Late-Type Stars and Close Binaries

  • Tomokazu Kogure
  • Kam-Ching Leung
Part of the Astrophysics and Space Science Library book series (ASSL, volume 342)


Late-type stars are generally characterized by the chromospheric structure showing active phenomena observable by the formation of emission lines and emission of X-ray and UV radiations. In the optical region, most ubiquitous emission lines are CaII H, K lines, while Hα line appears in fully developed chromospheres. In this section we consider the basic chromospheric activities by focusing to the CaII H, K emission lines.


Emission Line Accretion Disk White Dwarf Planetary Nebula Close Binary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  1. Cassatella, A. and Viotti, R. (eds.) (1990). Physics of Classical Novae. IAU Coll. No. 122, Springer-Verlag, Berlin.Google Scholar
  2. Corradi, R. and Mikolajewska, J. (eds.) (2002). Symbiotic Stars, Probing Stellar Evolution. ASP Conf. Vol. 303, San Francisco, CA.Google Scholar
  3. Havnes, O., Petterson, B. R., Schmitt, J. H. M. M. and Solkeim, J. E. (eds.) (1988). Activity in Cool Star Envelopes, Kluwer, Dordrecht.Google Scholar
  4. Mirzoyan, L. V., Petterson, B. R., and Tsventkov, M. K. (eds.) (1990). IAU Symposium, No. 137. Flare Stars in Star Clusters, Associations and the Solar Vicinity, Kluwer, Dordrecht.Google Scholar
  5. Sahade, J., McCluskey, G. E., and Kondo, Y. (eds.) (1993). The Realm of Interacting Binary Stars, Kluwer, Dordrecht.Google Scholar
  6. Warner, B. (1995). Cataclysmic Variable Stars, Cambridge University Press, Cambridge, New York.Google Scholar


  1. Allen, D. A. (1979). Symbiotic stars at optical, infrared and radio wavelengths. Changing Trends in Variable Star Research, Bateson, F. M., Smak, J., and Ruch, I. H. (eds.). IAU Coll. No. 46, University of Waikato, Hamilton, N.Z., 125–147.Google Scholar
  2. Allen, D. A. (1984). A catalogue of symbiotic stars. Proc. Australian Soc. Astr., 5, 369.ADSGoogle Scholar
  3. Ambartsumian, V.A. (1954). Phenomena of stellar continous emission and origin of stellar energies. Comm. Byurakan Obs., 13, 3–26.Google Scholar
  4. Anandarao, B. G., Taylor, A. R., and Pottasch, S. R. (1988). Dust emission from symbiotic stars—An interpretation of IRAS observations. A. A., 203, 361–366.Google Scholar
  5. Anupama, G. C. and Prabhu, T. P. (1989). The 1985 outburst of RS Ophiuchi: spectroscopic results. Astrophys. Astr., 10, 237–255.ADSGoogle Scholar
  6. Anupama, G. C. and Mikolajewska, J. (1999). Recurrent novae at quiescence: System with giant secondaries. A. A., 344, 177–187.Google Scholar
  7. Arkhipova, V. P., Belyakina, T. S., Dokuchaeva, O. D., and Noskova, R. I. (1990). The light curve of the symbiotic nova HM Sagittae, Physics of Classical Novae. A. Cassatella and R. Viotti (eds.), IAU Coll. No. 122. Springer-Verlag, Dordrecht, 437–440.Google Scholar
  8. Audard, M., Gudel, M., and Skinner, S. L. (2003). Separating the X-ray emissions of UV Ceti A and B with Chandra. Ap. J., 589, 983–987.ADSGoogle Scholar
  9. Baratta, G. B. and Viotti, R. (1990). The spectrum of the symbiotic nova HBV 475 in 1969. II. A. A., 229, 104–116.Google Scholar
  10. Bath, G. T. (1975). Dynamical instabilities and mass exchange in binary systems. MNRAS, 171, 311–328.ADSGoogle Scholar
  11. Bauer, W. H. and Bennett, P. D. (2000). The ultraviolet spectrum of VV Cephei out of eclipse. Publ. A. S. Pacific, 112, 31–49.ADSGoogle Scholar
  12. Bauer, W. H., Stencel, R. E., and Neff, D. H. (1991). Twelve years of IUE spectra of the interacting binary VV Cephei. A. A. Suppl., 90, 175–190.ADSGoogle Scholar
  13. Belczynski, K., Mikolajewska, J., Munari, U., Ivison, R. J., and Friedjung, M. (2000). A catalogue of symbiotic stars. A. A. Suppl., 146, 407–435.ADSGoogle Scholar
  14. Bloch, M. and Chalonge, D. (1965). Etude prelininaire du spectre de Nova Herculis 1963 dans le visible et l’ultraviolet. Colloque Internatinal sur les Novae, Supernovae, Novoides, CNRS, No. 121, Central National de la Recherche Scientifique, Paris, 78–82.Google Scholar
  15. Bode, M. F. (ed.) (1987). RS Ophiuchi (1985) and the recurrent nova phenomenon. Proc. of Manchester Conference, M. F. Bode (ed.), VNU Science Press, Utrecht.Google Scholar
  16. Bode, M. F. and Kahn, F. D. (1985). A model for the outburst of nova RS Ophiuchi in 1985. MNRAS, 217, 205–215.ADSGoogle Scholar
  17. Bode, M. F., Roberts, J. A., Ivison, R. J., Meaburn, J., and Skopal, A. (1991). Echelle spectroscopy of the symbiotic star CH Cygni through quiescence. MNRAS., 253, 80–88.ADSGoogle Scholar
  18. Böhm-Vitense, E. (1992). Rotation and transition layer emission in cool giants. A. J., 103, 608–616.ADSGoogle Scholar
  19. Bopp, B. and Fekel Jr., F. (1977). Binary incidence among the BY Draconis variable. A. J., 82, 490–494.ADSGoogle Scholar
  20. Bowen, G. H. (1988). Dynamical modeling of long-period variable star atmospheres. Ap. J., 329, 299–317.ADSGoogle Scholar
  21. Bruevich, E. A., Katsova, M. M., and Livshits, M. A. (1990). Kinetics of hydrogen in the chromospheres of red dwarfs. Sov. Astron., 34, 60–65.ADSGoogle Scholar
  22. Budding, E. (1984). A catalogue of classical (evolved) Algol-type candidate stars. Centre des Donnees Stellaires, 27, 91–129.ADSGoogle Scholar
  23. Byrne, P. B., Abdul Aziz, H., Amado, P. J., Arevalo, M. J., Avgoloupis, S., Doyle, J. G., and 11 co-authors (1998). The photosphere and chromosphere of the RS CVn star. II Pegani. A. A. Suppl., 127, 505–519.ADSGoogle Scholar
  24. Çakirli, Ö., Ibanoglu, C., Djurasevic, G., Erkapic, S., Evren, S., and Tas, G. (2003). Long-term photometric behaviur of the RS CVn binary RT Lacertae. A. A., 405, 733–745.Google Scholar
  25. Chambers, H. L. II. (1995). The nature of the companion too Ceti. PhD Thesis, Purdue University, (Dissertation Abstracts International, Vol. 57–03, p. 1856).Google Scholar
  26. Cheng, Q. Q., Engvold, O., and Elgaroy, O. (1997). A numerical simulation of the Wilson-Bappu relationship. A. A., 327, 1155–1163.Google Scholar
  27. Chincarini, G. and Rosino, L. (1965). Spectral evolution of Nova Hercules (Dahlgren) from February to September 1963. Novae, Novoides et Supernovae. Coll.Int’l du CNRS, No. 121, Centre National de la Recherche Scientifique, Paris, 72–77.Google Scholar
  28. Choi, H. J., Soon, W., Donahue, R. A., Baliunas, S., and Henry, G. W. (1995). A study of variability in a smaple of G and K giants. PAS Pacific, 107, 744–750.ADSGoogle Scholar
  29. Contini, M. (2003). An analysis of the emission line spectra of AG Pegasi between phases 7.34 and 9.44. MNRAS, 339, 125–132.ADSGoogle Scholar
  30. Contini, M., Orio, M., and Prialnik, D. (1995). RS Oph at day 201: a test for shocks in nova shells. M. N. R. A. S., 275, 195–208.ADSGoogle Scholar
  31. Cram, L. E. (1982). X-ray heating of the quiescent chromospheres of dMe stars. Ap. J., 253, 768–772.ADSGoogle Scholar
  32. Crowe, R. A. and Garrison, R. T. (1988). The visible spectra of southern hemisphere Mira variable stars. Ap. J. Suppl., 66, 69–98.ADSGoogle Scholar
  33. D’Antona, F. and Mazzitelli, I. (1992). Stellar evolution, low mass stars. The Astr and Astrophys. Encyclopedia, S. P. Maran (ed.), Van Nostrand Reinhold, New York, 838–839.Google Scholar
  34. de Jager, C., Heise, J., van Genderen, A. M., Foing, B. H., Ilyin, I. V., and 14 coauthors (1989). Coodinated Observations of a large impulsive flare on UV Ceti. A. A., 211, 157–172.Google Scholar
  35. Dobrzycka, D., Kenyon, S. J., Proga, D., Mikolajewska, J., and Wade, R. A. (1996). The hot component of RS Ophiuchi. A. J., 111, 2090–2098.ADSGoogle Scholar
  36. Downes, R. A., Duerbeck, H. W., and Delahodde, C.E. (2001). Luminosities of [OIII]λ 5007 and Hydrogen Balmer lines in nova shells years and decades after outburst. J. Astron. Data, 7, 6–53.Google Scholar
  37. Doyle, J. G. (1989). Ha versus X-ray luminosity in dwarf M stars. A. A., 218, 195–198.Google Scholar
  38. Drake, S. and Ulrich, R. (1980). The emission-line spectrum from a slab of hydrogen at moderate to high densities. Ap. J. Suppl., 42, 351–383.ADSGoogle Scholar
  39. Dufay, J., Bloch, M., Bertaud, Ch., and Dufay, M. (1965). Evolution du spectre de Nova RS Ophiuchi après l’explosion de 1958. Novae, Supernovae, Novoides. Coll. Internationaux du CNRS, No. 121, Centre National de la Recherche Scientifique, Paris, 18–49.Google Scholar
  40. Dufay, J. and Bloch, M. (1965). Température de couleur, décrément de Balmer et rougissement interstellaire dans le spectre de Nova RS Ophiuchi. Colloque International sur les Novae, Supernovae, Novoides. CNRS, No. 121, Centre National de la Recherche Scientifique, Paris, 53–59.Google Scholar
  41. Echevarria, J. (1988). A statistical analysis of the emission line ratios in cataclysmic variables. M. N. R. A. S., 233, 513–527.ADSGoogle Scholar
  42. Echevarria, J., Tovmassian, G., Shara, M., Tapia, M., Hohigas, J., and 17 co-authors (1996). Simultaneous multiwavelength observations of dwarf novae. I. SU UMa: Minihumps at a minioutburst? Ap. J., 467, 851–859.ADSGoogle Scholar
  43. Elitzur, M., Freland, G. J., Mathews, W. G., and Shields, G. A. (1983). Stimulated emission and the flat Balmer decrements of cataclysmic variables. Ap. J., 272, L55–L59.ADSGoogle Scholar
  44. Engvold, O. and Rygh, B. O. (1978). The CaII line width in late type stars. The Wilson-Bappu effect. A. A., 70, 399–407.Google Scholar
  45. Formiggini, L., Contini, M., and Leibowitz, E. M. (1995). HM Sagittae: the shocked and photoionized interaction zone of two colliding stellar winds. MNRAS, 277, 1071–1079.ADSGoogle Scholar
  46. Fox, M. W., Wood, P. R., and Dopita, M. A. (1984). Shock waves in Mira variables. I. Emission-line spectra. Ap. J., 286, 337–349.ADSGoogle Scholar
  47. Fox, M. W. and Wood. P. R. (1985). Shock waves in Mira variables. II. Theoretical models. Ap. J., 297, 455–475ADSGoogle Scholar
  48. Garcia-Alvarez, D., Jevremovic, D., Doyle, J. G., and Butler, C. J. (2002). Observations and modelling of a large optical flare on AT Microscopii. A. A., 383, 548–557Google Scholar
  49. Gauzit, J. (1955). Le spectre de AX Persei et ses variation. Ann. d’Ap., 18, 354–374.ADSGoogle Scholar
  50. Gershberg, R. E. (1974). Balmer emission decrement and electron density in stellar chromopheres. Sov. Astron., 18, 326–330.ADSGoogle Scholar
  51. Gershberg, R. E. and Shnol, E. E. (1974). The Balmer decrement in spectra of moving medium. The case of collisional ionization and excitation. Izv. Krim. Astrophys. Obs., 50, 122–151.Google Scholar
  52. Gershberg, R. E., Katsove, M. M., Lovkaya, M. N., Terebizh, A. V., and Shakhovskaya, N.I. (1999). Catalogue and bibliography of the UV Cet-type flare stars and related objects in the solar vicinity. A. A. Suppl., 139, 555–558.ADSGoogle Scholar
  53. Gill, C. D. and O’Brien, T. J. (1999). Emission-line profiles from model nova shell. MNRAS, 307, 677–684.ADSGoogle Scholar
  54. Gillet, D. (1988). The Balmer emission profiles in Mira stars. A. A., 192, 206–220.Google Scholar
  55. Gliese, W. (1969). Catalogue of Nearby Stars/ Veroffentlichungen des Astronomishen Rechen-Instituts Heidelberg Nr. 22, Verlag G. Braun, Karlsruhe.Google Scholar
  56. Gray, D. F. and Endal, A.S. (1982). The angular momemtum history of the Hyades K giants. Ap. J., 252, 162–167.ADSGoogle Scholar
  57. Gutiérrez-Morino, A, and Moreno, H. (1996). Spectroscopic observations of some D-type symbiotic stars. PAS Pacific, 108, 972–979.ADSGoogle Scholar
  58. Gutierrez-Moreno, A., Moreno, H., and Costa, E. (1999). Spectroscopic observations of some S-type symbiotic stars. PAS Pacific, 111, 571–586.ADSGoogle Scholar
  59. Hack, M., Engin, S., and Yilmaz, N. (1989). A study of the ultraviolet spectrum of VV Cephei. A. A., 235, 143–155.Google Scholar
  60. Hack, M. (1992). Binary stars, atmospheric eclipses. The Astronomy and Astrophysics Encyclopedia, Maran, S. P. (ed.), Van Nostland Reinhold, New York, 58–61.Google Scholar
  61. Hagen, W., Black, J. H., Dupree, A. K., and Holm, A. V. (1980). Ultraviolet spectroscopic observations of VV Cephei. Ap. J., 238, 203–209.ADSGoogle Scholar
  62. Haro, G. (1957). The possible connexion between T Taauri stars and UV Ceti stars. IAU Symp. No. 3, Non-Stable Stars, G. H. Herbig (ed.), Cambridge University Press, London, 26–30.Google Scholar
  63. Haro, G. and Morgan, W. (1953). Rapid variables in the Orion Nebula. Ap. J., 118, 16–17.ADSGoogle Scholar
  64. Haro, G. and Parsamian, E. (1969). A new “slow” flare star in Orion. Bol. Obs. Tonantzintla y Tacubaya, 5, 45–52.ADSGoogle Scholar
  65. Herbig, G. H. (1985). Chromospheric Hα emission in F8-G3 dwarfs, and its connection with the T Tauri stars. Ap. J., 289, 269–278.ADSGoogle Scholar
  66. Herbst, W. and Miller, J. R. (1989). Hα photometry of dwarf K and M stars: chromospheric activity. A. J., 97, 891–899.ADSGoogle Scholar
  67. Hoffmeister, C., Richter, G., and Wenzel, W. (1985). Pulsating stars (Chapter 2), Eruptive variables (Chapter 3). Variable Stars, Springer-Verlag, Berlin, Heiderberg, N.Y.Google Scholar
  68. Horne, K. (1991). Variability and structure of accretion disks in cataclysmic variables. Structure and Emission Properties of Accretion Disks, C. Bertaux, S. Collin-Suffrin, and J. P. Lasota (eds.), IAU Coll. No. 129, Paris Editions Frontieres, 3–18.Google Scholar
  69. Houdebine, E. R. Foing, B. H., and Rodono, M. (1990). Dynamics of flares on late-type dMe stars. I. Flare mass ejection and stellar evolution. A. A., 238, 249–255.Google Scholar
  70. Houdebine, E. R., Doyle, J. G., and Koscielecki, M. (1995). Observation and modeling of main sequence star chromospheres III. Differential analysis of hydrogen lines versus activity level in M dwarfs. A. A., 294, 773–791.Google Scholar
  71. Iben, I. and Tutukov, A. V. (1996). On the evolution of symbiotic stars and other binaries with accreting degenerate dwarfs. Ap. J. Suppl., 105, 145–180.ADSGoogle Scholar
  72. Ichimura, K., Shimizu, Y., Watanabe, E., and Okada, T. (1973). Continual photoelectric monitoring of flare stars, VIII: YZ CMi, AD Leo and UV Cet (1972). Tokyo Ast. Bull., Second Ser. No. 224, 2607–2612.Google Scholar
  73. Iijima, T, Strafella, F., Sabbadin, F., and Bianchini, A. (1994). High velocity and rapidly variable emission features in the spectra of RS Ophiuchi and CH Cygni. A. A., 283, 919–931.Google Scholar
  74. Ikeda, Y. and Tamura, S. (2000a). A new mass function of a symbiotic star, HBV 475. (V1329 Cyg). Proc. Pacific Rim Conf., Stellar Astrophysics, L. S. Cheng, H. F. Chau, K. C. Leung (eds.), Kluwer, Dordrecht, pp. 423–427.Google Scholar
  75. Ikeda, Y. and Tamura, S.(2000b). Spectroscopic observations of symbiotic stars. III. Radial velocity analysis of HBV 475. PAS Japan, 52, 589–599.ADSGoogle Scholar
  76. Illarionov, A. F., and Sunyaev, R. A. (1975). Why the number of galactic X-ray stars is so small? A. A., 39, 185–195.Google Scholar
  77. Ivison, R. J., Seaquist, E. R., Schwarz, H. E., Hughes, D. H., and Bode, M. F. (1995). Millimetre continuum emission from symbiotic stars. I. The measurements. M. N. R. A. S., 273, 517–527.ADSGoogle Scholar
  78. Joy, A. H. (1954). Spectroscopic observations of Mira Ceti, 1934–1952. Ap. J. Suppl., 1, 39–61.ADSGoogle Scholar
  79. Jura, M. and Helfand, D. J. (1984). X-rays from accretion of red giant winds. Ap. J., 287, 785–792.ADSGoogle Scholar
  80. Kaitchuck, R. H. and Honeycutt, R. K. (1982). A survey for gaseous disks in shortperiod Algol systems during primary eclipse. PASP, 94, 532–536.ADSGoogle Scholar
  81. Kaitchuck, R. H., Honeycutt, R. K., and Schlegel, E. M. (1985). A survey for transient accretion disks in short-period Algol systems. II. PASP, 97, 1178–1185.ADSGoogle Scholar
  82. Karovska, M. (1992). Mira’s companion(s). Complementary Approaches to Double and Multiple Star Research, H. A. McAlister and W. I. Hartkopf (eds.), IAU Coll. 135, ASP Conf. Ser., Vol. 32, San Francisco, CA, 558–560.Google Scholar
  83. Karovska, M., Raymond, J., and Guinan, E. (1996). Coordinated ROSAT and speckle observations of the Mira AB system. Technical report, Smithsonian Astrophys. Obs., Cambridge.Google Scholar
  84. Katsova, M. M. (1990). Balmer decrements of red dwarfs in the quiet state and during flares. Sov. Astron., 34, 614–620.ADSGoogle Scholar
  85. Kawabata, S., Saijo, K., Sato, H., and Saito, M. (1981). A spectroscopic study of VV Cephei during the 1976–78 eclipse. I. Observations of the Hα line. PAS Japan, 33, 177–188.ADSGoogle Scholar
  86. Kawabata, S. and Saito, M. (1997). Expanding atmosphere of the M-type supergiant in VV Cephei. PAS Japan, 49, 101–107.ADSGoogle Scholar
  87. Keenan, P.C. (1966). A catakogue of spectra of Mira variables of types Me and Se. Ap. J. Suppl., 13, 333–378.ADSGoogle Scholar
  88. Keenan, P. C., Garrison, R. F., and Deutch, A.J. (1974). Revised catalogue of spectra of Mia variables of types Me and Se. Ap. J. Suppl., 28, 271–307.ADSGoogle Scholar
  89. Kenyon, S.J. (1986). The Symbiotic Stars, Cambridge University Press, Cambridge, New York.Google Scholar
  90. Kenyon, S. J. (1992). Symbiotic Stars. The Astronomy and Astrophysics Encyclopedia, S. P. Maran (ed.), Van Nostrand Reinhold, New York, 794–797.Google Scholar
  91. Kenyon, S. J. and Truran, J. W. (1983). The outbursts of symbiotic novae. Ap. J., 273, 280–288.ADSGoogle Scholar
  92. Kharchenko, N., Kilpio, E., Malkov, O., and Schilback, E. (2003). Compiled catalog of stellar data of Miras. VizeR Online Data Catalogue, Originally published in 2002, A. A., 384, 925.Google Scholar
  93. Kippenhahn, R. and Weigert, A. (1967). Entwicklung in engen Doppelsternsystemen. I. Massenausyausch vor und nach Beendigung des zentralen Wasserstoff-Brennens. Zs. f. Ap., 65, 251–273.ADSGoogle Scholar
  94. Knapp, G. R. (1985). Mass loss from evolved stars. IV. The dust-to-gas ration in the envelopes of Mira variables and carbon stars. Ap. J., 293, 273–280.ADSGoogle Scholar
  95. Kneer, F. (1983). A possible explanation of the Wilson-Bappu relation and the chromospheric temperature rise in late-type stars. A. A., 128, 311–317.Google Scholar
  96. Kopal, Z. (1959). Close Binary Systems, Chapman & Hall, London.Google Scholar
  97. Kraft, R. P. (1959). The binary system nova DQ Herculis. II. An interpretation of the spectrum during the eclipse cycle. Ap. J., 130, 110–123.ADSGoogle Scholar
  98. Kukarkin, B. V. and Parenago, P.P. (1970). General Catalogue of Variable Stars (GCVS). Third edition, Akademia Nauk Moskva. (See Fouth edition 1988, Warren, Jr., W. H., National Space Science Data Center, NASA).Google Scholar
  99. Kunkel, W. E. (1970). On the spectra of stellar flares. Ap. J., 161, 503–518.ADSGoogle Scholar
  100. la Dous, C. (1991). New insights from a statistical analysis of IUE spectra of dwarf novae and nova-like stars. A. A., 252, 100–122.Google Scholar
  101. Lauterborn, D. (1969). White dwarf production in binary systems of large separation. Mass Loss from Stars, M. Hack (ed.), D. Reidel, Dordrecht, pp. 262–266.Google Scholar
  102. Leedjärv, L. and Mikolajewski, M. (1995). The long-period symbiotic binary CH Cygni. IV. High velocity spectral features as the result of a propeller action. A. A., 300, 189–199.Google Scholar
  103. Leung, K. C. (1992). Binary Stars, Contact. The Astronomy and Astrophysics Encyclopedia, Maran, S. P. (ed.), Van Nostrand Reinhold, New York, 63–65.Google Scholar
  104. Livio, M. and Truran, J. W. (1992). Type I supernovae and accretion-induced collapses from cataclysmic variables. Ap. J., 389, 695–703.ADSGoogle Scholar
  105. Lopez, J. A., Escalante, K., and Riesgo-Tirado, H. (2004). Links between symbiotic and planetary nebulae. Rev. Mex. A. A., 20, 226–227.ADSGoogle Scholar
  106. Luttermoser, D. G. and Bowen, G.H. (1992). NLTE synthetic spectra of the Mira-type variable S Car. Seventh Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, ASP Conf. Ser. Vol. 26, San Francisco, CA, 558–560.Google Scholar
  107. Luttermoser, D. G. and Castelaz, M.W. (2003). FUSE observations of a Mira variable star. The Future of Cool-Star Astrophysics: 12th Cambridge Workshop, A. Brown, G. M. Harper, and T. R. Ayres (eds.), University of Colorado, Boulder, 1042–1047.Google Scholar
  108. Maeder, A. (1987). Changes of surface chemistry for standard massive star evolution: Cartography in the HR diagram. A. A., 173, 247–262.Google Scholar
  109. Martinez-Pais, I. G., Giovannelli, F., Rossi, C., and Gaudenzi, S. (1994). An optical time-resolved spectroscopic study of SS Cygni. I. Quiescence. A. A., 291, 455–467.Google Scholar
  110. Martinez-Pais, I. G., Giovannelli, F., Rossi, C., and Gaudenzi, S. (1996). An optical time-resolved spectroscopic study of SS Cygni. II. Outburst. A. A., 308, 833–846.Google Scholar
  111. Mason, E., Skidmore, W., Howell, S. B., Ciardi, E. R., and Littlefair, S. (2000). Investigating the structure of the accretion disc in WZ Sge from multiwaveband timersolved spectroscopic observations. II. M. N. R. A. S., 318, 440–452.ADSGoogle Scholar
  112. McLaughlin, D. B. (1965). The behaviour of absorption systems in spectra of novae. Colloque International sur Novae, Supernovae, Novoides. CNRS, No. 121, Paris, 3–12.Google Scholar
  113. Meier, S. R., Kafatos, M., Fahey, R. P., and Michalitsianos, A. G. (1994). A farultraviolet atlas of symbiotic stars observed with IUE. I. The SWP range. Ap. J. Suppl., 94, 183–220.ADSGoogle Scholar
  114. Merrill, P. W. (1958). Symbiosis in astronomy: Introductory report. Etoiles a Raies D’emission. 8th International colloquium held in Liége, Inst. of Astrophysics, Belgium, pp. 436–448.Google Scholar
  115. Merrill, P. W. and Burwell, C.G. (1933). Catalogue and bibliography of stars of classes B and A whose spectra have bright hydrogen lines. Ap. J., 78, 87–140.ADSGoogle Scholar
  116. Mikolajewski, M., Mikolajewska, J., and Khudyakova, T. N. (1990). The long-period symbiotic binary CH Cyg. I. A hundred year’s history of variability. A. A., 235, 219–233.Google Scholar
  117. Mirzoyan, L. V. (1990). Flare stars in star clustiers, associations and the solar vicinity. Flare Stars in Star Clusters, Associations and the Solar Vicinity, L. V. Mirzoyan, B. R. Pettersen, and M. K. Tsvetkov (eds.), IAU Symp. No. 137, Kluwer, Dordrecht, 1–13.Google Scholar
  118. Mirzoyan, L.V. (1993). Flare stars and the evolution of red dwarf stars. Astrophysics, 36, 170–191.ADSGoogle Scholar
  119. Mirzoyan, L. V., Hambarian, V. V., Garibjanian, A. T., and Mirzoyan, A. L. (1995). Optical observations of flare stars in the Galaxy. Astrophysics, 38, 276–279.ADSGoogle Scholar
  120. Montes, D., Fernandez-Igueroa, M. J., Cornide, M., and DeCastro, E. (1996). The behaviour of the excess CaII H and K and Hεemissions in chromospherically active binaries. A. A., 312, 221–233.Google Scholar
  121. Morales-Rueda, L. and Marsh, T. R. (2002). Spectral atlas of dwarf novae in outburst. MNRAS, 332, 814–826.ADSGoogle Scholar
  122. Munari, U., Yudin, B. F., Taranova, O. G., Massone, G., Marang, F., and 4 co-authors (1992). UBVRI-JHKL photometric catalogue of symbiotic stars. A. A. Suppl., 93, 383–390.ADSGoogle Scholar
  123. Munari, U. and Zwitter, T. (2002). A multi-epoch spectrophotometric atlas of symbiotic stars. A. A., 383, 188–196.Google Scholar
  124. Nussbaumer, H., Schild, H. M., Vogel, M., and Schld, H. (1988). Relative C, N, O abundances in red giants, planetary nebulae, novae and symbiotic stars. A. A., 198, 179–186.Google Scholar
  125. Oliverson, N. A. and Anderson, Ch. M. (1982). Spectra of individual symbiotic stars. The Nature of Symbiotic Stars, M. Friedjung and R. Viotti (eds.), D. Reidel, Dordrecht, 71–82.Google Scholar
  126. Olson, E. C. and Etzel, P. B. (1995). Rapid Hα emission variationin accretion disks in long-period Algols. A. J., 109, 1308–1312.ADSGoogle Scholar
  127. Osaki, Y. (1974). An accretion model for the outburst of U Geminorum stars. PAS Japan, 26, 429–436.ADSGoogle Scholar
  128. Osaki, Y. (1996). Dwarf—nova outbursts. PASP, 108, 39–60.ADSGoogle Scholar
  129. Osten, R. A., Hawley, S. L., Allred, J., Johns-Krill, C. M., and Roark, Ch. (2005). From radio to X-ray: Flares on the dMe flare star EV lacertae. Ap. J., 621, 398–416.ADSGoogle Scholar
  130. Özeren, F. F., Doyle, J. G., and Jevremovic, D. (1999). The Wilson-Bappu relation for RS CVn stars. A. A., 350, 635–642.Google Scholar
  131. Parsamian, É. S. (1971). Slow flares in Pleiades. Astrophysics, 7, 326–330 (Astrofizika, 7, 547–555, 1971).ADSGoogle Scholar
  132. Payne-Gaposchkin, C. (1957). The Galactic Novae, North-Holland Publishing Company, Amsterdum.Google Scholar
  133. Peters, G. J. (1980). H-alpha observations of Algol-type interacting binary systems. Close Binary Stars: Observations and Interpretation, M. J. Plavec, D. M. Popper, and R. K. Ulrich (eds.). IAU Symp. No. 88, D. Reidel, Dordrecht, 287–290.Google Scholar
  134. Petit, M. (1982). Variable Stars (English ed., 1987), John-Wiley & Son.Google Scholar
  135. Pettersen, B. R. (1988). Atmospheric activity in the outer envelopes of cool dwarf stars. Activity in Cool Star Envelopes, O. Havnes, B. R. Pettersen, J. H. M. M. Schmitt, and J. E. Solheim (eds.), Kluwer, Dordrecht, 49–60.Google Scholar
  136. Plavec, M. and Polidan, R. S. (1976). The Algols, red spectra, Be stars, and even neutrions. Structure and Evolution of close Binary Systems, IAU Symp. No. 73, P. Eggleton, S. Mitton, and J. Whelan (eds.), D. Reidel, Dordrecht, p. 289.Google Scholar
  137. Ratering, C., Bruch, A., and Diaz, M. (1993). A spectroscopic study of the Z Camelopardalis type dwarf nova KT Persei. A. A., 268, 694–704.Google Scholar
  138. Richards, M. T. and Albright, G. E. (1999). Morphologies of Ha accretion regions in Algol systems. Ap. J. Suppl., 123, 537–626.ADSGoogle Scholar
  139. Ritter, H. (1987). Catalogue of cataclysmic binaries, low-mass X ray binaries and related objects. A. A. Suppl., 70, 335–367.ADSGoogle Scholar
  140. Robinson, E. L. (1975). Pre-eruption light curves of novae. A. J., 80, 515–524.ADSGoogle Scholar
  141. Rodono, M. (1990). Prospects for studies of UV Ceti-type flare stars. Flare Stars in Star Clusters, Associations and Solar Vicinity, L. V. Mirzoyan, B. R. Pettersen, and M. K. Tsvetkov (eds.), IAU Symp. No. 137, Kluwer, Dordrecht, 371–391.Google Scholar
  142. Rodono, M. (1994). RS CVn-type close binaries: a class of active stars suitable for MUSICOS campaigns. Proc. 4th Workshop on Multisite Continuous Spectroscopy, Huang, L., Zhai, D. S., Catala, C., and Foing, B. H. (eds.), European Space Research and Technology Centre, Noordwijk, 69–80.Google Scholar
  143. Rosino, L. and Iijima, T. (1987). The 1985 outburst of RS Ophiuchi. RS Ophiuchi (1985) and the Recurrent Nova Phenomenon, M. F. Bode (ed.), Utrecht VNU Science Press, Utrecht, 27–38.Google Scholar
  144. Saijo, K. (1981). A spectroscopic study of VV Cephei during the 1976–78 eclipse. II. Structure of the Hα emission envelope around the early-type component. PAS Japan, 33, 351–364.ADSGoogle Scholar
  145. Schmid, H. M. and Schild, H. (1990). Physical conditions and element abundances in the symbiotic novae V1016 Cyg, HM Sge and HBV 475. MNRAS, 246, 84–97.ADSGoogle Scholar
  146. Schwank, M., Schmutz, W., and Nussbaumer, H. (1997). Irradiated red giant atmospheres in S-type symbiotic stars. A. A., 319, 166–175.Google Scholar
  147. Seaquist, E. R., Taylor, A. R., and Button, S. (1984). A radio survey of symbiotic stars. Ap. J., 284, 202–210.ADSGoogle Scholar
  148. Seitter, W. C. (1990). Optical studies of classical novae in outburst. Physics of Clasical Novae, IAU Coll. No. 122, A. Cassatella and R. Viotti (eds.), Springer-Verlag, Dordrecht, 79–96.Google Scholar
  149. Shafter, A. W. and Hessman, F. V. (1988). A time-resolved spectroscopic study of the SU Ursae Majoris dwarf nova YZ Cancri. A. J., 95, 178–189.ADSGoogle Scholar
  150. Shafter, A. W., Hessman, F. V., and Zhang, E. H. (1988). Photometric and spectroscopic observations of the eclipsing nova-like variable PG 1030-590 (DW Ursae Majoris). Ap.J., 327, 248–264.ADSGoogle Scholar
  151. Shara, M. M. (1989) Recent progress in understanding the eruptions of classical novae. PASP, 101. 5–31.ADSGoogle Scholar
  152. Shawl, S. J. and Bord, D.B. (1991). A search for companions to Mira variables. Bull. Am. Ast. Soc., 23, 1380. Abstract 35.12.ADSGoogle Scholar
  153. Shore, S. N., Kenyon, S. J., Starrfield, S., and Sonneborn, G. (1996). On the interpretation of the ultraviolet spectraa of symbiotic stars and recurrent novae. II. The 1985 outburst of RS Ophiuchi. Ap. J., 456, 717–737.ADSGoogle Scholar
  154. Short, C. I. and Doyle, J. G. (1998). Chromospheric modelling of the Hα and Na I D lines in five M dwarfs of low to high activity level. A. A., 336, 613–625.Google Scholar
  155. Short, C. I., Byrne, P. B., and Panagi, P. M. (1998). The chromosphere of II Pegasi: multi-line modelling of an RS CVn star. A. A., 338, 191–199.Google Scholar
  156. Slavin, A. J., O’Brien, T. J., and Dunlop, J. S. (1995). A deep optical imaging study of the nebular remnants of classical novae. MNRAS, 276, 353–371.ADSGoogle Scholar
  157. Starrfield, S., Truran, J. W., Sparks, W. M., and Kutter, G. S. (1972). CNO abundances and hydrodynamic models of the nova outburst. Ap. J., 176, 169–176.ADSGoogle Scholar
  158. Starrfield, S., Sparks, W. M., and Truran, J. W. (1974). CNO abundances and hydrodynamic models of the nova outburst. II. 1.00 M sun models with enhanced carbon and oxygen. Ap. J. Suppl., 28, 247–270.ADSGoogle Scholar
  159. Stauffer, J. R. and Hartmann, L. W. (1986). Chromospheric activity, kinematics, and metalicities of nearby M dwarfs.(+) Ap. J. Suppl., 61, 531–568.ADSGoogle Scholar
  160. Stencel, E. R., Potter, D. E., and Bauer, W.H. (1993). Rapid mass-loss transients in VV Cephei. A. J., 105, 45–50.ADSGoogle Scholar
  161. Stickland, D. J., Kelly, B. D., Cooke, J. A., Coulson, I., Engelbrecht, C., Kilkenny, D., and Spencer-Johns, J. (1984). RZ Gru—A UX UMa ‘disc star’. MNRAS, 206, 819–831.ADSGoogle Scholar
  162. Strassmeier, K. G., Hall, D. S., Fekel, F. C., and Scheck, M. (1993). A catalog of chromospherically active binary stars. A. A. Suppl., 100, 173–225.ADSGoogle Scholar
  163. Strassmeier, K. G., Handler, G., Paunzen, E., and Rauth, M. (1994). Chromospheric activity in G and K giants and their rotation-activity relation. A. A., 281, 855–863.Google Scholar
  164. Tappert, C., Mennickent, R. E., Arenas, J., Matsumoto, K., and Hanvschuk, R. W. (2003). An atlas of line profile studies for SU UMa type cataclysmic variables. A. A., 408, 651–661.Google Scholar
  165. Vaughan, A. H., and Preston, G. W. (1980). A survey of Chromospheric CaII H and K emission in field stars of the Solar neighborhood. PASP, 92, 385–391.ADSGoogle Scholar
  166. Viotti, R. (1990). The symbiotic novae. Physics of Classical Novae, IAU Coll. 122, A. Cassatella and R. Viotti (eds.), Springer-Verlag, Dordrecht, 416–421.Google Scholar
  167. Vladilo, G., Moralo, P., Crivellari, L., Foing, B. H., Beckman, J. E., and Genova, R. (1987). Chromospheric Mg II h and k emissions free of interstellar contamination: Velocity structure in late-type dwarfs and giants. A. A., 185, 233–246.Google Scholar
  168. Walker, M. F. (1954). Nova DQ Herculis (1934): An eclipsing binary with very short period. PASP, 66, 230–232.ADSGoogle Scholar
  169. Walker, M. F. (1957). The extremely rapid light-variations of old novae and related objects. Non-Stable Stars. IAU Symposium, No.3. G. H. Herbig (ed.), Cambridge University Press, London, 46–56.Google Scholar
  170. Warner, B. (1995). Theories and Models of DN Outbursts. Cataclismic Variable Stars. Section 3.5.Google Scholar
  171. Webbink, R. F., Livio, M., Truran, W., and Orio, M. (1987). The nature of the recurrent novae. Ap. J., 314, 653–672.ADSGoogle Scholar
  172. Williams, R.E. (1980). Emission lines from the accretion disks of calaclysmic variables. Ap. J., 235, 939–944.ADSGoogle Scholar
  173. Williams, R. E. (1990). The ionization of novae ejecta. IAU Coll. No. 122, Physics of Classical Novae, A. Cassatella and R. Viotti (eds.), Springer-Verlag, Dordrecht, 215–227.Google Scholar
  174. Williams, R. E. (1992). The formation of novae spectra. A. J., 104, 725–733.ADSGoogle Scholar
  175. Wilson, O. C. (1959). Accuracy of absolute magnitudes derived from widths of H and K emission components. Ap. J., 130, 499–506.ADSGoogle Scholar
  176. Wilson, O. C. and Bappu, M. K. V. (1957). H and K emission in late type stars: Dependence of line width on luminosity and related topics. Ap. J., 125, 661–683.ADSGoogle Scholar
  177. Wood, B. E., Karovska, M., and Raymond, J. C. (2002). Analysis of H2 emission from Mira B in ultraviolet spectrum from the Hubble Space Telescope. Ap. J., 575, 1057–1077.ADSGoogle Scholar
  178. Wood, B. E. and Karovska, M. (2003). FUSE observations of molecular hydrogen emission from Mira B. BAAS, 203, #84.09.Google Scholar
  179. Yamashita, Y. and Maehara, H. (1978). Mass loss from Mira Ceti, PAS Japan, 30, 409–417.ADSGoogle Scholar
  180. Yamashita, Y., and Maehara, H. (1979). A binary model for CH Cygni. PAS Japan, 31, 307–316.Google Scholar
  181. Young, A., Skumanich, A., Stauffer, J. R., Bopp, B. W., and Harlan, E. (1989). A study of excess H-alpha emission in chromospherically active M dwarf stars. Ap. J., 344, 427–436.ADSGoogle Scholar
  182. Zhai, D.S., Foing, B. H., Cutispoto, G., Zhang, R. X., Catala, C., Char, S., Zhang, X. B., and Jankov, S. (1994). Multisite continuous spectroscopy. III. Photometric analysis and spot modelling of the light curves of HR 1099 before and after the 1989 optical flares. A. A., 282, 168–178.Google Scholar
  183. Zhai, D. S. and Zhang, X. B. (1996). Ha spectroscopy of the chromospherically active binary HR 1099 in 1993. A. A., 309, 530–543.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Tomokazu Kogure
    • 1
  • Kam-Ching Leung
    • 2
    • 3
    • 4
  1. 1.Kyoto UniversityYawata, KyotoJapan
  2. 2.Institute of Astronomy and AstrophysicsAcademia SinicaTaiwan, China
  3. 3.Department of Physics & AstronomyUniversity of Nebraska-LincolnLincolnUSA
  4. 4.Brace LaboratoryUSA

Personalised recommendations