Advertisement

The Glass Temperature

  • Donald J. Plazek
  • Kia L. Ngai

Keywords

Glass Temperature Physic Publishing Secondary Relaxation Fictive Temperature Diamino Diphenyl Sulfone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Kauzmann, Chem. Rev. 43, 219 (1948).Google Scholar
  2. 2.
    P. J. Flory, J. Ric. Sci. 25A, 636 (1955).Google Scholar
  3. 3.
    A. J. Kovacs, Adv. Polym. Sci. 3, 394 (1963).Google Scholar
  4. 4.
    M. C. Shen and A. Eisenberg, ‘‘Glass Transitions in Polymers,’’ in Progress in Solid State Chemistry vol. 3 (Pergamon Press, Oxford and New York, 1966), p. 407.Google Scholar
  5. 5.
    a. F. R. Schwarzl, ‘‘The Glass Transition of Amorphous Polymers and the Free Volume,’’ in Rheolgy, vol. I, Int. Cong. Rhelogy, Naples, edited by G. Astarita, G. Marucci, and L. Niclolais. 243-262 (Plenum Pub. Corp., New York, 1980), p. 243. b. R. Greiner and F. R. Schwarzl, Rheol. Acta. 23, 378 (1984).Google Scholar
  6. 6.
    D. J. Plazek and G. C. Berry, ‘‘Physical Aging in Polymer Glasses,’’ in Glass Science and Technology, vol. 3, edited by D. R. Uhlmann and N. J. Kreidl (Academic Press, Orlando, FL, 1986), p. 363. 7. S. Rekhson, J. Non-Crystalline Solids 95 & 96, 131 (1987).Google Scholar
  7. 8.
    J. M. O’Reilly, Review of Structure and Mobility in Amorphous Polymers, CRC Critical Reviews in Solid State and Materials Science 13,259 (1987).Google Scholar
  8. 9.
    G. B. McKenna, Comprehensive Polymer Science, vol. 2, Polymer Properties, edited by C. Booth and C. Price (Pergamon, Oxford, 1989), p. 311.Google Scholar
  9. 10.
    I. M. Hodge, J. Non-Crystalline Solids 169, 211 (1994).Google Scholar
  10. 11.
    A. J. Kovacs, Ph.D. Thesis, ‘‘Contribution à l’étude de l’évolution isotherme du volume des hauts polymères,’’ University of Paris, 1954.Google Scholar
  11. 12.
    G. O. Jones, Glass (Methuen & Co., Ltd., London, 1956).Google Scholar
  12. 13.
    Proc. Intern Conf. on Physics of Non-Crystalline Solids, Delft, July, 1964, edited by J. A. Prins (North-Holland Pub. Co., Amsterdam & John Wiley & Sons, Inc., New York, 1965).Google Scholar
  13. 14.
    The Physics of Glassy Polymers, edited by R. N. Haward (John Wiley & Sons, New York, 1973).Google Scholar
  14. 15.
    ‘‘Metallic Glasses,’’ Materials Science Seminar, Metals Park, Ohio, held in 1976, American Society for Metals, published in 1978.Google Scholar
  15. 16.
    A. V. Tobolsky, Properties and Structure of Polymers (John Wiley & Sons, Inc., New York, 1960).Google Scholar
  16. 17.
    F. Bueche, Physical Properties of Polymers (Interscience Pub., New York, 1962).Google Scholar
  17. 18.
    J. D. Ferry, Viscoelastic Properties of Polymers, third ed. (John Wiley & Sons, Inc., New York, 1980).Google Scholar
  18. 19.
    L. E. Nielsen and R. F. Landel, Mechanical Properties of Polymers and Composites, 2nd edition (Marcel Dekher, Inc., New York, 1994).Google Scholar
  19. 20.
    G. M. Bartenev, The Structure and Properties of Inorganic Glasses (Wolters-Noordhoff Pub. Groningen, The Netherlands, 1970). 21. R. Zallen, The Physics of Amorphous Solids (John Wiley & Sons, New York, 1983).Google Scholar
  20. 22.
    S. Brawer, Relaxation in Viscous Liquids and Glasses (The American Ceramic Society, Inc., Columbus, OH, 1985).Google Scholar
  21. 23.
    G. W. Scherer, Relaxation in Glass and Composites (John Wiley & Sons Inc., New York, 1986).Google Scholar
  22. 24.
    S. R. Elliot, Physics of Amorphous Materials, 2nd ed. (Longman Scientific & Technical, Essex, England (copublished with John Wiley & Sons, New York, 1990).Google Scholar
  23. 25.
    Glass Science and Technology, Vol. 1: Glass-Forming Systems, 1983; ibid. Vol. 3: Viscosity and Relaxation, edited by D. R. Uhlmann and H. J. Kreidl (Academic Press, Inc., Corpus Christie, 1986).Google Scholar
  24. 26.
    M. Goldstein and R. Simha (eds.), Ann. N.Y. Acad. Sci. 279, (1976).Google Scholar
  25. 27.
    J. M. O’Reilly and M. Goldstein (eds.), Ann. N.Y. Acad. Sci. 371, (1981).Google Scholar
  26. 28.
    a. C. A. Angell and M. Goldstein (eds.), Ann. N.Y. Acad. Sci. 484, (1986), b. C. A. Angell, J. Non-Crystalline Solids 131-133, 13 (1991).Google Scholar
  27. 29.
    K. L. Ngai and G. B. Wright (eds.), Relaxations in Complex Systems (U.S. Government Printing Office, Washington, DC, 1984) Available from National Technical Information System Service, 2285 Port Royal Rd. Springfield, VA, 22161, USA.Google Scholar
  28. 30.
    P. H. Gaskell (ed.), The Structure of Non-Crystalline Materials (Taylor and Francis, London, 1977).Google Scholar
  29. 31.
    L. C. E. Struik, Physical Aging in Amorphous Polymers and Other Materials (Elsview, Amsterdam, 1978).Google Scholar
  30. 32.
    K. Kawasaki, M. Tokuyama, and T. Kawakatsu, (eds.) AIP Conf. Proc. 256, Slow Dynamics in Condensed Matter, Fukuoka, Japan, 1991 (AIP, New York, 1992).Google Scholar
  31. 33.
    K. L. Ngai and G. B. Wright (eds.), Proc. Intern. Disc Meeting on Relaxation in Complex System Heraklion, Crete, Greece, June 18-29, 1990, J. Non-Crystalline Solids 131-133 (1991).Google Scholar
  32. 34.
    A. Eisenberg in Physical Properties of Polymers, edited by J. E. Mark, 2nd ed. (American Chemical Society, Washington, DC, 1993), p. 61.Google Scholar
  33. 35.
    M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).Google Scholar
  34. 36.
    M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).Google Scholar
  35. 37.
    D. Turnbull and M. H. Cohen, J. Chem. Phys. 34, 120 (1961).Google Scholar
  36. 38.
    A. J. Kovacs, J. J. Aklonis, J. M. Hutchinson et al. J. Polymer Sci., Polym. Phys. Ed. 17, 1097 (1979).Google Scholar
  37. 39.
    J. H. Gibbs and E. A. Dimarzio, J. Chem. Phys. 28, 373 (1958).Google Scholar
  38. 40.
    E. A. Dimarzio and J. H. Gibbs, J. Polym. Sci. 40, 121 (1959).Google Scholar
  39. 41.
    E. A. Dimarzio, J. Res. Natl. Bur. Stand., Section A, A68, 611 (1964).Google Scholar
  40. 42.
    G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).Google Scholar
  41. 43.
    K. L. Ngai in Non Debye Relaxation in Condensed Matter, edited by T. V. Ramakrishna and Raj Lakshmi (World Scientific Publishing, Singapore, 1987), pp. 23-192.Google Scholar
  42. 44.
    A. Q. Tool, NBS J. Res. 34, 199 (1945).Google Scholar
  43. 45.
    O. S. Narayanaswamy, J. Am. Cer. Soc. 54, 491-498, (1971).Google Scholar
  44. 46.
    C. T. Moynihan, A. J. Easteal, M. A. DeBolt et al. J. Am. Cer. Soc. 59,12 (1976).Google Scholar
  45. 47.
    C. T. Moynihan, A. J. Easteal, J. Wilder et al., J. Phys. Chem. 78 2673 (1974).Google Scholar
  46. 48.
    S. M. Rekhson and G. W. Scherer, J. de Phys. Colloque C9, 48, 427 (1982).Google Scholar
  47. 49.
    C. A. Bero and D. J. Plazek, J. Polym. Sci. Part B: Polym. Phys. 29, 39 (1991).Google Scholar
  48. 50.
    M. J. Richardson and N. G. Savill, Polymer 16, 753 (1975).Google Scholar
  49. 51.
    P. Peyser ‘‘Glass Transition Temperatures of Polymers,’’ in Polymer Handbook, 3rd ed., edited by J. Brandrup and E. H. Immergut (John Wiley & Sons, New York, 1989), pp. VI-209.Google Scholar
  50. 52.
    W. W. Wendlandt and P. K. Gallagher, Instrumentation in Thermal Characterization of Polymeric Materials, edited by E. A. Turi (Academic Press, New York, 1981), p. 3.Google Scholar
  51. 53.
    C. A. Angell (private communication).Google Scholar
  52. 54.
    D. J. Plazek, J. Polymer Sci.: Polym. Phys. Ed. 20, 1533 (1982).Google Scholar
  53. 55.
    a. W. A. Lee and R. A. Rutherford ‘‘Glass Transition Temperatures of Polymers’’ in Polymer Handbook, 2nd edition, edited by J. Brandrup and E. H. Immergut (John Wiley & Sons, New York, 1975), pp. III-139. b. D. J. Plazek and L. Zhang (unpublished data).Google Scholar
  54. 56.
    E. Jenckel and R. Heusch, Kolloid Z. 130, 19 (1953).Google Scholar
  55. 57.
    D. J. Plazek, C. Seoul, and C.A. Bero, J. Non-Crystalline Solids 131-133,570 (1991).Google Scholar
  56. 58.
    G. Braun and A. J. Kovacs, in Proc. Int. Conf. on Phys. Non-Crys- talline Solids, Delft, July, 1964, edited by J. A. Prins (North-Holland Pub. Co. Amsterdam, 1965).Google Scholar
  57. 59.
    E. Riande, H. Markovitz, D. J. Plazek et al., J. Polym. Sci. Sympo- sium No. 50, 405-430 (1975).Google Scholar
  58. 60.
    D. J. Plazek, E. Riande, H. Markovitz et al., J. Polym. Sci. 17, 2189 (1979).Google Scholar
  59. 61.
    F. N. Kelley and F. Bueche, J. Polymer Sci. 50, 549 (1961).Google Scholar
  60. 62.
    G. Pezzin, A. Omacini, and F. Zilio-Grandi, Chim. Ind. (Milan) 50, 309 (1968).Google Scholar
  61. 63.
    G. Pezzin, Pure and Appl. Chem. 25, 241 (1971).Google Scholar
  62. 64.
    D. J. Plazek, I.-C. Choy, F. N. Kelley, et al., Rubber Chem. Tech. 56, 866 (1983).Google Scholar
  63. 65.
    D. J. Plazek, G.-F. Gu, R. G. Stacer, et al., J. Mat., Sci. 23, 1289 (1988).Google Scholar
  64. 66.
    D. J. Plazek, C. A. Bero, and I.-C. Choy. J. Non-Crystalline Solids 172-174, 181 (1994).Google Scholar
  65. 67.
    E. D. von Meerwell, S. Amelar, and T. P. Lodge, Macromolecules 22, 295 (1989).Google Scholar
  66. 68.
    R. L. Morris, S. Amelar, and T. P. Lodge, J. Chem. Phys. 89, 6523 (1988).Google Scholar
  67. 69.
    S. Amelar, J. R. Krahn, K. C. Hermann, et al., Spectrochim. Acto Rev. 14, 379 (1991).Google Scholar
  68. 70.
    D. J. Gisser and M. D. Ediger, Macromolecules 25, 1248 (1992).Google Scholar
  69. 71.
    G. Fytas, A. Rizos, G. Floudas et al., J. Chem. Phys. 93, 5096 (1990).Google Scholar
  70. 72.
    A. Rizos, G. Fytas, T. P. Lodge et al., J. Chem. Phys. 95, 2980 (1991).Google Scholar
  71. 73.
    a. A. K. Rizos, and K. L. Ngai, Phys. Rev. B 46, 8127 (1992). b. A. K. Rizos, and K. L. Ngai, Macromolecules 27, 7076 (1994).Google Scholar
  72. 74.
    T. G. Fox and L. Loshaek, J. Polym. Sci. 15, 371 (1955).Google Scholar
  73. 75.
    S. J. Clarson, K. Dodgson, and J. A. Semlyen, Polym. 26, 930 (1985).Google Scholar
  74. 76.
    C. M. Guttmann and E. A. Dimarzio, Macromolecules 20, 1403 (1987).Google Scholar
  75. 77.
    G. B. McKenna, B. J. Hostetter, N. Hadjichristidis, Macromolecules 22,1834 (1989).Google Scholar
  76. 78.
    D. J. Plazek and V. M. O’Rourke, J. Polym. Sci. Part A-2, 9, 209 (1971).Google Scholar
  77. 79.
    K. Ueberreiter and G. Kanig, J. Chem. Phys. 18, 399 (1950).Google Scholar
  78. 80.
    S. Loshaek, J. Polym. Sci. 15, 391 (1955).Google Scholar
  79. 81.
    D. J. Plazek and I.-C. Chay, J. Polym. Sci. Part B: Polym. Phys. 29, 17 (1991).Google Scholar
  80. 82.
    I.-C. Choy and D. J. Plazek, J. Polym. Sci., Part B: Polym. Phys. 24, 1303 (1986).Google Scholar
  81. 83.
    D. J. Plazek and I.-C. Choy, J. Polym. Sci., Part B: Polym. Phys. 27, 307 (1989).Google Scholar
  82. 84.
    D. J. Plazek and Z. N. Frund, Jr., J. Polym. Sci.; Part B: Polym. Phys. 28,431 (1990).Google Scholar
  83. 85.
    E. N. da C. Andrade, Proc. Roy. Soc. (London) A84, 1 (1970); A254, 291 (1960).Google Scholar
  84. 86.
    D. R. Reid, British Plastics 32, 460 (1959).Google Scholar
  85. 87.
    D. J. Plazek, J. Colloid Sci. 15, 50 (1960).Google Scholar
  86. 88.
    B. G. Ranby, K. S. Chan, and H. Brumberger, J. Polym. Sci. 58, 545 (1962).Google Scholar
  87. 89.
    G. Groeninckx, H. Berghmans, and G. Smets. J. Polym. Sci.: Polym. Phys. Ed. 14, 591 (1976).Google Scholar
  88. 90.
    A. Eisenberg et al., in Physical Properties of Polym.s, 2nd edition ACS Prof. Ref. Book (American Chemical Society, Washington, DC, 1993), p. 61.Google Scholar
  89. 91.
    a. A. Eisenberg, H. Farb, and L. G. Cool, J. Polym. Sci. A-2, 9, 2131 (1971). b. H. Matsuura and A. Eisenberg, J. Polym. Sci., Polym. Phys. Ed. 14, 1201 (1976).Google Scholar
  90. 92.
    G. Goldbach and G. Rehage, Rheological Acta 6, 30 (1967).Google Scholar
  91. 93.
    J. E. McKinney and M. Goldstein, R. Res. Natl. Bun. Stand. Sect. A 78A, 331, 1974.Google Scholar
  92. 94.
    R. Hill and E. E. Walker, J. Polym. Sci. 3, 609 (1948).Google Scholar
  93. 95.
    R. H. Boyd and S. M. Breitling, Macromolecules 5, 1 (1972).Google Scholar
  94. 96.
    G. Natta and F. Danusso, J. Polym. Sci. 34, 3 (1959). M. L. Huggins, G. Natta, V. Desreux, and H. Mark, J. Polym. Sci. 56, 153 (1962).Google Scholar
  95. 97.
    F. E. Karasz and W. J. MacKnight, Macromolecules 1, 537 (1968).Google Scholar
  96. 98.
    G. P. Mikhailov and T. I. Borisova, Polym. Sci. USSR 2, 387 (1961).Google Scholar
  97. 99.
    D. J. Plazek, V. Tan, and V. M. O’Rourke, Rheol. Acta 13, 367 (1974).Google Scholar
  98. 100.
    I. Havlicek, M. Ilavsky, and J. Hrouz, J. Polym. Sci. Polym. Phys. Ed. 16,653 (1978).Google Scholar
  99. 101.
    I. Havlicek, M. Ilavsky, and J. Hrouz: Polym. Bull. 2, 25 (1980).Google Scholar
  100. 102.
    I. Havlicek, V. Vojta, M. Ilavsky et al. Macromolecules 13, 357 (1980).Google Scholar
  101. 103.
    I. Havlicek, M. Ilavsky, and J. Hrouz, J. Macomol. Sci., Phys. B21, 425 (1982).Google Scholar
  102. 104.
    G. W. Scherer, J. Amer. Cer. Soc. 67, 504 (1984); 69, 374 (1986).Google Scholar
  103. 105.
    R. Kohlrausch, Pogg. Ann. Phys. IV-91, 56-82 and179-214 (1854).Google Scholar
  104. 106.
    G. Williams and D. C. Watts, Trans. Faraday Soc. 66, 800 (1971).Google Scholar
  105. 107.
    N. G. McCrum, Plastics, Rub. and Comp. Proc. and Appl. 18, 181 (1992).Google Scholar
  106. 108.
    F. G. Shi, J. Mater. Res. 9, 1908 (1994).Google Scholar
  107. 109.
    C. A. Bero, Ph.D. Thesis, University of Pittsburgh, 1994.Google Scholar
  108. 110.
    D. J. Plazek, C. Seoul, and C. A. Bero, J. Non-Crystalline Solids 131-133, 570 (1991).Google Scholar
  109. 111.
    P. C. Taylor, S. G. Bishop, and D. L. Mitchell, Phys. Rev. Let. 27 (No. 7),414 (1971).Google Scholar
  110. 112.
    J. H. Magill, S. S. Pollack, and D. P. Wyman, J. Polym. Sci.: Part A 3, 3781 (1965).Google Scholar
  111. 113.
    D. L. Plazek and D. J. Plazek, Macromolecules 16, 1469 (1983).Google Scholar
  112. 114.
    J. D. Ferry and G. S. Parks, J. Chem. Phys. 4, 70 (1936).Google Scholar
  113. 115.
    D. J. Plazek and C. A. Bero, J. Phys.: Condens. Matter 15, S789-S802 (2003).Google Scholar
  114. 116.
    D. J. Plazek, V. Tan, and V. M. O’Rourke, Rheol, Acta 13, 367 (1974).Google Scholar
  115. 117.
    K. E. Polmanteer and M. J. Hunter, J. Appl. Polym. Sci. 1, 3 (1959).Google Scholar
  116. 118.
    S. C. Temin, J. Appl. Polym. Sci. 9, 471 (1965).Google Scholar
  117. 119.
    M. F. Vallat and D. J. Plazek, J. Polym. Sci.: Part B: Polym. Phys. 26, 545 (1988).Google Scholar
  118. 120.
    Ping-Chung Su, MS thesis, University of Pittsburgh, 1994.Google Scholar
  119. 121.
    M. Takeda, K. Tanaka, and R. Nagao, J. Polym. Sci. 57, 517 (1962).Google Scholar
  120. 122.
    M. L. Dannis, J. Appl. Polym. Sci. 1, 121 (1959).Google Scholar
  121. 123.
    J. A. Shetter, J. Polym. Sci. B 1, 209 (1963).Google Scholar
  122. 124.
    S. S. Rogers and L. Mandelkern, J. Phys. Chem. 61, 985 (1957).Google Scholar
  123. 125.
    D. J. Plazek, M. J. Rosner, and D. L. Plazek, J. Polym. Sci.: Part B: Polym. Phys. 26, 473 (1988).Google Scholar
  124. 126.
    Z. G. Gardlund and J. J. Laverty, J. Polym. Sci.: Part B: 7, 719 (1969).Google Scholar
  125. 127.
    A. Eisenberg, T. Yokoyama, and E. Sambalido, J. Polym. Sci.: Part A-1: 7, 1717 (1969).Google Scholar
  126. 128.
    J. E. Clark, Polym. Engr. & Sci. 7, 137 (1967).Google Scholar
  127. 129.
    G. Krauss, W. Childers, and J. T. Gruver, J. Appl. Polym. Sci. 11, 158 (1967).Google Scholar
  128. 130.
    C. A. Aufdermarsh and R. Pariser, J. Polym. Sci.: A 2, 4727 (1964).Google Scholar
  129. 131.
    R. R. Garrett, C. A. Hargraves II, and D. N. Robinson, J. Macromol. Sci. A4, 1679 (1970).Google Scholar
  130. 132.
    R. Nagao, Polym. 9, 517 (1968).Google Scholar
  131. 133.
    J. H. Magill (private communication).Google Scholar
  132. 134.
    G. A. Gordon, J. Polym. Sci.: Part A-2 9, 1693 (1971).Google Scholar
  133. 135.
    P. R. Swan, J. Polym. Sci. 42, 525 (1960).Google Scholar
  134. 136.
    J. C. Wittmann and A. J. Kovacs, J. Polym. Sci., C 16, 4443 (1967).Google Scholar
  135. 137.
    P. R. Couchman, Polym. Engr. Sci. 29, 135, (1984).Google Scholar
  136. 138.
    T. S. Chow, J. Rheology 30, 729 (1986).Google Scholar
  137. 139.
    D. J. Plazek and K. L. Ngai, Macromolecules 24, 1222 (1991).Google Scholar
  138. 140.
    S. J. Orbon and D. J. Plazek, J. Polym. Sci., Polym. Phys. Ed. 23, 41 (1985).Google Scholar
  139. 141.
    G. C. Berry, J. Polm. Sci. 14, 407 (1976).Google Scholar
  140. 142.
    K. M. Bernatz, Ph D Thesis, University of Pittsburgh, PA (1999).Google Scholar
  141. 143.
    D. J. Plazek, J. Rheol. 36, 1671 (1992).Google Scholar
  142. 144.
    D. J. Plazek and J. Echeverria, J. Rheol. 44, 831 (2000).Google Scholar
  143. 145.
    D. J. Plazek, X. D. Zheng, and K. L. Ngai, Macromolecules 25, 4920 (1992).Google Scholar
  144. 146.
    K. L. Ngai, D. J. Plazek, and C. Bero, Macromolecules 26, 1065 (1993).Google Scholar
  145. 147.
    D. J. Plazek, A. Schonhals, E. Schlosser, and K. L. Ngai, J. Chem. Phys. 98, 6488 (1993).Google Scholar
  146. 148.
    D. J. Plazek, C. Bero, S. Neumeister, G. Floudas, G. Fytas and K. L. Ngai, Colloid Polym. Sci. 272, 1430 (1994).Google Scholar
  147. 149.
    K. L. Ngai and D. J. Plazek, Rubber Chem. Tech. Rubber Rev. 68, 376 (1995).Google Scholar
  148. 150.
    K. L. Ngai, D. J. Plazek, and R. W. Rendell, Rheol. Acta 36, 307 (1997).Google Scholar
  149. 151.
    K. L. Ngai, I. Echeverria, and D. J. Plazek, Macromolecules 29, 7937 (1997).Google Scholar
  150. 152.
    K. L. Ngai, D. J. Plazek, and A. K. Rizos, J. Polym. Sci. B: Polym. Phys. 35, 599-614 (1997).Google Scholar
  151. 153.
    K. L. Ngai, J. Non-Cryst. Solids 7, 275 (2000).Google Scholar
  152. 154.
    K. L. Ngai and D. J. Plazek, Macromolecules 35, 9136 (2002).Google Scholar
  153. 155.
    K. L. Ngai, G. Floudas, D. J. Plazek, and A. K. Rizos, ‘‘Amorphous Polymers’’ in Encyclopedia of Polymer Properties, (John Wiley & Sons, New York, 2002).Google Scholar
  154. 156.
    R. Kohlrausch, Pogg. Ann. Phys. 12(3), 393 (1847).Google Scholar
  155. 157.
    T. L. Smith, Personal communication (1959).Google Scholar
  156. 158.
    For collection of papers, see (i) B. Frick, R. Zorn, and H. Buttner (eds.) Proceedings in International Workshop on Dynamics in Con- finement, J. Phys. IV 10, Pr7 (2000). (ii) B. Frick, M. Koza, and R. Zorn (eds.) Proceedings of 2nd International Workshop on Dy- namics in Confinement, Eur. Phys. J. E 12, 5-194 (2003). (iii) Special issue on Properties of Thin Polymer Films G. Reiter and J. A. Forrest (eds) Eur. Phys. J. E 8, 101-266 (2002).Google Scholar
  157. 159.
    A summary of the confusing results can be found in G. B. McKenna, Eur. Phys. J. E 12, 191 (2003).Google Scholar
  158. 160.
    J. A. Forrest and K. Dalnoki-Veress, Adv. Colloid Interf. Sci. 94, 167 (2001).Google Scholar
  159. 161.
    M. R. Wubbenhorst, C. A. Murray, and J. R. Dutcher, Eur. Phys. J. E 12: S109-S112 Suppl. (2003).Google Scholar
  160. 162.
    P. Scheidler, W. Kob, and K. Binder, Eur. Phys. J. E 12, 5 (2003).Google Scholar
  161. 163.
    K. L. Ngai, Phil. Mag. B. 82, 291 (2002).Google Scholar
  162. 164.
    For references to experimental works and computer simulations, see K. L. Ngai, Eur. Phys. J. E 8, 225 (2002). A plausible explanation is given therein.Google Scholar
  163. 165.
    A. Schonhals, H. Goering, Ch. Schick, B. Frick, and R. Zorn, Eur. Phys. J. E 12, 173 (2003), and to be published.Google Scholar
  164. 166.
    R. Casalini, K. L. Ngai, C. G. Robertson, and C. M. Roland, J. Polym. Sci. Polym. Phys. Ed. 38, 1841 (2001).Google Scholar
  165. 167.
    C. M. Roland, M. J. Schroeder, J. J. Fontanella, and K. L. Ngai, Macromolecules 37, 2630 (2004).Google Scholar
  166. 168.
    G. P. Johari and M. Goldstein, J. Chem. Phys. 53, 2372 (1970).Google Scholar
  167. 169.
    G. P. Johari, Ann. N. Y. Acad. Sci. 279, 117 (1976).Google Scholar
  168. 170.
    K. L. Ngai and M. Paluch, J. Chem. Phys. 120, 2857 (2004).Google Scholar
  169. 171.
    M. Paluch, C. M. Roland, S. Pawlus, J. Ziolo, and K. L. Ngai, Phys. Rev. Lett. 91, 115701 (2003).Google Scholar
  170. 172.
    See Figure 9 in S. C. Kuebler, D. J. Schaefer, C. Boeffel, U. Pawelzik, and H. W. Spiess, Macromolecules 30, 6597 (1997). The secondary relaxation of poly(ethyl metacrylate) involves some motion of the main chain and is hence a JG relaxation according to [170].Google Scholar
  171. 173.
    D. Prevosto, S. Capaccioli, M. Lucchesi, P. A. Rolla, and K. L. Ngai, J. Chem. Phys. 120, 4808 (2004).Google Scholar
  172. 174.
    M. G. Parthun and G. P. Johari, J. Chem. Phys. 103, 7611 (1995); 103, 440 (1995).Google Scholar
  173. 175.
    D. A. Wasylyshyn and G. P. Johari, J. Chem. Phys. 104, 5683 (1996).Google Scholar
  174. 176.
    M. Beiner and K. L. Ngai, Macromolecules, 38, 7033-7042 (2005).Google Scholar
  175. 177.
    K. L. Ngai and C. M. Roland, Rubber Chem. Tech. Rubber Rev. 77, 579 (2004).Google Scholar
  176. 178.
    K. L. Ngai, J. Phys.: Condens. Matter 15 (2003) S1107. K. L. Ngai, in AIP Conference Proceedings, 708, p. 515 (2004), Am. Inst. Phys. Melville NY.Google Scholar
  177. 179.
    G. P. Johari, G. Power, and J. K. Vij, J. Chem. Phys. 116, 5908 (2002); 117, 1714 (2002).Google Scholar
  178. 180.
    G. Power, G. P. Johari, and J. K. Vij, J. Chem. Phys. 119, 435 (2003).Google Scholar
  179. 181.
    K. L. Ngai, J. Non-Cryst. Solids, 351, 2635-2642 (2005).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Donald J. Plazek
    • 1
  • Kia L. Ngai
    • 2
  1. 1.Department of Materials Science and EngineeringUniversity of PittsburghPittsburgh
  2. 2.Naval Research LaboratoryWashington

Personalised recommendations