# Formation of Emission Lines

• Tomokazu Kogure
• Kam-Ching Leung
Part of the Astrophysics and Space Science Library book series (ASSL, volume 342)

## Abstract

When we consider the radiation fields of stellar envelopes exposed to the photospheric UV radiation, the basic feature is their anisotropic nature. The degree of anisotropy is expressed by the geometrical dilution factor, W, defined as the ratio of the solid angle, ω, of the photosphere seen from a point of interest, P, relative to the total solid angle 4π. Thus we have
$$W = \frac{\varpi } {{4\pi }}.$$
(4.1.1)
If point P is located at a distance r from the star’s center, and θ be the angle subtended by the stellar radius at point P, as seen in Figure 4.1, the solid angle ω is expressed as
$$\omega = 2\pi \int_0^\theta {\sin \theta d\theta = 2\pi \left( {1 - \cos \theta } \right)} .$$
(4.1.2)
Then the dilution factor is given by
$$W = \frac{1} {2}\left( {1 - \cos \theta } \right).$$
(4.1.3)
Converting cosθ to the ratio of stellar radius R and distance r, we have
$$W = \frac{1} {2}\left\{ {1 - \sqrt {1 - \left( {\frac{R} {r}} \right)^2 } } \right\}.$$
(4.1.4)
In case of rR, we have
$$W \sim \frac{1} {4}\frac{{R^2 }} {{r^2 }}.$$
(4.1.5)
The value of W ranges from 0.5 at the stellar surface (r = R) to 10−15 in extended planetary nebulae. In stellar envelopes the typical value of W is in between 10−1 and 10−5. The relation between W and x = r/R is partly given in Table 4.1.

## Keywords

Emission Line Optical Depth Line Profile Planetary Nebula Stellar Disk
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

1. Kitchin, C.R. (1982). Early Emission Line Stars. Adam Hilger Ltd., Bristol.Google Scholar
2. Williams, R. and Livoi, M. (eds.) (1995). The Analysis of Emission Lines. Cambridge University Press, Cambridge.Google Scholar

## References

1. Aller, L. H. (1956). Chapter IV, Section 2. The Balmer decrement. Gaseous Nebulae. Chapman & Hall, London.Google Scholar
2. Anderson, L. S. and Athay, R.G. (1989). Model solar chromosphere with prescibed heating. Ap. J., 346, 1010–1018.
3. Baker, J. G. and Menzel, D. (1938). Physical processes in gaseous nebulae. III. The Balmer decrements. Ap. J., 88, 52–64.
4. Baker, J. G. Menzel, D., and Aller, L.H. (1938). Physical processes in gaseous nebulae. V. Electron temperature. Ap. J., 88, 422–428.
5. Böhm, T. and Catala, C. (1995). Rotation, winds and active phenomena in Herbig Ae/Be stars. A. A., 301, 155–169.Google Scholar
6. Bowen, I. S. (1935). The spectrum and composition of the gaseous nebulae. Ap. J., 81, 1–16.
7. Brocklehurst, M. (1971). Calculations of the level populations for the low levels of hydrogenic ions in gaseous nebulae. M. N. R. A. S., 153, 471–490.
8. Bruevich, E. A., Katsova, M. M., and Livshits, M. A. (1990) Kinetics of hydrogen in the chromospheres of red dwarfs. Sov. Ast., 34, 60–65.
9. Castor, J.I. 1970. Spectral line formation in WR envelopes. M. N. R. A. S., 149, 111–127.Google Scholar
10. Castor, J. I. & van Blerkom, D. (1970). Excitation of HeII in WR envelopes. Ap. J., 161, 485–502.
11. Castor, J. I. and Lamers, H. J. G. L. M. (1979). An atlas of theoretical P Cyg profiles. Ap. J. Suppl., 39, 481–511.
12. Cram, L. E. and Giampapa, M.S. (1987). Formation of chromospheric lines in cool dwarf stars. Ap. J., 323, 316–324.
13. Cuntz, M., Rammacher, W., and Ulmschneider, P. (1994). Chromospheric heating and metal deficiency in cool giants: Theoretical results versus observations. Ap. J., 432, 690–700.
14. Drake, S. A. and Ulrich, R.K. (1980). The emission-line spectrum from a slab of hydrogen at moderate to high densities. Ap. J. Suppl., 42, 351–383.
15. Elitzur, M., Ferland, G. J., Mathews, S. G., and Shields, G.A. (1983). Stimulated emission and flat Balmer decrements in cataclysmic variables. Ap. J., 272, L55–L59.
16. Emerson, D. (1996). Interpreting Astronomical Spectra. John Wiley & Sons, West Sussex, UK.Google Scholar
17. Gutierrez-Moreno, A. and Moreno, H. (1996). Spectroscopic observations of some D-type symbiotic stars. P. A. S. Pacific, 108, 972–979.
18. Hamann, W.R. (1985). Line formation in expanding atmospheres: Accurate solution using approximate lambda operators. A. A., 148, 364–368.Google Scholar
19. Hamann, W. R. and Schmutz, W. (1987). Computed HeII spectra for WR stars: a grid of models. A. A., 174, 173–182.Google Scholar
20. Hamann, W. R., Wessolowski, U., and Koesterke, L. (1994). Non-LTE spectral analysis of WR stars.: the nitrogen spectrum of the WN6 prototype HD 192163 (WR136). A. A., 281, 184–198.Google Scholar
21. Hummer, D.G. (1964). The mean number of scatterings by a resonance-line photon. Ap. J., 140, 276–281.
22. Hummer, D. G. and Rybicki, G.B. (1982). A unified treatment of escape probabilities in static and moving media. I. Plane geometry. Ap. J., 254, 767–779.
23. Jeffery, D. (1990). The Sobolev-P method.III. The Sobolev-P method generalized for three-dimensional systems. Ap. J., 352, 267–278.
24. Kogure, T. (1959a). The radiation field and theoretical Balmer decrements of Be stars. I. P. A. S Japan, 11, 127–137.
25. Kogure, T. (1959b). The radiation field and theoretical Balmer decrements of Be stars. II. P. A. S Japan, 11, 278–291.
26. Kogure, T. (1961). The radiation field and theoretical Balmer decrements of Be stars. III. P. A. S Japan, 13, 335–360.
27. Kogure, T. (1969). Contribution à l’étude des profils d’émission d’étoiles Be dites “Pole-on.” A. A.,1, 253–269.Google Scholar
28. Kogure, T., Hirata, R., and Asada, Y. (1978). On the formation of hydrogen shell spectrum and the envelopes of some shell stars. P. A. S Japan, 30, 385–407.
29. Lamers, H. J. G. L. M., Cerruti-Sola, M., and Perinotto, M. (1987). The “SEI” method for accurate and efficient calculations of line profiles in spherically symmetric stellar winds. Ap. J., 314, 726–738.
30. Marlborough, J. M. (1969). Models for the envelopes of Be stars. Ap. J., 156, 135–155.
31. Marsh, T. R. (2001). Doppler tomography. Astrotomography, Indirect Imaging Methods in Observational Astronomy, H. M. J. Boffin, D. Steeghs, and J. Cruypers (eds.), Lecture Notes in Physics, 573, 1–27.Google Scholar
32. Marsh, T. R. and Horne, K. (1988). Images of accretion discs — II. Doppler tomography. M. N. R. A. S., 235, 269–286.
33. Mauas, P. J. D., Falchi, A., Pasquini, L., and Pallavicini, R. (1997). Chromospheric models of dwarf M stars. A. A., 326, 249–256.Google Scholar
34. Mendoza, C. (1983). Recent advances in atomic calculation and experiments of interest in the study of planetary nebulae. Planetary Nebulae, IAU Symp., No. 103, D. R. Flower (ed.), D. Reidel Publ. Co., Dordrecht, 143–172.Google Scholar
35. Menzel, D. H. and Baker, J. G. (1937). Physical processes in gaseous nebulae. II. Thoery of the Balmer decrement. Ap. J., 86, 70–77.
36. Mihalas, D. (1978). Stellar Atmospherres, 2nd edition. Freeman & Comp. San Francisco.Google Scholar
37. Mihalas, D., Kunasz, P. B., and Hummer, D. G. (1975). Solution of the co-moving frame equation of tranfer in spherically symmetric flows. I. Computational method for equivalent-two-level-atom source functions. Ap. J., 202, 465–489.
38. Mihalas, D. and Kunasz, P. B. (1978). Solution of the comoving-frame equation of transfer in spherically symmetric flows. V. Multilevel atoms. Ap. J., 219, 635–653.
39. Miyamoto, S. (1949). On the radiation field of Be stars. I. Jap. J. Ast., 1, 17–25.Google Scholar
40. Miyamoto, S. (1952a). On the radiation field of Be stars. II. P. A. S. Japan, 4, 1–10.
41. Miyamoto, S. (1952b). On the radiation filed of Be stars. III. Theoretical Balmer decrements. P. A. S. Japan, 4, 28–36.
42. Mullan, D. J. and Cheng, Q. Q. (1993). MgII and Lyα fluxes in M dwarfs: Evaluation of an acoustic model. Ap. J., 412, 312–323.
43. Papkalla, R. (1995). Line formation in accretion disks. 3D comoving frame calculations. A.A. 295, 551–564.Google Scholar
44. Pottasch, S. R. (1960). Balmer decrements: The diffuse nebulae. Ap. J., 131, 202–214.
45. Pottasch, S. R. (1961). Balmer decrements: II. The Be stars. Annales d’Astrophys., 24, 159–167.
46. Pottasch, S. R. (1984). Planetary Nebulae. D. Reidel Dordrecht.Google Scholar
47. Rons, N., Runacres, M., and Blomme, R. (1992). Comoving frame calculations for λ-Cephei. Nonisotropic and variable outflows from stars, ASP Conf. Ser. 22 L. Drissen, C. Leitherer, and A. Nota (eds.), 199–202.Google Scholar
48. Rosseland, S. (1936). Theory of radiative transformations in nebulae. Chapter 22 Theoretical Astrophysics. Clarendon Press. Oxford.Google Scholar
49. Rybicki, G. B. (1972). A novel approach to the solution of multilevel transfer problems. Line Formation in the Presence of Magnetic Fields, R. G. Athay, L. L. House, and G. Newkirk, Jr. (eds.). High altitude observatory, Boulder, CO., p. 145.Google Scholar
50. Schmitz, F. and Ulmschneider, P. (1980). Theoretical stellar chromospheres of late type stars. A.A., 84, 191–199.Google Scholar
51. Schrijver, C. J. (1983). Coronal activity in F, G, K type stars. A. A., 127, 289–296.Google Scholar
52. Schrijver, C. J. (1987). Magnetic structure in cool stars. XI. Relation between radiative fluxes measuring stellar activity, and the evidence for two components in stellar chromospheres. A.A., 172, 111–123.Google Scholar
53. Simon, T., Drake, S. A., and Kim, P. (1995). The X ray emission of A type stars. P.A. S.P., 107, 1034–1041.
54. Simon, T. and Landsman, W. B. (1991). The onset of chromospheric activity among A and F stars. Ap. J., 380, 200–207.
55. Simon, T. and Landsman, W. B. (1997). High chromospheres of late A stars. Ap. J., 483, 435–438.
56. Sobolev, V. V. (1947). Moving Envelopes of Stars (in Russian). English translation, 1960. Harvard University Press, MA.Google Scholar
57. Stirpe, G. M. (1991). Broad emission lines in active galactic nuclei. A. A., 247, 3–10.Google Scholar
58. Ulmschneider, P. (1991). Acoustic heating. Mechanisms of Chromospheric and Coronal Heating. P. Ulmschneider, E. R. Priest, and R. Rosner (eds.), Springer-Verlag, Berlin, pp. 328–343.Google Scholar
59. Werner, K. and Husfeld, D. (1985). Multi-level non-LTE line formation calculation using approximate Λ-operators. A. A., 148, 417–422.Google Scholar
60. Woolley, R.v.d.R. and Stibbs, D. W. N. (1953). Chapter III, The integral equations of radiative equilibrium: Exact solutions. The Outer Layers of a Star. Clarendon Press, Oxford, pp. 30–51.Google Scholar

## Authors and Affiliations

• Tomokazu Kogure
• 1
• Kam-Ching Leung
• 2
• 3
• 4
1. 1.Kyoto UniversityYawata, KyotoJapan
2. 2.Institute of Astronomy and AstrophysicsAcademia SinicaTaiwan, China
3. 3.Department of Physics & AstronomyUniversity of Nebraska-LincolnLincolnUSA
4. 4.Brace LaboratoryUSA