Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 342))

  • 851 Accesses

Abstract

When we consider the radiation fields of stellar envelopes exposed to the photospheric UV radiation, the basic feature is their anisotropic nature. The degree of anisotropy is expressed by the geometrical dilution factor, W, defined as the ratio of the solid angle, ω, of the photosphere seen from a point of interest, P, relative to the total solid angle 4π. Thus we have

$$ W = \frac{\varpi } {{4\pi }}. $$
((4.1.1))

If point P is located at a distance r from the star’s center, and θ be the angle subtended by the stellar radius at point P, as seen in Figure 4.1, the solid angle ω is expressed as

$$ \omega = 2\pi \int_0^\theta {\sin \theta d\theta = 2\pi \left( {1 - \cos \theta } \right)} . $$
((4.1.2))

Then the dilution factor is given by

$$ W = \frac{1} {2}\left( {1 - \cos \theta } \right). $$
((4.1.3))

Converting cosθ to the ratio of stellar radius R and distance r, we have

$$ W = \frac{1} {2}\left\{ {1 - \sqrt {1 - \left( {\frac{R} {r}} \right)^2 } } \right\}. $$
((4.1.4))

In case of rR, we have

$$ W \sim \frac{1} {4}\frac{{R^2 }} {{r^2 }}. $$
((4.1.5))

The value of W ranges from 0.5 at the stellar surface (r = R) to 10−15 in extended planetary nebulae. In stellar envelopes the typical value of W is in between 10−1 and 10−5. The relation between W and x = r/R is partly given in Table 4.1.

Dilution factor at point P is defined as the ratio of solid angle subtended to the photospheric disk, relative to the whole solid angel 4π.

The relation between the dilution factor W and x = r/R

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Kitchin, C.R. (1982). Early Emission Line Stars. Adam Hilger Ltd., Bristol.

    Google Scholar 

  • Williams, R. and Livoi, M. (eds.) (1995). The Analysis of Emission Lines. Cambridge University Press, Cambridge.

    Google Scholar 

References

  • Aller, L. H. (1956). Chapter IV, Section 2. The Balmer decrement. Gaseous Nebulae. Chapman & Hall, London.

    Google Scholar 

  • Anderson, L. S. and Athay, R.G. (1989). Model solar chromosphere with prescibed heating. Ap. J., 346, 1010–1018.

    Article  ADS  Google Scholar 

  • Baker, J. G. and Menzel, D. (1938). Physical processes in gaseous nebulae. III. The Balmer decrements. Ap. J., 88, 52–64.

    Article  MATH  ADS  Google Scholar 

  • Baker, J. G. Menzel, D., and Aller, L.H. (1938). Physical processes in gaseous nebulae. V. Electron temperature. Ap. J., 88, 422–428.

    Article  MATH  ADS  Google Scholar 

  • Böhm, T. and Catala, C. (1995). Rotation, winds and active phenomena in Herbig Ae/Be stars. A. A., 301, 155–169.

    Google Scholar 

  • Bowen, I. S. (1935). The spectrum and composition of the gaseous nebulae. Ap. J., 81, 1–16.

    Article  MATH  ADS  Google Scholar 

  • Brocklehurst, M. (1971). Calculations of the level populations for the low levels of hydrogenic ions in gaseous nebulae. M. N. R. A. S., 153, 471–490.

    ADS  Google Scholar 

  • Bruevich, E. A., Katsova, M. M., and Livshits, M. A. (1990) Kinetics of hydrogen in the chromospheres of red dwarfs. Sov. Ast., 34, 60–65.

    ADS  Google Scholar 

  • Castor, J.I. 1970. Spectral line formation in WR envelopes. M. N. R. A. S., 149, 111–127.

    Google Scholar 

  • Castor, J. I. & van Blerkom, D. (1970). Excitation of HeII in WR envelopes. Ap. J., 161, 485–502.

    Article  ADS  Google Scholar 

  • Castor, J. I. and Lamers, H. J. G. L. M. (1979). An atlas of theoretical P Cyg profiles. Ap. J. Suppl., 39, 481–511.

    Article  ADS  Google Scholar 

  • Cram, L. E. and Giampapa, M.S. (1987). Formation of chromospheric lines in cool dwarf stars. Ap. J., 323, 316–324.

    Article  ADS  Google Scholar 

  • Cuntz, M., Rammacher, W., and Ulmschneider, P. (1994). Chromospheric heating and metal deficiency in cool giants: Theoretical results versus observations. Ap. J., 432, 690–700.

    Article  ADS  Google Scholar 

  • Drake, S. A. and Ulrich, R.K. (1980). The emission-line spectrum from a slab of hydrogen at moderate to high densities. Ap. J. Suppl., 42, 351–383.

    Article  ADS  Google Scholar 

  • Elitzur, M., Ferland, G. J., Mathews, S. G., and Shields, G.A. (1983). Stimulated emission and flat Balmer decrements in cataclysmic variables. Ap. J., 272, L55–L59.

    Article  ADS  Google Scholar 

  • Emerson, D. (1996). Interpreting Astronomical Spectra. John Wiley & Sons, West Sussex, UK.

    Google Scholar 

  • Gutierrez-Moreno, A. and Moreno, H. (1996). Spectroscopic observations of some D-type symbiotic stars. P. A. S. Pacific, 108, 972–979.

    Article  ADS  Google Scholar 

  • Hamann, W.R. (1985). Line formation in expanding atmospheres: Accurate solution using approximate lambda operators. A. A., 148, 364–368.

    Google Scholar 

  • Hamann, W. R. and Schmutz, W. (1987). Computed HeII spectra for WR stars: a grid of models. A. A., 174, 173–182.

    Google Scholar 

  • Hamann, W. R., Wessolowski, U., and Koesterke, L. (1994). Non-LTE spectral analysis of WR stars.: the nitrogen spectrum of the WN6 prototype HD 192163 (WR136). A. A., 281, 184–198.

    Google Scholar 

  • Hummer, D.G. (1964). The mean number of scatterings by a resonance-line photon. Ap. J., 140, 276–281.

    Article  ADS  Google Scholar 

  • Hummer, D. G. and Rybicki, G.B. (1982). A unified treatment of escape probabilities in static and moving media. I. Plane geometry. Ap. J., 254, 767–779.

    Article  ADS  Google Scholar 

  • Jeffery, D. (1990). The Sobolev-P method.III. The Sobolev-P method generalized for three-dimensional systems. Ap. J., 352, 267–278.

    Article  ADS  Google Scholar 

  • Kogure, T. (1959a). The radiation field and theoretical Balmer decrements of Be stars. I. P. A. S Japan, 11, 127–137.

    ADS  Google Scholar 

  • Kogure, T. (1959b). The radiation field and theoretical Balmer decrements of Be stars. II. P. A. S Japan, 11, 278–291.

    ADS  Google Scholar 

  • Kogure, T. (1961). The radiation field and theoretical Balmer decrements of Be stars. III. P. A. S Japan, 13, 335–360.

    ADS  Google Scholar 

  • Kogure, T. (1969). Contribution à l’étude des profils d’émission d’étoiles Be dites “Pole-on.” A. A.,1, 253–269.

    Google Scholar 

  • Kogure, T., Hirata, R., and Asada, Y. (1978). On the formation of hydrogen shell spectrum and the envelopes of some shell stars. P. A. S Japan, 30, 385–407.

    ADS  Google Scholar 

  • Lamers, H. J. G. L. M., Cerruti-Sola, M., and Perinotto, M. (1987). The “SEI” method for accurate and efficient calculations of line profiles in spherically symmetric stellar winds. Ap. J., 314, 726–738.

    Article  ADS  Google Scholar 

  • Marlborough, J. M. (1969). Models for the envelopes of Be stars. Ap. J., 156, 135–155.

    Article  ADS  Google Scholar 

  • Marsh, T. R. (2001). Doppler tomography. Astrotomography, Indirect Imaging Methods in Observational Astronomy, H. M. J. Boffin, D. Steeghs, and J. Cruypers (eds.), Lecture Notes in Physics, 573, 1–27.

    Google Scholar 

  • Marsh, T. R. and Horne, K. (1988). Images of accretion discs — II. Doppler tomography. M. N. R. A. S., 235, 269–286.

    ADS  Google Scholar 

  • Mauas, P. J. D., Falchi, A., Pasquini, L., and Pallavicini, R. (1997). Chromospheric models of dwarf M stars. A. A., 326, 249–256.

    Google Scholar 

  • Mendoza, C. (1983). Recent advances in atomic calculation and experiments of interest in the study of planetary nebulae. Planetary Nebulae, IAU Symp., No. 103, D. R. Flower (ed.), D. Reidel Publ. Co., Dordrecht, 143–172.

    Google Scholar 

  • Menzel, D. H. and Baker, J. G. (1937). Physical processes in gaseous nebulae. II. Thoery of the Balmer decrement. Ap. J., 86, 70–77.

    Article  MATH  ADS  Google Scholar 

  • Mihalas, D. (1978). Stellar Atmospherres, 2nd edition. Freeman & Comp. San Francisco.

    Google Scholar 

  • Mihalas, D., Kunasz, P. B., and Hummer, D. G. (1975). Solution of the co-moving frame equation of tranfer in spherically symmetric flows. I. Computational method for equivalent-two-level-atom source functions. Ap. J., 202, 465–489.

    Article  ADS  Google Scholar 

  • Mihalas, D. and Kunasz, P. B. (1978). Solution of the comoving-frame equation of transfer in spherically symmetric flows. V. Multilevel atoms. Ap. J., 219, 635–653.

    Article  ADS  Google Scholar 

  • Miyamoto, S. (1949). On the radiation field of Be stars. I. Jap. J. Ast., 1, 17–25.

    Google Scholar 

  • Miyamoto, S. (1952a). On the radiation field of Be stars. II. P. A. S. Japan, 4, 1–10.

    MathSciNet  ADS  Google Scholar 

  • Miyamoto, S. (1952b). On the radiation filed of Be stars. III. Theoretical Balmer decrements. P. A. S. Japan, 4, 28–36.

    ADS  Google Scholar 

  • Mullan, D. J. and Cheng, Q. Q. (1993). MgII and Lyα fluxes in M dwarfs: Evaluation of an acoustic model. Ap. J., 412, 312–323.

    Article  ADS  Google Scholar 

  • Papkalla, R. (1995). Line formation in accretion disks. 3D comoving frame calculations. A.A. 295, 551–564.

    Google Scholar 

  • Pottasch, S. R. (1960). Balmer decrements: The diffuse nebulae. Ap. J., 131, 202–214.

    Article  ADS  Google Scholar 

  • Pottasch, S. R. (1961). Balmer decrements: II. The Be stars. Annales d’Astrophys., 24, 159–167.

    ADS  Google Scholar 

  • Pottasch, S. R. (1984). Planetary Nebulae. D. Reidel Dordrecht.

    Google Scholar 

  • Rons, N., Runacres, M., and Blomme, R. (1992). Comoving frame calculations for λ-Cephei. Nonisotropic and variable outflows from stars, ASP Conf. Ser. 22 L. Drissen, C. Leitherer, and A. Nota (eds.), 199–202.

    Google Scholar 

  • Rosseland, S. (1936). Theory of radiative transformations in nebulae. Chapter 22 Theoretical Astrophysics. Clarendon Press. Oxford.

    Google Scholar 

  • Rybicki, G. B. (1972). A novel approach to the solution of multilevel transfer problems. Line Formation in the Presence of Magnetic Fields, R. G. Athay, L. L. House, and G. Newkirk, Jr. (eds.). High altitude observatory, Boulder, CO., p. 145.

    Google Scholar 

  • Schmitz, F. and Ulmschneider, P. (1980). Theoretical stellar chromospheres of late type stars. A.A., 84, 191–199.

    Google Scholar 

  • Schrijver, C. J. (1983). Coronal activity in F, G, K type stars. A. A., 127, 289–296.

    Google Scholar 

  • Schrijver, C. J. (1987). Magnetic structure in cool stars. XI. Relation between radiative fluxes measuring stellar activity, and the evidence for two components in stellar chromospheres. A.A., 172, 111–123.

    Google Scholar 

  • Simon, T., Drake, S. A., and Kim, P. (1995). The X ray emission of A type stars. P.A. S.P., 107, 1034–1041.

    Article  ADS  Google Scholar 

  • Simon, T. and Landsman, W. B. (1991). The onset of chromospheric activity among A and F stars. Ap. J., 380, 200–207.

    Article  ADS  Google Scholar 

  • Simon, T. and Landsman, W. B. (1997). High chromospheres of late A stars. Ap. J., 483, 435–438.

    Article  ADS  Google Scholar 

  • Sobolev, V. V. (1947). Moving Envelopes of Stars (in Russian). English translation, 1960. Harvard University Press, MA.

    Google Scholar 

  • Stirpe, G. M. (1991). Broad emission lines in active galactic nuclei. A. A., 247, 3–10.

    Google Scholar 

  • Ulmschneider, P. (1991). Acoustic heating. Mechanisms of Chromospheric and Coronal Heating. P. Ulmschneider, E. R. Priest, and R. Rosner (eds.), Springer-Verlag, Berlin, pp. 328–343.

    Google Scholar 

  • Werner, K. and Husfeld, D. (1985). Multi-level non-LTE line formation calculation using approximate Λ-operators. A. A., 148, 417–422.

    Google Scholar 

  • Woolley, R.v.d.R. and Stibbs, D. W. N. (1953). Chapter III, The integral equations of radiative equilibrium: Exact solutions. The Outer Layers of a Star. Clarendon Press, Oxford, pp. 30–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kogure, T., Leung, KC. (2007). Formation of Emission Lines. In: The Astrophysics of Emission-Line Stars. Astrophysics and Space Science Library, vol 342. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68995-1_4

Download citation

Publish with us

Policies and ethics