Lee, S.H., M.A. Lostracco, and M.A. McHugh, High-pressure, molecular weight-dependent behavior of(co)polymer-solvent mixtures - experiments and modeling. Macromolecules, 1994. 27 (17): p. 4652-4658.Google Scholar
  30. 30.
    Steiner, R. and K. Horle, Phase behavior of ethylene polyethylene mixtures under high-pressure. Chemie Ingenieur Technik, 1972. 44 (17): p. 1010.Google Scholar
  31. 31.
    Hasch, B.M., et al., The effect of backbone structure on the cloud point behavior of polyethylene ethane and polyethylene propane mixtures. Polymer, 1993. 34(12): p. 2554-2558.Google Scholar
  32. 32.
    Ehrlich, P. and J.J. Kurpen, Phase equilibria of polymer-solvent systems at high pressures near their critical loci - polyethylene with N-alkanes. Journal of Polymer Science Part A-General Papers, 1963. 1 (10): p. 3217.Google Scholar
  33. 33.
    Ehrlich, P., Phase equilibria of polymer-solvent systems at high pressures near their critical loci. 2. polyethylene-ethylene. Journal of Polymer Science Part A-General Papers, 1965. 3(1PA): p. 131.Google Scholar
  34. 34.
    Becker, F., et al., Cloud-point curves of ethylene-(meth)acrylate copolymers in fluid ethene up to high pressures and temperatures -experimental study and PC-SAFT modeling. Fluid Phase Equilibria, 2004.215 (2): p. 263-282.Google Scholar
  35. 35.
    Trumpi, H., et al., High pressure phase equilibria in the system linear low density polyethyleneþethylene: experimental results and model-ling. Journal of Supercritical Fluids, 2003. 27(2): p. 205-214.Google Scholar
  36. 36.
    Zhang, W., et al., Phase behavior, density, and crystallization of polyethylene in n-pentane and in n-pentane/CO2 pressures. Journal of Applied Polymer Science, 2003. 89(8): p. 2201-2209.Google Scholar
  37. 37.
    deLoos, T.W., W. Poot, and R.N. Lichtenthaler, The influence of branching on high-pressure vapor-liquid equilibria in systems of ethylene and polyethylene. Journal of Supercritical Fluids, 1995. 8 (4): p. 282-286.Google Scholar
  38. 38.
    Heukelbach, D. and G. Luft, Critical points of mixtures of ethylene and polyethylene wax under high pressure. Fluid Phase Equilibria, 1998.146 (1,2): p. 187-195.Google Scholar
  39. 39.
    Chen, S.J., I.G. Economou, and M. Radosz, Density-tuned polyolefin phase-equilibria .2. multicomponent solutions of alternating poly (ethylene propylene) in subcritical and supercritical olefins - experi-ment and saft model. Macromolecules, 1992. 25(19): p. 4987-4995.Google Scholar
  40. 40.
    Gregg, C.J., et al., Phase-behavior of binary ethylene-propylene copolymer solutions in subcritical and supercritical ethylene and propylene. Fluid Phase Equilibria, 1993. 83: p. 375-382.Google Scholar
  41. 41.
    Gregg, C.J., et al., A variable-volume optical pressure-volume- temperature cell for high-pressure cloud points, densities, and infrared-spectra, applicable to supercritical-fluid solutions of polymers up to 2 Kbar. Journal of Chemical and Engineering Data, 1994.39 (2): p. 219-224.Google Scholar
  42. 42.
    Lostracco, M.A., S.H. Lee, and M.A. McHugh, Comparison of the effect of density and hydrogen-bonding on the cloud-point behavior of poly(ethylene-co-methyl acrylate) propane-cosolvent mixtures. Poly-mer, 1994. 35(15): p. 3272-3277.Google Scholar
  43. 43.
    Hasch, B.M., et al., Cosolvency effects on copolymer solutions at high-pressure. Journal of Polymer Science Part B-Polymer Physics, 1993.31 (4): p. 429-439.Google Scholar
  44. 44.
    Byun, H.S., et al., Poly(ethylene-co-butyl acrylate). Phase behavior in ethylene compared to the poly(ethylene-co-methyl acrylate)-ethylene system and aspects of copolymerization kinetics at high pressures. Macromolecules, 1996. 29(5): p. 1625-1632.Google Scholar
  45. 45.
    Wolf, B.A. and G. Blaum, Pressure influence on true cosolvency - measured and calculated solubility limits of polystyrene in mixtures of acetone and diethylether. Makromolekulare Chemie- Macromolecular Chemistry and Physics, 1976. 177(4): p. 1073-1088.Google Scholar
  46. 46.
    Saraf, V.P. and E. Kiran, Supercritical fluid polymer interactions - phase-equilibrium data for solutions of polystyrenes in normal- butane and normal-pentane. Polymer, 1988. 29(11): p. 2061-2065.Google Scholar
  47. 47.
    Kumar, S.K., et al., Solubility of polystyrene in supercritical fluids. Macromolecules, 1987. 20(10): p. 2550-2557.Google Scholar
  48. 48.
    Pradhan, D., C. Chen, and M. Radosz, Fractionation of polystyrene with supercritical propane and ethane - characterization, semibatch solubility experiments, and saft simulations. Industrial & Engineering Chemistry Research, 1994. 33(8): p. 1984-1988.Google Scholar
  49. 49.
    Haschets, C.W., T.A. Blackwood, and A.D. Shine, Phase-behavior of polymer-Hcfc compressed solvent solutions. Abstracts of Papers of the American Chemical Society, 1993. 205: p. 28.Google Scholar
  50. 50.
    Jiang, S.C., et al., Pressure effects on the thermodynamics of trans- decahydronaphthalene/polystyrene polymer solutions: Application of the Sanchez-Lacombe lattice fluid theory. Macromolecular Chemistry and Physics, 2003. 204(4): p. 692-703.Google Scholar
  51. 51.
    Ali, S., Thermodynamic properties of polymer-solutions in com- pressed gases. Zeitschrift Fur Physikalische Chemie-Wiesbaden, 1983.137 (1): p. 13-21.Google Scholar
  52. 52.
    Bangert, L.H., et al., Advanced technology applications in garment processing, in NSF/RA-770428, N.T. Report, Editor. 1977.Google Scholar
  53. 53.
    Heller, J.P., et al., Direct thickeners for mobility control of CO2 floods. SPE J., 1983. Paper 11789: p. 173.Google Scholar
  54. 54.
    Gregg, C.J., F.P. Stein, and M. Radosz, Phase-behavior of telechelic polyisobutylene (Pib) in subcritical and supercritical fluids .1. inter- association and intra-association effects for blank, monohydroxy, and dihydroxy pib(1k) in ethane, propane, dimethyl ether, carbon- dioxide, and chlorodifluoromethane. Macromolecules, 1994. 27(18): p. 4972-4980.Google Scholar
  55. 55.
    Chen, S.J., et al., Mass-spectrometer composition probe for batch cell studies of supercritical fluid phase-equilibria. Journal of Chemical and Engineering Data, 1993. 38(2): p. 211-216.Google Scholar
  56. 56.
    Lele, A.K. and A.D. Shine, Effect of ress dynamics on polymer morphology. Industrial & Engineering Chemistry Research, 1994. 33 (6): p. 1476-1485.Google Scholar
  57. 57.
    Haschets, C.W. and A.D. Shine, Phases behavior of polymer super- critical chlorodifluoromethane solutions. Macromolecules, 1993. 26 (19): p. 5052-5060.Google Scholar
  58. 58.
    Maderek, E., G.V. Schulz, and B.A. Wolf, High-temperature demix- ing of poly(decyl methacrylate) solutions in isooctane and its pressure-dependence. Makromolekulare Chemie-Macromolecular Chemistry and Physics, 1983. 184(6): p. 1303-1309.Google Scholar
  59. 59.
    Scholsky, K.M. and L.W. Morgan, Fractionation of synthetic- polymers using supercritical nitrous-oxide. Journal of Polymer Science Part C-Polymer Letters, 1988. 26(4): p. 181-184.Google Scholar
  60. 60.
    Tom, J.W., P.G. Debenedetti, and R. Jerome, Precipitation of poly (L-lactic acid) and composite poly(L-lactic acid) - pyrene particles by rapid expansion of supercritical solutions. Journal of Supercritical Fluids, 1994. 7(1): p. 9-29.Google Scholar
  61. 61.
    Tom, J.W. and P.G. Debenedetti, Formation of bioerodible polymeric microspheres and microparticles by rapid expansion of supercritical solutions. Biotechnology Progress, 1991. 7(5): p. 403-411.Google Scholar
  62. 62.
    Conway, S.E., et al., Poly(lactide-co-glycolide) solution behavior in supercritical CO2, CHF3, and CHClF2. Journal of Applied Polymer Science, 2001. 80(8): p. 1155-1161.Google Scholar
  63. 63.
    Khosravi-Darani, K., et al., Solubility of poly(beta-hydroxybutyrate) in supercritical carbon dioxide. Journal of Chemical and Engineering Data, 2003. 48(4): p. 860-863.Google Scholar
  64. 64.
    Daneshvar, M., S. Kim, and E. Gulari, High-pressure phase- equilibria of poly(ethylene glycol) carbon-dioxide systems. Journal of Physical Chemistry, 1990. 94(5): p. 2124-2128.Google Scholar
  65. 65.
    Lopes, J.A., et al., On the effect of polymer fractionation on phase equilibrium in CO2 þ poly(ethylene glycol)s systems. Journal of Supercritical Fluids, 2000. 16(3): p. 261-267.Google Scholar
  66. 66.
    Martin, T.M., R.B. Gupta, and C.B. Roberts, Measurements and modeling of cloud point behavior for poly(propylene glycol) in ethane and in ethane plus cosolvent mixtures at high pressure. Industrial & Engineering Chemistry Research, 2000.39 (1): p. 185-194.Google Scholar
  67. 67.
    Dimitrov, K., et al., Solubility of poly(ethylene glycol)nonylphenyl ether in supercritical carbon dioxide. Journal of Supercritical Fluids, 1998.14 (1): p. 41-47.Google Scholar
  68. 68.
    Hoefling, T., et al., The incorporation of a fluorinated ether function- ality into a polymer or surfactant to enhance Co2-solubility. Journal of Supercritical Fluids, 1992. 5(4): p. 237-241.Google Scholar
  69. 69.
    Kilic, S., et al., Effect of grafted Lewis base groups on the phase behavior of model poly(dimethyl siloxanes) in CO2. Industrial & Engineering Chemistry Research, 2003. 42(25): p. 6415-6424.Google Scholar
  70. 70.
    Mawson, S., et al., Formation of poly(1,1,2,2-tetrahydroperfluorode- cyl acrylate) submicron fibers and particles from supercritical carbon-dioxide solutions. Macromolecules, 1995. 28(9): p. 3182-3191.Google Scholar
  71. 71.
    Byun, H.S. and Y.H. Yoo, Thermodynamic phase behavior of fluor- opolymer mixtures with supercritical fluid solvents. Korean Journal of Chemical Engineering, 2004. 21(6): p. 1193-1198.Google Scholar
  72. 72.
    Luna-Barcenas, G., et al., Phase behavior of poly(1,1-dihydroper- fluorooctylacrylate) in supercritical carbon dioxide. Fluid Phase Equilibria, 1998. 146(1,2): p. 325-337.Google Scholar
  73. 73.
    Baradie, B., et al., Synthesis and solubility of linear poly(tetrafluoro- ethylene-co-vinyl acetate) in dense CO2: Experimental and molecu-lar modeling results. Macromolecules, 2004. 37(20): p. 7799-7807.Google Scholar
  74. 74.
    Lepilleur, C., et al., Effect of molecular architecture on the phase behavior of fluoroether-functional graft copolymers in supercritical CO2 . Fluid Phase Equilibria, 1997. 134(1,2): p. 285-305.Google Scholar
  75. 75.
    Blasig, A. and M.C. Thies, Rapid expansion of cellulose triacetate from ethyl acetate solutions. Journal of Applied Polymer Science, 2005.95 (2): p. 290-299.Google Scholar
  76. 76.
    Suresh, S.J., R.M. Enick, and E.J. Beckman, Phase-behavior of nylon 6/trifluoroethanol/carbon dioxide mixtures. Macromolecules, 1994. 27 (2): p. 348-356.Google Scholar
  77. 77.
    Durrill, P.L. and R.G. Griskey, Diffusion and solution of gases in thermally softened or molten polymers .I. development of technique and determination of data. Aiche Journal, 1966. 12(6): p. 1147.Google Scholar
  78. 78.
    Sherwood, A.E. and J.M. Prausnitz, The heat of solution of gases at high pressure. Aiche Journal, 1962. 8(4): p. 519-521.Google Scholar
  79. 79.
    Stern, S.A.,J.T. Mullhaupt,and P.J. Gareis,The effect ofpressure on the permeationofgasesandvaporsthroughpolyethylene.Usefulnessofthe corresponding states principle. Aiche Journal, 1969. 15(1): p. 64-73.Google Scholar
  80. 80.
    Durrill, P.L. and R.G. Griskey, Diffusion and solution of gases into thermally softened or molten polymers .2. Relation of diffusivities and solubilities with temperature pressure and structural characteristics. Aiche Journal, 1969. 15(1): p. 106.Google Scholar
  81. 81.
    Liu, D.D. and J.M. Prausnitz, Solubilities of gases and volatile liquids in polyethylene and in ethylene-vinyl acetate copolymers in region 125-225degreesc. Industrial & Engineering Chemistry Fundamen-tals, 1976. 15(4): p. 330-335.Google Scholar
  82. 82.
    Hilic, S., et al., Simultaneous measurement of the solubility of nitro- gen and carbon dioxide in polystyrene and of the associated polymer swelling. Journal of Polymer Science Part B-Polymer Physics, 2001. 39 (17): p. 2063-2070.Google Scholar
  83. 83.
    Sato, Y., et al., Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene. Journal of Supercrit-ical Fluids, 2001. 19(2): p. 187-198.Google Scholar
  84. 84.
    Sato, Y., et al., Solubility of butane and isobutane in molten polypro- pylene and polystyrene. Polymer Engineering and Science, 2004. 44 (11): p. 2083-2089.Google Scholar
  85. 85.
    Boudouris, D., et al., Measurement of HCFC-22 and HFC-152a sorption by polymers using a quartz crystal microbalance. Industrial & Engineering Chemistry Research, 2001. 40(2): p. 604-611.Google Scholar
  86. 86.
    Sato, Y., et al., Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilibria, 1999. 162(1,2): p. 261-276.Google Scholar
  87. 87.
    Cotugno, S., et al., Sorption thermodynamics and mutual diffusivity of carbon dioxide in molten polycaprolactone. Industrial & Engineering Chemistry Research, 2003. 42(19): p. 4398-4405.Google Scholar
  88. 88.
    Sato, Y., et al., Solubility and diffusion coefficient of carbon dioxide in biodegradable polymers. Industrial & Engineering Chemistry Research, 2000. 39(12): p. 4813-4819.Google Scholar
  89. 89.
    Elvassore, N., K. Vezzu, and A. Bertucco, Measurement and model- ing of CO2 absorption in poly (lactic-co-glycolic acid). Journal of Supercritical Fluids, 2005. 33(1): p. 1-5.Google Scholar
  90. 90.
    Wiesmet, V., et al., Measurement and modelling of high-pressure phase equilibria in the systems polyethyleneglycol (PEG)-propane, PEG-nitrogen and PEG-carbon dioxide. Journal of Supercritical Fluids, 2000. 17(1): p. 1-12.Google Scholar
  91. 91.
    Guadagno, T. and S.G. Kazarian, High-pressure CO2-expanded solv- ents: Simultaneous measurement of CO2 sorption and swelling of liquid polymers with in-situ near-IR spectroscopy. Journal of Physical Chemistry B, 2004. 108(37): p. 13995-13999.Google Scholar
  92. 92.
    Sato, Y., et al., Solubility of carbon dioxide in PPO and PPO/PS blends. Fluid Phase Equilibria, 2002. 194: p. 847-858.Google Scholar
  93. 93.
    Dey, S.K., C. Jacob, and J.A. Biesenberger. Effect of physical blowing agents on crystallization temperature of polymer melts. in ANTEC 94 Plastics: gateway to the future. 1994. San Francisco: Society of Plastics Engineers.Google Scholar
  94. 94.
    Fukne-Kokot, K., et al., Comparison of different methods for deter- mination of the S-L-G equilibrium curve of a solid component in the presence of a compressed gas. Fluid Phase Equilibria, 2000. 173(2): p. 297-310.Google Scholar
  95. 95.
    Zhang, Z.Y. and Y.P. Handa, CO2-assisted melting of semicrystalline polymers. Macromolecules, 1997. 30(26): p. 8505-8507.Google Scholar
  96. 96.
    Varma-Nair, M., et al., Effect of compressed CO2 on crystallization and melting behavior of isotactic polypropylene. Thermochimica Acta, 2003. 396(1,2): p. 57-65.Google Scholar
  97. 97.
    Takada, M., M. Tanigaki, and M. Ohshima, Effects of CO2 on crystallization kinetics of polypropylene. Polymer Engineering and Science, 2001. 41(11): p. 1938-1946.Google Scholar
  98. 98.
    Takada, M., S. Hasegawa, and M. Ohshima, Crystallization kinetics of poly(L-lactide) in contact with pressurized CO2. Polymer Engin- eering and Science, 2004. 44(1): p. 186-196.Google Scholar
  99. 99.
    Kishimoto, Y. and R. Ishii, Differential scanning calorimetry of isotactic polypropene at high CO2 pressures. Polymer, 2000. 41(9): p. 3483-3485.Google Scholar
  100. 100.
    Lian, Z., S.A. Epstein, C.W. Blenk, and A.D. Shine, Carbon dioxide- induced melting point depression of biodegradable polymers. Journal of Supercritical Fluids, 2006, DOI:10.1016/j.supflu.2006.02.001.Google Scholar
  101. 101.
    Takada, M. and M. Ohshima, Effect of CO2 on crystallization kinetics of poly(ethylene terephthalate). Polymer Engineering and Science, 2003.43 (2): p. 479-489.Google Scholar
  102. 102.
    Weidner, E., et al., Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems. Journal of Supercritical Fluids, 1997. 10(3): p. 139-147.Google Scholar
  103. 103.
    Kukova, E., M. Petermann, and E. Weidner, Phase behavior (S-L-G) and transport properties of binary systems consisting of highly vis- cous polyethylene glycols and compressed carbon dioxide. Chemie Ingenieur Technik, 2004. 76(3): p. 280-284.Google Scholar
  104. 104.
    Shenoy, S.L., T. Fujiwara, and K.J. Wynne, Quantifying plasticiza- tion and melting behavior of poly(vinylidene fluoride) in supercritical CO2 utilizing a linear variable differential transformer. Macromol- ecules, 2003. 36(9): p. 3380-3385.Google Scholar
  105. 105.
    Wissinger, R.G. and M.E. Paulaitis, Glass Transitions in Polymer Co2 Mixtures at Elevated Pressures. Journal of Polymer Science Part B-Polymer Physics, 1991. 29(5): p. 631-633.Google Scholar
  106. 106.
    Condo, P.D. and K.P. Johnston, Retrograde vitrification of polymers with compressed fluid diluents - experimental confirmation. Macro- molecules, 1992. 25(24): p. 6730-6732.Google Scholar
  107. 107.
    Chiou, J.S., J.W. Barlow, and D.R. Paul, Plasticization of glassy- polymers by Co2. Journal of Applied Polymer Science, 1985. 30(6): p. 2633-2642.Google Scholar
  108. 108.
    Alessi, P., et al., Plasticization of polymers with supercritical carbon dioxide: Experimental determination of glass-transition temperat- ures. Journal of Applied Polymer Science, 2003. 88(9): p. 2189-2193.Google Scholar
  109. 109.
    Zhang, Z.Y. and Y.P. Handa, An in situ study of plasticization of polymers by high-pressure gases. Journal of Polymer Science Part B- Polymer Physics, 1998. 36(6): p. 977-982.Google Scholar
  110. 110.
    Kumazawa, H., et al., Gas-transport in polymer membrane at tem- peratures above and below glass-transition point. Journal of Applied Polymer Science, 1994. 51(6): p. 1015-1020.Google Scholar
  111. 111.
    Edwards, R.R., et al., Chromatographic investigation of the effect of dissolved carbon dioxide on the glass transition temperature of a polymer and the solubility of a third component (additive). Journal of Polymer Science Part B-Polymer Physics, 1998. 36(14): p. 2537-2549.Google Scholar
  112. 112.
    Handa, Y.P., P. Kruus, and M. Oneill, High-pressure calorimetric study of plasticization of poly(methyl methacrylate) by methane, ethylene, and carbon dioxide. Journal of Polymer Science Part B-Polymer Physics, 1996. 34(15): p. 2635-2639.Google Scholar
  113. 113.
    Kamiya, Y., et al., Sorption and dilation in poly(ethyl methacrylate) carbon-dioxide system. Journal of Polymer Science Part B-Polymer Physics, 1989. 27(4): p. 879-892.Google Scholar
  114. 114.
    Bortner, M.J. and D.G. Baird, Absorption of CO2 and subsequent viscosity reduction of an acrylonitrile copolymer. Polymer, 2004. 45 (10): p. 3399-3412.Google Scholar
  115. 115.
    Kikic, I., et al., Polymer plasticization using supercritical carbon dioxide: Experiment and modeling. Industrial & Engineering Chem- istry Research, 2003. 42(13): p. 3022-3029.Google Scholar
  116. 116.
    Bos, A., et al., CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science, 1999. 155(1): p. 67-78.Google Scholar
  117. 117.
    Handa, Y.P., S. Lampron, and M.L. Oneill, On the Plasticization of Poly(2,6-Dimethyl Phenylene Oxide) by Co2. Journal of Polymer Science Part B-Polymer Physics, 1994. 32(15): p. 2549-2553.Google Scholar
  118. 118.
    Hachisuka, H., et al., Glass-transition temperature of glassy- polymers plasticized by Co2 gas. Polymer Journal, 1990. 22(1): p. 77-79.Google Scholar
  119. 119.
    Mi, Y.L. and S.X. Zheng, A new study of glass transition of polymers by high pressure DSC. Polymer, 1998. 39(16): p. 3709-3712.Google Scholar
  120. 120.
    Banerjee, T. and G.C. Lipscomb, Direct measurement of the carbon dioxide-induced glass transition depression in a family of substituted polycarbonates. Journal of Applied Polymer Science, 1998. 68(9): p. 1441-1449.Google Scholar
  121. 121.
    Bourbon, D., Y. Kamiya, and K. Mizoguchi, Sorption and dilation properties of poly(para-phenylene sulfide) under high-pressure carbon-dioxide. Journal of Polymer Science Part B-Polymer Physics, 1990.28 (11): p. 2057-2069.Google Scholar
  122. 122.
    Kamiya, Y., et al., Sorptive dilation of polyvinyl benzoate) and polyvinyl butyral) by carbon-dioxide. Journal of Polymer Science Part B-Polymer Physics, 1988. 26(7): p. 1409-1424.Google Scholar
  123. 123.
    Jaeger, P.T., R. Eggers, and H. Baumgartl, Interfacial properties of high viscous liquids in a supercritical carbon dioxide atmosphere. Journal of Supercritical Fluids, 2002. 24(3): p. 203-217.Google Scholar
  124. 124.
    Otake, K., et al., Surface activity of myristic acid in the poly(methyl methacrylate)/supercritical carbon dioxide system. Langmuir, 2004. 20 (15): p. 6182-6186.Google Scholar
  125. 125.
    Li, H.B., L.J. Lee, and D.L. Tomasko, Effect of carbon dioxide on the interfacial tension of polymer melts. Industrial & Engineering Chem- istry Research, 2004. 43(2): p. 509-514.Google Scholar
  126. 126.
    Harrison, K.L., K.P. Johnston, and I.C. Sanchez, Effect of surfactants on the interfacial tension between supercritical carbon dioxide and polyethylene glycol. Langmuir, 1996. 12(11): p. 2637-2644.Google Scholar
  127. 127.
    Dimitrov, K., L. Boyadzhiev, and R. Tufeu, Properties of supercrit- ical CO2 saturated poly(ethylene glycol) nonylphenyl ether. Macro- molecular Chemistry and Physics, 1999. 200(7): p. 1626-1629.Google Scholar
  128. 128.
    Doolittle, A.K., Studies in newtonian flow .2. The dependence of the viscosity of liquids on free-space. Journal of Applied Physics, 1951. 22 (12): p. 1471-1475.Google Scholar
  129. 129.
    Doolittle, A.K., Studies in newtonian flow .3. The dependence of the viscosity of liquids on molecular weight and free space (in homologous series). Journal of Applied Physics, 1952. 23 (2): p. 236-239.Google Scholar
  130. 130.
    Gerhardt, L.J., et al., Concentration-dependent viscoelastic scaling models for polydimethysiloxane melts with dissolved carbon dioxide. Journal of Polymer Science Part B-Polymer Physics, 1998. 36(11): p. 1911-1918.Google Scholar
  131. 131.
    Areerat, S., T. Nagata, and M. Ohshima, Measurement and prediction of LDPE/CO2 solution viscosity. Polymer Engineering and Science, 2002.42 (11): p. 2234-2245.Google Scholar
  132. 132.
    Williams, M.L., R.F. Landel, and J.D. Ferry, Mechanical properties of substances of high molecular weight .19. The temperature depend- ence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 1955.77 (14): p. 3701-3707.Google Scholar
  133. 133.
    Gendron, R. and M.F. Champagne, Effect of physical foaming agents on the viscosity of various polyolefin resins. Journal of Cellular Plastics, 2004. 40(2): p. 131-143.Google Scholar
  134. 134.
    Royer, J.R., J.M. DeSimone, and S.A. Khan, High-pressure rheology and viscoelastic scaling predictions of polymer melts containing liquid and supercritical carbon dioxide. Journal of Polymer Science Part B-Polymer Physics, 2001. 39(23): p. 3055-3066.Google Scholar
  135. 135.
    Lee, M., C. Tzoganakis, and C.B. Park, Effects of supercritical CO2 on the viscosity and morphology of polymer blends. Advances in Polymer Technology, 2000. 19(4): p. 300-311.Google Scholar
  136. 136.
    Royer, J.R., et al., High-pressure rheology of polystyrene melts plas- ticized with CO2: Experimental measurement and predictive scaling relationships. Journal of Polymer Science Part B—Polymer Physics, 2000.38 (23): p. 3168-3180.Google Scholar
  137. 137.
    Kwag, C., C.W. Manke, and E. Gulari, Rheology of molten polystyr- ene with dissolved supercritical and near-critical cases. Journal of Polymer Science Part B-Polymer Physics, 1999. 37(19): p. 2771-2781.Google Scholar
  138. 138.
    Ladin, D., et al., Study of shear and extensional viscosities of bio- degradable PBS/CO2 solutions. Journal of Cellular Plastics, 2001. 37 (2): p. 109-148.Google Scholar
  139. 139.
    Gourgouillon, D., et al., Simultaneous viscosity and density measure- ment of supercritical CO2-saturated PEG 400. Journal of Supercrit- ical Fluids, 1998. 13(1-3): p. 177-185.Google Scholar
  140. 140.
    Flichy, N.M.B., C.J. Lawrence, and S.G. Kazarian, Rheology of poly(propylene glycol) and suspensions of fumed silica in poly(pro- pylene glycol) under high-pressure CO2. Industrial & Engineering Chemistry Research, 2003. 42(25): p. 6310-6319.Google Scholar
  141. 141.
    Royer, J.R., et al., Polymer melt rheology with high-pressure CO2 using a novel magnetically levitated sphere rheometer. Polymer, 2002.43 (8): p. 2375-2383.Google Scholar
  142. 142.
    Gerhardt, L.J., C.W. Manke, and E. Gulari, Rheology of poly- dimethylsiloxane swollen with supercritical carbon dioxide. Journal of Polymer Science Part B-Polymer Physics, 1997. 35(3): p. 523-534.Google Scholar
  143. 143.
    Martinache, J.D., et al., Processing of polyamide 11 with supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 2001. 40 (23): p. 5570-5577.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Annette D. Shine
    • 1
  1. 1.Department of Chemical EngineeringUniversity of DelawareNewark

Personalised recommendations