Pre-main Sequence Stars

  • Tomokazu Kogure
  • Kam-Ching Leung
Part of the Astrophysics and Space Science Library book series (ASSL, volume 342)


Herbig Ae/Be stars are the early-type pre-main sequence stars. Normally they are simply abbreviated as HES (Herbig emission-line stars) or HAEBE (Herbig Ae Be stars). (1960) originally defined HES by the following characteristics:
  1. (i)

    The spectral type is A or earlier, with emission lines.

  2. (ii)

    The star lies in an obscured region.

  3. (iii)

    The star illuminates fairly bright nebulosity in its immediate vicinity.



Spectral Type Stellar Wind Spectral Energy Distribution Tauri Star Circumstellar Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  1. Bertout, C. (1989), T Tauri stars: Wild as dust. Ann. Rev. A. & A, 27, 351–395.ADSGoogle Scholar
  2. Hartmann, L. (1998), Accretion Processes in Star Formation. Cambridge University Press, Cambridge.Google Scholar
  3. Reipurth, B. (ed.) (1989), Low Mass Star Formation and Premain Sequence Objects, ESO Workshop Proceedings No. 33, ESO.Google Scholar
  4. Thé, P. S., Pérez, M. R., and van den Heuvel, E. P. J. (eds.) (1994), The Nature and Evolutionary Status of Herbig Ae/Be Stars. First International Meeting in Amsterdam, ASP Conf. Series, Vol. 62, San Francisco, CA.Google Scholar


  1. Aiad, A., Appenzeller, I., Bertout, C., Stahl, O., and 4 co-authors (1984), Coordinated spectroscopic observations of YY Orionis stars. A.A., 130, 67–78.Google Scholar
  2. Alencar, S. H. P. and Basri, G. (2000), Profiless of strong permitted lines in classical T Tauri stars. A. J., 119, 1881–1900.ADSGoogle Scholar
  3. Ambartsumian, V.A. (1949), Stellar associations. Astr. Zhur., 26, 3–12.Google Scholar
  4. Appenzeller, I., Jankovics, I., and Ostreicher, R. (1984), Forbidden-line profiles of T Tauri stars. A. A., 141, 108–115.Google Scholar
  5. Appenzeller, I., Bertout, C., and Stahl, O. (2005), Edge-on T Tauri stars. A.A. 434, 1005–1019.Google Scholar
  6. Armitage, P. J., Clarke, C. J., and Palla, F. (2003), Dispersion in the lifetime and accretion rate of T Tauri stars. M. N. R. A. S., 342, 1139–1146.ADSGoogle Scholar
  7. Attridge, J. M. and Herbst, W. (1992), Rotation priods of T Tauri stars in the Orion Nebula cluster: A bimodal frequency distribution. Ap. J., 398, L61–L64.ADSGoogle Scholar
  8. Bastien, P. (1981), The wavelength dependence of linear polarization in T Tauri stars. A.A., 94, 294–298.Google Scholar
  9. Bastien, P. (1982), A linear polarization survey of T Tauri stars. A. A. Suppl., 48, 153–164.ADSGoogle Scholar
  10. Bastien, P. (1985), A linear polarization survey of southern T Tauri stars. Ap. J. Suppl., 59, 277–291.ADSGoogle Scholar
  11. Bastien, P. and Landstreet, J. D. (1979), Polarization observations of the T Tauri stars RY Tauri, T Tauri, and V866 Scorpii. Ap. J., 229, L134–140.ADSGoogle Scholar
  12. Batalha, C. C. and Basri, G. (1993), The atmospheres of T Tauri stars. II. Chromospheric line fluxes and veiling. Ap. J., 412, 363–374.ADSGoogle Scholar
  13. Bell, K. R., Lin, D. N. C., Hartmann, L. W., and Kenyon, S. J. (1995), The FU Orionis outburst as a thermal accretion event: Observational constraints for protostellar models. Ap. J., 444, 376–395.ADSGoogle Scholar
  14. Bellingham, J. G. and Rossano, G. S. (1980), Long-period variations in R CrA, S CrA, T CrA, and R Mon. A. J., 85, 555–559.ADSGoogle Scholar
  15. Benedettini, M., Nisini, B., Giannini, T., Lorenzetti, D., Tommasi, E., Saraceno, P., and Smith, H. A. (1998), ISO-SWS observations of Herbig Ae/Be stars: HI recombination lines in MWC 1080 and CoD-42° 11721. A.A. 339, 159–164.Google Scholar
  16. Beristain, G., Edwards, S., and Kwan, J. (2001), Helium emission from classical T Tauri stars. Dual origin in magnetospheric infall and hot wind. Ap. J., 551, 1037–1064.ADSGoogle Scholar
  17. Bertout, C., Harder, S., Malbet, F., Mennesier, C., and Regev, C. (1996), Photometric observations of YY Orionis: New insight into the accretion process. A.J. 112, 2159–2167.ADSGoogle Scholar
  18. Beskrovnaya, N. G., Pogodin, M. A., Najdenov, I., and Pomanyuk, I. (1995), Short-term spectral and polarimetric variability in the Herbig Ae star AB Aur as an indicator of the circumstellar inhomogeneity. A.A., 298, 585–593.Google Scholar
  19. Bibo, E. A. and Thé, P. S. (1991), Type of variability of Herbig Ae/Be stars. A. A. Suppl., 89, 319–334.ADSGoogle Scholar
  20. Böhm, T. and Catala, C. (1993), A spectral atlas of the Herbig Ae star AB Aurigae. The visible domain from 391 to 874 nm. A. A. Suppl., 101, 629–672.ADSGoogle Scholar
  21. Böhm, T. and Catala, C. (1994), Forbidden lines in Herbig Ae/Be stars: the [OI] (IF) 6300.31and 6363.79 Å. A.A., 290, 167–175.Google Scholar
  22. Böhm, T. and Catala, C. (1995), Rotation, winds and active phenomena in Herbig Ae/Be stars. A.A. 301, 155–169.Google Scholar
  23. Böhm, T., Catala, C., Donati, J. F., Welty, A., Baudrand, J., and 17 co-authors (1996), Azimuthal structure in the wind and chromosphere of the Herbig Ae star AB Aurigae. Results from the MUSICOS 1992 compaign. A. A. Suppl., 120, 431–450.ADSGoogle Scholar
  24. Bouret, J. C., Catala, C., and Simon, T. (1997), Nitrogen V in the wind of the pre-main sequence Herbig Ae star AB Aurigae. A.A., 328, 606–616.Google Scholar
  25. Bouvier, J. (1990), Rotation in T Tauri stars. II. Clues for magnetic activity. A.J., 99, 946–964.ADSGoogle Scholar
  26. Bouvier, J. (1991), Rotation in pre-main sequence stars—Properties and evolution. Proc. NATO Advanced Res. Workshop, Catalano, S. and Stauffer, J. R. (eds.), Kluwer, Dordrecht, p. 41.Google Scholar
  27. Bouvier, J. and Bertout, C. (1989), Spots on T Tauri stars. A.A., 211, 99–114.Google Scholar
  28. Breger, M. 1974, Pre-main sequence stars. III. Herbig Be/Ae Stars and other selected objects. Ap. J., 188, 53–58.ADSGoogle Scholar
  29. Brown, A., Ferraz, M. C. de M., and Jordan, C. (1984), The chromosphere and corona of T Tauri. M. N. R. A. S., 207, 831–859.ADSGoogle Scholar
  30. Cabrit, S., Edwards, S., Strom, S. E., and Strom, K. M. (1990), Forbidden-line emission and infrared excess in T Tauri stars: Evidence for accretion-driven mass loss. Ap. J., 354, 687–700.ADSGoogle Scholar
  31. Calvet, N., Basri, G., and Kuhi, L. V. (1984), The chromospheric hypothesis for the T Tauri phenomenon, A. p. j., 277, 725–737.ADSGoogle Scholar
  32. Canto, J., Rodriguez, L. F., Calvet, N., and Levreault, R. M. (1984), Stellar winds and molecular clouds: Herbig Be and Ae type stars. Ap. J., 282, 631–640.ADSGoogle Scholar
  33. Catala, C. (1988), Line formation in the winds of Herbig Ae/Be stars. The CIV resonance lines. A.A., 193, 222–228.Google Scholar
  34. Catala, C. (1989), Herbig Ae and Be stars. Low Mass Star Formation and Premain Sequence Objects, E SA Workshop, Reipurth, B. (ed.), European Southern Observatory, Garching bei Munchen, pp. 471–489.Google Scholar
  35. Catala, C., Felenbok, P., Czarny, J., Talavera, A., and Boesgaard, A. M. (1986), Sjhortterm variability in AB Aur: Clues for acitivity in Herbig Ae stars. II. The CaII K line. Ap. J., 308, 791–804.ADSGoogle Scholar
  36. Catala, C., Donati, J. F., Böhm, T., Landstreet, J., Henrichs, H. F., Unruh, Y., and 21 co-authors (1999), Short-term spectroscopic variability in the pre-main sequence Herbig Ae star AB Aurigae during the MUSICOS 96 campaign. A.A., 345, 884–904.Google Scholar
  37. Cohen, M. and Kuhi, L. V. (1979), Observational studies of pre-mainsequence evolution. Ap. J. Suppl., 41, 743–843.ADSGoogle Scholar
  38. Corporon, P., Lagrange, A. M., and Bouvier, J. (1994), Direct determination of stellar and orbital parameters of the spectroscopic binary TY CrA. A.A., 284, L21–L24.Google Scholar
  39. Cram, L. E. (1979), Atmospheres of T Tauri stars: The photosphere and low chromosphere. Ap. J., 234, 949–957.ADSGoogle Scholar
  40. Damiani, F., Micela, G., Sciortino, S., and Farata, F. (1994), Einstein X-ray observations of Herbig Ae/Be stars. Ap. J., 436, 807–811.ADSGoogle Scholar
  41. Fernandez, M., Ortiz, E., Eiroa, C., and Miranda, L. F. (1995), Hα emission from pre-main sequence stars. A. A. Suppl., 114, 439–464.ADSGoogle Scholar
  42. Finkenzeller, U. 1985, Rotational velocities, spectral types, and forbidden lines of Herbig Ae/Be stars. A.A., 151, 340–348.Google Scholar
  43. Finkenzeller, U. and Mundt, R. (1984), The Herbig Ae/Be Stars associated with nebulosity. A. A. Suppl., 55, 109–141.ADSGoogle Scholar
  44. Finkenzeller, U. and Jankovics, I. (1984), Line profiles and radial velocities of Herbig Ae/Be stars. A. A. Suppl., 57, 285–326.ADSGoogle Scholar
  45. Folha, D. F. M. and Emerson, J. P. (2001), Near infrared hydrogen lines as diagnostics of accretion and winds in T Tauri stars. A. A., 365, 90–109.Google Scholar
  46. Fukuda, I. and Uesugi, A. (1982), Revised Catalogue of stellar rotational velocities. Department of Astronomy, Kyoto University.Google Scholar
  47. Gahm, G. F. (1970), The spectrum of RW Aurigae, 3250–4900 Å, Ap. J. 160, 1117–1125.ADSGoogle Scholar
  48. Gahm, G. F., Lodén, K., Gullbring, E., and Hartstein, D. (1995), Activity on young stars. A.A., 301, 89–104.Google Scholar
  49. Gershberg, R. E. and Shnol, E. E. (1974) The Balmer decrement in spectra of moving medium. The case of collisional ionization and excitation. Izv. Krim Astrophys. Obs., 50, 122–151.Google Scholar
  50. Ghandour, L., Strom, S. E., Edwards, S., and Hillenbrand, L. A. (1994), Spectroscopic diagnostics of disk accretion in Herbig Ae/Be stars. The Nature and Evolutionary Status of Herbig Ae/Be Stars. P. S. Thé, M. R. Perez, and E. J. van den Heuvel (eds.). ASP Conf. Ser. Vol. 62, San Francisco, CA, pp. 223–226.Google Scholar
  51. Ghez, A. M., Neugebauer, G., and Matthews, K. (1993), The multiplicity of T Tauri stars in the star forming regions Taurus—Auriga and Ophiuchus—Scorpius: A 2.2 micron speckle imaging survey. A. J., 106, 2005–2023.ADSGoogle Scholar
  52. Giovanardi, C., Gennari, S., Natta, A., and Stanga, R. (1991), Infrared spectroscopy of T Tauri stars. Ap. J., 367, 173–181.ADSGoogle Scholar
  53. Glasby, J. S. (1974), The Nebular Variables. Int’l Ser. Monographs in Natural Philosophy, Vol. 69. Pergamon Press, Oxford, pp. 1–201.Google Scholar
  54. Grinin, V. P. (1969), Hydrogen-line intensities in the spectrum of an optically thick plasma. Astrophysics, 5, 172–177.ADSGoogle Scholar
  55. Grinin, V. P. (1994), Polarimetirc activities of Herbig Ae/Be stars. The Nature and Evolutionary Status of Herbig Ae/Be Stars. P. S. Thé, M. R. Perez, and E. J. van den Heuvel (eds.). ASP Conf. Ser. Vol. 62, San Francisco, CA, pp. 63–71.Google Scholar
  56. Grinin, V. P., Rostopchina, A. N., Okazaki, A., Kikuchi, S., and Minikhulov, N. H. (1994), Intrinsic polarization of classical Ae Herbig star RR Tau. The Nature and Evolutionary Status of Herbig Ae/Be Stars, P. S. Thé, M. R. Perez, and E. J. van den Heuvel (eds.). ASP Conf. Ser. Vol. 62, San Francisco, CA, pp. 86–87.Google Scholar
  57. Hamann, F. and Persson, S. E. (1992), Emission-line studies of young stars. II. The Herbig Ae/Be stars. Ap. J. Suppl., 82, 285–309.ADSGoogle Scholar
  58. Hartigan, P., Edwards, S., and Ghandour, L. (1995), Disk accretion and mass loss from young stars. Ap. J., 452, 736–768.ADSGoogle Scholar
  59. Hartmann, L. (1998), Overview. Accretion Processes in Star Formation, Cambridge Astrophysics, Series 32. Cambridge University Press, Cambridge, pp. 1–15.Google Scholar
  60. Hartmann, L. and Kenyon, S. J. (1996), The FU Orionis phenomenon. Ann. Rev. A. A., 34, 207–240ADSGoogle Scholar
  61. Herbig, G. H. (1945), Emission lines of FeI in RW Aurigae. P.A.S. Pacific, 57, 166–168.ADSGoogle Scholar
  62. Herbig, G. H. (1952), Emission-line stars in galactic nebulosities. J. R. A. S. Canada, 46, 222–233.ADSGoogle Scholar
  63. Herbig, G. H. (1960), The spectra of Be-and Ae-type stars associated with nebulosity. Ap. J. Suppl., 4, 337–351.ADSGoogle Scholar
  64. Herbig, G. H. (1962), The properties and problems of T Tauri stars and related objects. Adv. Ast & Astrphys., 1, 47–103.ADSGoogle Scholar
  65. Herbig, G. H. (1965), Lithium abundances in F5-G8 stars. Ap. J., 141, 588–609.ADSGoogle Scholar
  66. Herbig, G. H. (1977), Radial velocities and spectral types of T Tauri stars. Ap. J., 214, 747–758.ADSGoogle Scholar
  67. Herbig, G. H. (1989), FU Ori eruption, Proc. ESO Workshop on Low Mass Star Formation and Pre-Main Sequence Objects B Reipurth (ed.), ESO, Garching bei Munchen, pp. 233–246.Google Scholar
  68. Herbig, G. H. and Rao, N. K. (1972), Second catalog of emission-line stars of the Orion population. Ap. J., 174, 401–423.ADSGoogle Scholar
  69. Herbig, G. H., Vrba, F. J., and Rydgren, A. E. (1986), A spectroscopic survey of the Taurus-Auriga dark clouds for pre-main sequence atars having Ca II H, K emission. A.J., 91, 575–582.ADSGoogle Scholar
  70. Herbig, G. H., Petrov, P. P., and Duemmler, R. (2003), High-resolution spectroscopy of FU Orionis stars. Ap. J., 595, 384–411.ADSGoogle Scholar
  71. Herbst, W., (1986), T Tauri variables. P. A. S. P., 98, 1088–1094.ADSGoogle Scholar
  72. Herbst, W., Holtzman, J. A., and Klasky, R. S. (1983), Photometric variations of Orion population stars. II. Ae-irregular variables and T Tauri stars. A. J., 88, 1648–1663.ADSGoogle Scholar
  73. Herbst, W., Herbst, D., Grossman, E. J., and Weinstein, D. (1994), Catalogue of UBVRI photometry of T Tauri stars and analysis of the causes of their variability. A.J., 108, 1906–1923.ADSGoogle Scholar
  74. Hernández. J. Calvet, N., Briceno, C., Hartmann, L., and Berlind, P. (2004), Spectral analysis and classification of Herbit Ae/Be stars. A. J., 127, 1682–1701.ADSGoogle Scholar
  75. Hillenbrand, L. A., Strom, S., Vrba, F. J., and Keene, J. (1992), Herbig Ae/Be stars: Intemediate-mass stars surrounded by massive circumstellar disks. Ap. J., 397, 613–643.ADSGoogle Scholar
  76. Hirth, G. A. (1994), Forbidden emission lines of T Tauri stars as tracers of their jets and disk winds. Stellar and Circumstellar Astrophysics, G. Wallerstein and A. Noriega-Crespo (eds.), ASP Conf. Ser. Vol. 57, San Francisco, CA, pp. 32–39.Google Scholar
  77. Höfflich, P. and Wehrse, R. (1987), NLTE models for cocoon stars. A.A. 185, 107–116.Google Scholar
  78. Imhoff, C. L. and Appenzeller, I. (1987), Pre-main sequence stars. Exploring the Universe with the WE Satellite, Y. Kondo (ed.), D. Reidel Pub. Comp. Dordrecht, pp. 295–319.Google Scholar
  79. Jain, S. K. and Bhatt, H. C. (1995), A. A. Suppl., 111, 399–405, Study of variability of The polarization in Herbig Ae/Be stars.ADSGoogle Scholar
  80. Johns-Krull, C. M., Vatenti, J. A., and Linsky, J. L., (1998), A short wavelength IUE atlas of pre-main sequence stars. Cool Stars, Steller Systems and the Sun. R. A. Donahue and J. A. Bookbinder (eds.), ASP Conf. Ser. Vol. 154, San Francisco, CA, pp. 1724–1734.Google Scholar
  81. Johns-Krull, C. M., Vatenti, J. A., and Linsky, J. L., (2000), An IAU atlas of premain-sequence stars. II. Far-ultraviolet accretion diagnostics in T Tauri stars. Ap. J., 539, 815–833.ADSGoogle Scholar
  82. Joy, A. H. (1942), Spectral criteria in the classification of Variable stars. P. A. S. P., 54, 15–18.ADSGoogle Scholar
  83. Katysheva, N. A. (1981), Balmer decrements of T Tau stars. Astrophysics, 17, 165–169.ADSGoogle Scholar
  84. Köhler, R. (2001), Multiplicity of X-ray selected T Tauri stars in Chamaeleon. A. J., 122, 3325–3334.ADSGoogle Scholar
  85. Kolotilov, E. A. (1977), Spectral and photometric observations of the fast irregular variables. II. Hα and Hβ lines in the spectrum of WW Vul, VX Cas, and UX Ori. Astrophysics, 13, 17–25.ADSGoogle Scholar
  86. Köppen, J., Finkenzeller, U., Mundt, R., and Beltrametti, M. (1982), On the Balmer emission lines of the Herbig Be star HD 200775. A.A., 112, 174–177.Google Scholar
  87. Kuhi, L. V. (1965), T Tauri stars: A short review. J. R. A. S., Canada, 60,(1), 1–14.ADSGoogle Scholar
  88. Kukarkin, B. V. and Parenago, P. P. (1970), General Catalouge of Variable Stars (GCVS). Third edition, Akademia Naulc Moskva.Google Scholar
  89. Leinert, Ch., Zinnecker, H., Weitzel, N., Christou, J., and 4 co-authors (1993), A systematic search for young binaries in Taurus. A.A., 278, 129–149.Google Scholar
  90. Li, W., Evans, H. J. II, Harvey, P. M., and Colome, C. (1994), Near-infrared (J. H. K) imaging of Herbig Ae/Be stars. Ap. J., 433, 199–215.ADSGoogle Scholar
  91. Magazzu, A. Rebolo, R., and Pavlenko, Ya. V. (1992), Lithium abundance in classical and weak T Tauri stars. Ap. J., 392, 159–171.ADSGoogle Scholar
  92. Magazzu, A., Alcala, J. M., and Coving, E. (1997), Lithium, rotation, and activity in Chamaeleon T Tauri stars. Mem. Soc. A. Italia, 65, 925–928.ADSGoogle Scholar
  93. Malfait, K., Bogaert, E., and Waelkens, C. (1998), An ultraviolet, optical and infrared study of Herbig Ae/Be stars. A.A., 331, 211–223.Google Scholar
  94. Martin, E. L. (1994), Binarity among Ae/Be stars. The Nature and Evolutionary Status of Herbig Ae and Be stars, P. S. Thé, M. R. Perez, and E. J. van den Heuvel (eds.). ASP Conf. Ser. Vol. 62, San Francisco, CA, pp. 315–318.Google Scholar
  95. Martin, E. L., Rebolo, R., Magazzu, A., and Pavlenko, Ya. V. (1994), Pre-main sequence lithium burning. I. Weak T Tauri stars. A.A., 282, 503–517.Google Scholar
  96. Mathieu, R.D. (1994), Pre-main-sequence binary stars. Ann. Rev. A. & A, 32, 465–530.ADSGoogle Scholar
  97. Melo, C. H. F. (2003), The short-period multiplicity among the T Tauri stars. The Future of Cool-Star Astrophysics: 12 th Cambridge Workshop on Cool Stars. Stellar Systems and the Sun, A. Brown, G. M. Harper, and T. R. Ayres (eds.)., U. Colorado, Colorado, pp. 741–746.Google Scholar
  98. Ménard, F., Bouvier, J., Dougados, C., Mel’nikov, S. Y., and Grankin, K. N. (2003), Constrains on the disk geometry of the T Tauri star AA Tau from linear polarimetry. A.A., 409, 163–167.Google Scholar
  99. Mendoza, E. E. (1968), Infrared excess in T Tauri stars and related objects. Ap. J., 151, 977–987.ADSGoogle Scholar
  100. Meyer, M. R., Calvet, N., and Hillenbrand, L. A. (1997), Intrinsic near-infrared excesses of T Tauri stars: Understanding the classical T Tauri star locus. A. J., 114, 288–300.ADSGoogle Scholar
  101. Mitchell, G. F. and Mathews, H. E. (1994), A molecular jet from LkHα 234. Ap. J., 423, L55–L58.ADSGoogle Scholar
  102. Mundt, R. and Ray, T. P. (1994), Optical outflows from Herbig Ae/Be stars and other high luminosity young stellar objects. The Nature and Evol. Status of Herbig Ae and Be stars, P. S. Thé, M. R. Perez, and E. J. van den Heuvel (eds.), ASP Conf. Ser. Vol. 62, San Francisco, CA, pp. 237–252.Google Scholar
  103. Muzerolle, J., Calvet, N., and Hartmann, L. (2001), Emission-line diagnostics of T Tauri magnetospheric accretion. II. Improved model tests and insights into accretion physics. Ap. J., 550, 944–961.ADSGoogle Scholar
  104. Muzerolle, J., D’Alesso, P., Calvet, N., and Hartmann, L. (2004), Magnetospheres and disk accretion in Herbig Ae/Be stars. Ap. J., 617, 406–417.ADSGoogle Scholar
  105. Neuhäuser, R., Sterzik, M. F., Schmidt, J. H., Wichmann, R., and Krautter, J. (1995), ROSAT survey observation of T Tauri stars in Taurus. A.A., 297, 391–417.Google Scholar
  106. Nisini, B., Milillo, A., Saraceno, P., and Vitali, F. (1995), Mass loss rates from HI infrared lines in Herbig Ae/Be stars. A.A., 302, 169–183.Google Scholar
  107. Palla, F. and Stahler, S. W. (1993), The pre-main-seequence evolution of intermediatemass stars. Ap. J., 418, 414–425.ADSGoogle Scholar
  108. Pallavicini, R., Pasquini, L., and Randich, S. (1992), Optical spectroscopy of post-TTS star candidates. A.A., 261, 245–254.Google Scholar
  109. Parenago, P. (1954), Study of stars in Orion Nebula Region. Publ. Sternberg Astr. Inst. (Trudhi Astronomicheskii Instituta im P.K. Schternberga), 25, 222–233.Google Scholar
  110. Perez, M. R., Grady, C. A., and Thé, P.S. (1993), UV spectral variability in the Herbig Ae star HR 5999 XI. The accretion interpretation. A.A., 274, 381–390.Google Scholar
  111. Pérez, M. and Thé, P. S. (1994), The clumpy accretion in Herbig Ae/Be stars. Rev. Mex. A. A., 29, 54–58.ADSGoogle Scholar
  112. Pirzkal, N., Spillar, E. J., and Dyck, H. M. (1997), A search for close bright companions to AeBe stars. Ap. J., 481, 392–395.ADSGoogle Scholar
  113. Pontefract, M., Drew, J. E., Harris, T. J., and Oudmaijer, R. D. (2000), Hα spectropolarimetry of the Herbig Ae star AB Aurigae. M. N. R. A. S., 319, L19–L23.ADSGoogle Scholar
  114. Praderie, F., Simon, T., Catala, C., and Boesgaad, A. M. (1986), Short-term spectral variability in AB Aurigae: Clue for activity in Herbig Ae stars. I. The ultraviolet lines of MgII and FeII. Ap. J., 303, 311–326.ADSGoogle Scholar
  115. Ray, T.P., Poetzel, R., Solf, J., and Mundt, R. (1990), Optical jets from the highluminosity young stars LkHα 234 and AFGL 4029. Ap. J., 357, L45–L48.ADSGoogle Scholar
  116. Reipurth, B. and Zinnecker, H. (1993), Visual binaries among pre-main sequence stars. A.A., 278, 81–108.Google Scholar
  117. Reipurth, B., Pedrosa, A., and Lago, M. T. V. T. (1996), Hα emission in pre-main sequence stars. I. An atlas of line profiles. A. A. Suppl., 120, 229–256.ADSGoogle Scholar
  118. Rydgren, A.E. and Zak, D. S. (1987), On the spectral form of the infrared excess component in T Tauri systems. P. A. S. P., 99, 141–145.ADSGoogle Scholar
  119. Skinner, S. L., Brown, A., and Stewart, R. T. (1993), A high-sensitivity survey of radio continuum emission from Herbig Ae/Be stars. Ap. J. Suppl., 87, 217–265.ADSGoogle Scholar
  120. Sorelli, C., Grinin, V. P., and Natta, A. (1996), Infall in Herbig Ae/Be stars: what Na D lines tells us. A.A., 309, 155–162.Google Scholar
  121. Stahler, S. W. (1983), The birthline for low-mass stars. Ap. J., 274, 822–829.ADSGoogle Scholar
  122. Stelzer. R. and Neuhäuser, R. (2001), X-ray emission from young stars in Taurus-Auriga-Perseud: Luminosity function and the rotationactivity relation. A. A. 377, 538–556.Google Scholar
  123. Strom, S. E., Strom, K. M., Yost, J., Carrasco, L., and Grasdalen, G. (1972), The nature of the Herbig Ae and Be-type stars associated with nebulosity. Ap. J., 173, 353–366.ADSGoogle Scholar
  124. Thé, P. S. (1994), Evidence for circumstellar disks around variable Herbig Ae/Be stars from long-term photometry. The Impact of Long-Term Monitoring on Variable Star Research, C. Sterken and M. de Groot (eds.), Kluwer, Dordrecht, pp. 31–40.Google Scholar
  125. Thé, P. S., de Winter, D., and Perez, M. R. (1994), A new catalogue of members and candidate members of the Herbig Ae/Be (HAEBE) stellar group. A. A. Suppl., 104, 315–339.ADSGoogle Scholar
  126. Tjin, A., Djie, H. R. E., Thé, P. S., Anderson, J., Nordstrom, B., Finkenzeller, U., and Jankovics, I. (1989). The variable Herbig Ae star HR 5999 VIII — Spectrosopic observations 1975–1985 and correlations with simultaneous photometry, A. A. Suppl. 78, 1–24.ADSGoogle Scholar
  127. Vink, J. S., Drew, J. E., Harris, T. J., and Oudmaijer, R. D. (2002), Probing the circumstellar structure of Herbig Ae/Be stars. M. N. R. A. S. 337, 356–368.ADSGoogle Scholar
  128. Vink, J. S., Drew, J. E., Harris, T. J., Oudmaijer, R. D., and Unruh, Y. (2005), Probing the circumstellar structures of T Tauri stars and their relationship to those of Herbig stars. M. N. R. A. S., 359, 1049–1064.ADSGoogle Scholar
  129. Vrba, F., Schmidt, G. D., and Hinzen, P. M. (1979), observations and evaluation of the polarization in Herbig Ae/Be stars. Ap. J., 227, 185–196.ADSGoogle Scholar
  130. Walker, M. F. (1972), Studies of extremely young cluster. VI. Spectroscopic observations of the ultraviolet-excess stars in the Orion Nebula Cluster and NGC 2264. Ap. J., 175, 89–116.ADSGoogle Scholar
  131. Walter, F. M. (1986), X-ray sources in regions of star formation. I. The naked T Tauri stars. Ap. J., 306, 573–586.ADSGoogle Scholar
  132. Walter, F. M., Brown, A., Mathieu, R. D., Myers, P. C., and Vrba, F. J. (1988), X-ray sources in regions of star formation. III. Naked T Tauri stars associated with the Taurus-Auriga Complex. A. J., 96, 297–325.ADSGoogle Scholar
  133. Waters, L. B. F. M., Coté. J., and Lamers, M. J. G. L. M. (1987), IRAS observations of Be stars. II. Far-IR characteristics and mass loss rates. A.A., 185, 206–224.Google Scholar
  134. Wilson, L. A. (1974), Fe Fluorescence in T Tauri stars. Ap. J. 191, 143–155.ADSGoogle Scholar
  135. Zinnecker, H. and Preibisch, Th. (1994), X-ray emission from Herbig Ae/Be stars: a ROSAT survey. A.A., 292, 152–164.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Tomokazu Kogure
    • 1
  • Kam-Ching Leung
    • 2
    • 3
    • 4
  1. 1.Kyoto UniversityYawata, KyotoJapan
  2. 2.Institute of Astronomy and AstrophysicsAcademia SinicaTaiwan, China
  3. 3.Department of Physics & AstronomyUniversity of Nebraska-LincolnLincolnUSA
  4. 4.Brace LaboratoryUSA

Personalised recommendations