Advertisement

Dynamic Processes in Stellar Atmospheres

  • Tomokazu Kogure
  • Kam-Ching Leung
Part of the Astrophysics and Space Science Library book series (ASSL, volume 342)

Abstract

Convection is a form of energy transport. In stellar interiors, energy can be transported by convective current in addition to radiative flow. Convection layers appear in the intermediate- to late-type stars and play important roles as the source of mechanical energy that heats up outer atmospheres of these stars.

Keywords

Shock Wave Solar Wind Shock Front Accretion Disk Stellar Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  1. Bianchi, L. and Gilmozzi, R. (eds.) (1988). Mass Outflow from Stars and Galactic Nuclei. Kluwer, Netherlands.Google Scholar
  2. Hartmann, L. (1998). Accretion Processes in Star Formation. bridge University Press, Cambridge.Google Scholar
  3. Lamers, H. J. G. L. M. and Cassinelli, J. P. (1999). Introduction to Stellar Winds. Cambridge University Press, Cambridge.Google Scholar

References

  1. Abbott, D.C. (1980). The theory of radiatively driven stellar winds. I. A physical interpretation. Ap. J., 242, 1183–1207.CrossRefADSGoogle Scholar
  2. Abbott, D. C. (1982). The line acceleraton. Ap. J., 259, 282–301, ibid. II.CrossRefADSGoogle Scholar
  3. Armitage, P. J. and Livio, M. (1996). Accretion disks in interacting binaries: Simulations of the stream-disk impact. Ap. J., 470, 1024–1032.CrossRefADSGoogle Scholar
  4. Belcher, J. W. and MacGregor, K. B. (1976). Magnetic acceleration of winds from solar-type stars. Ap. J., 210, 498–507.CrossRefADSGoogle Scholar
  5. Bertschinger, E. and Chevalier, R. A. (1985). A periodic shock wave model for Mira variable atmospheres. Ap. J., 299, 167–190.CrossRefADSGoogle Scholar
  6. Bohn, H. U. (1984). Generation of acoustic energy from convection zones of late-type stars. A.A., 136, 338–350.Google Scholar
  7. Brandt, J. C., Wolff, C., and Cassinelli, J. P. (1969). Interplanetary gas. XVI. A calculation of the angular momentum of the Solar wind. Ap. J., 156, 1117–1124.CrossRefADSGoogle Scholar
  8. Carlberg, R. G. (1980). The instability of radiation-deriven stellar winds. Ap. J., 241, 1131–1140.CrossRefADSGoogle Scholar
  9. Castor, J., Abbott, D., and Klein, P. (1975). Radiation-driven winds of Of stars. Ap. J., 195, 157–174.CrossRefADSGoogle Scholar
  10. Cuntz, M. (1990). On the generation of mass loss in cool giant stars due to propagating shock waves. Ap. J., 353, 255–264.CrossRefADSGoogle Scholar
  11. Dominik, C. (1990). Dust driven mass loss in HR diagram. Rev. Modern Astron., 3, 199–208.ADSGoogle Scholar
  12. Feldmeier, A., Puls, J., Reile, C., Pauldrach, A. W. A., Kudnitzki, R. P., and Owocki, S.P. (1995). Shocks and shells in hot star winds. Ap. Sp. Sci, 233, 293–299.CrossRefADSGoogle Scholar
  13. Gail, H. P. (1990). Winds of late-type Stars. Rev. Modern Astron., 3, 156–173.ADSGoogle Scholar
  14. Gail, H. P. and Sedlmayer, E. (1987). Dust formation in stellar winds. V. The minimum mass loss rate for dust-driven winds. A.A., 177, 186–192.Google Scholar
  15. Garmany, C. D. and Conti, P. S. (1984). Mass loss in O-type stars: Parameters which affect it. Ap. J., 284, 705–711.CrossRefADSGoogle Scholar
  16. Gillet, D. and Lafon, J. P. J. (1983). On radiative shocks in atomic and molecular stellar atmospheres. I. A.A., 128, 53–63.Google Scholar
  17. Harrop-Allin, M. K. and Warner, B. (1996). Accretion disc radii in eclisping cataclysmic variables. M. N. R. A. S., 279, 219–228.ADSGoogle Scholar
  18. Hartmann, L. (1998). Accretion Processes in Star Formation. Cambridge University Press, Cambridge.Google Scholar
  19. Hartmann, L. and MacGregor, K. B. (1980). Momentum and energy deposition in late-type stellar atmospheres and winds. Ap. J., 242, 260–282.CrossRefADSGoogle Scholar
  20. Hearn, A.G. (1975). The energy balance and mass loss of stellar coronae. A.A., 40, 355–364.Google Scholar
  21. Holzer, T.E. (1987). Theory of winds from cool stars, in Circumstellar Matter, Proc. IAU Symp. No. 122, I. Appenzeller and C. Jordan (eds.), D. Reidel Publ. Co., pp. 289–306.Google Scholar
  22. Holzer, T. E., Flå, T., and Leer, E. (1983). Alfvén waves in stellar winds. Ap. J., 275, 808–835.CrossRefADSGoogle Scholar
  23. Iben Jr., I., Tutukov, A. V., and Yungelson, L. R. (1995). A model of the galactic X-ray binary population. I. High-mass X-ray binaries. Ap. J. Suppl., 100, 217–231.CrossRefADSGoogle Scholar
  24. Kippenhahn, R. (1973). Chromospheric activity and stellar evolution. Stellar Chromospheres, Proc. IAU Colloq., S. D. Jordan and E. H. Avrett (eds.), NASA, Washington, D.C., 265–278.Google Scholar
  25. Knapp, G.R. and Morris, M. (1985). Mass loss from evolved stars. III. Mass loss rates for fifty stars from CO J = 1-0 observations. Ap. J., 292, 640–669.CrossRefADSGoogle Scholar
  26. Königl, A. (1991). Disk accretion onto magnetic T Tauri stars. Ap. J., 370, L39–L43.CrossRefGoogle Scholar
  27. Kwok, S. (1975). Radiation pressure on grains as a mechanism for mass loss in red giants. Ap. J., 198, 583–591.CrossRefADSGoogle Scholar
  28. Lamers, H. J. G. L. M. and Cassinelli, J. P. (1999). Introduction to Stellar Winds. Cambridge University Press, Cambridge.Google Scholar
  29. Lamers, H. J. G. L. M. and Snow, T. P. Jr. (1978). Ionization conditions in the expanding envelopes of O and B stars. Ap. J., 219, 504–514.CrossRefADSGoogle Scholar
  30. Leitherer, C. (1988). Ha as a tracer of mass loss from OB stars. Ap. J., 326, 356–367.CrossRefADSGoogle Scholar
  31. Lim, J. and White, S.M. (1996). Limits to mass outflow from late type dwarf stars. Ap. J., 462, L91–L94.CrossRefADSGoogle Scholar
  32. Loup, C., Forveille, T., Omont, A., and Paul, J. F. (1993). CO and HCN observations of circumstellar envelopes. A catalogue—mass loss rates and distribution. A. A. Supl. 99, 291–377.ADSGoogle Scholar
  33. Lucy, L. and Solomon, P.H. (1970). Mass loss by hot stars. Ap. J., 159, 879–893.CrossRefADSGoogle Scholar
  34. Mullan, D. J., Doyle, J. G., Rediman, R. O., and Mathioudakis, M. (1992). Limits of detectability of mass loss from cool dwarfs. Ap. J., 397, 225–231.CrossRefADSGoogle Scholar
  35. Nieuwenhuijzen, H., de Jager, C., Cuntz, M., Lobel, A., and Achmad, L. (1993). A generalized version of the Rankine-Hugoniot relations including ionization, dissociation, radiation and related phenomena. A. A, 280, 195–200.Google Scholar
  36. Olson, E.C. (1987). Photometry of long-period Algol binaries. III. The accretion disk and mass transfer in RZ Ophiuchi. A. J., 94, 1309–1317.CrossRefADSGoogle Scholar
  37. Ostriker, E. C. and Shu, F.H. (1995). Magnetocentrifugally driven flows from young stars and disks. IV. The accretion funnel and dead zones. Ap. J., 447, 813–828.CrossRefADSGoogle Scholar
  38. Paczynski, B. (1971). Evolutionary processes in close binary systems. Ann. Rev. A. A., 9, 183–208.CrossRefADSGoogle Scholar
  39. Proudman, I. (1952). The generation of noise by isotropic turbulence. Proc. Roy. Soc. London A. 214, 119–132.MATHCrossRefMathSciNetADSGoogle Scholar
  40. Richards, M. T., Albright, G. E., and Bowles, L. M. (1995). Doppler tomography of the gas stream in short-period Algol binaries. Ap. J., 438, L103–L106.CrossRefADSGoogle Scholar
  41. Stahler, S. W., Shu, F., and Taam, R.E. (1980). The evolution of protostars. I. Global formation and results. Ap. J., 241, 637–654.CrossRefADSGoogle Scholar
  42. Stein, R.F. (1968). Waves in the Solar atmosphere. I. The acoustic energy flux. Ap. J., 154, 297–306.CrossRefADSGoogle Scholar
  43. Stepien, K. and Ulmschneider, P. (1989). X-ray emission from acoustically heated coronae. A.A., 216, 139–142.Google Scholar
  44. Theuns, T. and Jorissen, A. (1993). Wind accretion in binary stars. I. Intricacies of the flow structure. M. N. R. A. S., 265, 946–967.ADSGoogle Scholar
  45. Ulmschneider, P. (1989). The chromospheric emission from acoustically heated stellar atmospheres. A.A., 222, 171–178.Google Scholar
  46. Umschneider, P., Theurer, J., and Musielak, Z. E. (1996). Acoustic wave energy fluxes for late-type stars. A.A., 315, 212–221.Google Scholar
  47. Weber, E. J. and Davis, L., Jr. (1967). The angular momentum of the Solar wind. Ap. J., 148, 217–228.CrossRefADSGoogle Scholar
  48. Weymann, R. (1963). Mass loss from stars. Ann. Rev. A. A., 1, 97–144.CrossRefADSGoogle Scholar
  49. Willson, L. A. and Hill, S.J. (1979). Shock wave interpretation of emission lines in long period variable stars. II. Periodicity and mass loss. Ap. J., 228, 854–869.CrossRefADSGoogle Scholar
  50. Winkler K. A. and Newman, M.J. (1980). Formation of solar-type stars in spherical symmetry. I. The key role of the accretion shock. Ap. J., 236, 201–211.CrossRefADSGoogle Scholar
  51. Wood, P.R. (1979). Pulsation and mass loss in Mira variables. Ap. J., 227, 220–231.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Tomokazu Kogure
    • 1
  • Kam-Ching Leung
    • 2
    • 3
    • 4
  1. 1.Kyoto UniversityYawata, KyotoJapan
  2. 2.Institute of Astronomy and AstrophysicsAcademia SinicaTaiwan, China
  3. 3.Department of Physics & AstronomyUniversity of Nebraska-LincolnLincolnUSA
  4. 4.Brace LaboratoryUSA

Personalised recommendations