Skip to main content

Stellar Spectra and Radiation Fields

  • Chapter
The Astrophysics of Emission-Line Stars

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 342))

  • 834 Accesses

Abstract

Apparent magnitude m of a star is defined by the logarithms of energy I received above the Earth’s atmosphere as follows:

$$ m = - 2.5\log I + c, $$
((2.1.1))

where c is the constant to be determined by comparison with a standard star.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  • Aller, L. H. (1963). Astrophysics: The Atmospheres of the Sun and Stars, 2nd edition. Ronald.

    Google Scholar 

  • Böhm-Vitense, E. A. (1989). Introduction to Stellar Astrophysics, Vols.1 and 2. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Kaler, J.B. (1989). Stars and Their Spectra. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kudritzki, R. P. and Hummer, D. G. (1990). Quantitative spectroscopy of hot stars. Ann. Rev. A.A, 28, 303–345.

    Article  ADS  Google Scholar 

References

  • Aller, L. H. (1963). Astrophysics: The Atmospheres of the Sun and Stars, 2nd edition. Ronald.

    Google Scholar 

  • Cassinelli, J. P. (1971). Extended model atmospheres for the central stars of planetary nebulae. Ap. J., 165, 265–284.

    Article  ADS  Google Scholar 

  • Cassinelli, J. P. and Castor, J. I. (1973). Optically thin stellar winds in early-type stars. Ap. J., 179, 189–207.

    Article  ADS  Google Scholar 

  • Castor, J. I. (1974). The effect of sphericity on stellar continous energy distributions. Ap. J., 189, 273–283.

    Article  ADS  Google Scholar 

  • Castor, J. I., Abbott, D. C., and Klein, R. I. (1975). Radiation driven winds of Of stars. Ap. J., 195, 157–174.

    Article  ADS  Google Scholar 

  • Chalonge, D. and Divan, L. (1952). Recherche sur les spectres continues stellaires. V. Ann. d’Ap., 15, 201–236.

    ADS  Google Scholar 

  • Chalonge, D. and Divan, L. (1973). La classification stellaire BCD: Paramètres caractĂ©ristiques du type spectral calibration en magnitudes absolues. A.A., 23, 69–79.

    Google Scholar 

  • Chandrasekhar, S. (1934). The radiative equilibrium of extended stellar atmospheres. M. N. R. A. S, 94, 444–466.

    MATH  ADS  Google Scholar 

  • Chauville, J., Zorec, J., Ballereau, D., Morrell, N., Didal, L., and Garcia, A. (2001), High and intermediate-resolution spectroscopy of Be stars 4481 lines. A. A. 378, 861–882.

    Google Scholar 

  • Cox, A. N. (1999). Allen’s Astrophysical Quantities, 4th edition. Springer Verlag, Chapter 15, Normal stars.

    Google Scholar 

  • Crawford, D. L. (1958). Two-dimensional spectral classification by narrow-band photometry for stars in clusters and associations. Ap. J., 128, 185–206.

    Article  ADS  Google Scholar 

  • Fukuda, I. (1982). A statistical study of rotational velocities of the stars. Pub. A.S.P., 94, 271–284.

    Article  ADS  Google Scholar 

  • Gabler, A., Gabler, R., Kudritzki, R. P., Puls, J., and Pauldrach, A. W. A. (1989). Unified NLTE model atmospheres including spherical extention and stellar winds: Method and first results. A. A, 226, 162–182.

    Google Scholar 

  • Gömez, A. E. (1993). Stellar distances and Hipparcos, in Inside the Stars, IAU Coll. 137, A.S.P. Conf. Ser. Vol. 40, 324–332.

    ADS  Google Scholar 

  • Gray, D. F. and Turner, C. G. (1987). An analysis of the photospheric line profiles in F, G, and K supergiants. Ap. J., 322, 360–367.

    Article  ADS  Google Scholar 

  • Herzberg, G. (1944). Atomic Spectra and Atomic Structure, Dover Book Publ., N.Y.

    Google Scholar 

  • Huang, S. S. and Struve, O. (1953). A study of line profiles: The spectrum of Rho Leonis. Ap. J., 118, 463–476.

    Article  ADS  Google Scholar 

  • Inglis, D. R. and Teller, E. (1939). Ionic depresssion of series limits in one-electron spectra. Ap. J., 90, 439–448.

    Article  MATH  ADS  Google Scholar 

  • Johnson, H. L. (1963). Vol.3, Chapter 8. Basic Astronomical Data, Stars and Stellar Systems, K. A Strand (ed.), University of Chicago Press, IL.

    Google Scholar 

  • Keenan, P. C. (1963). Classification of stellar spectra. Vol. 3. Basic Astronomical Data, Stars and Stellar Systems, Strand K. A. (ed.), University of Chicago Press, IL.

    Google Scholar 

  • Kirkpatrick, J.D., Reid, I. N., and 8 co-authors (1999). Dwarfs cooler than M. The definition of spectral type L using discovering from the 1-micron all-sky survey (2MASS). Ap. J., 519, 802–833.

    Article  ADS  Google Scholar 

  • Kosirev, N. A. (1934). Radiation equilibrium of the extended photosphere. M. N. R. A. S., 94, 430–443.

    MATH  ADS  Google Scholar 

  • Kudritzki, R. P. (1973). Non-LTE effects and influence of helium abundance in A0 Ia supergiant-atmospheres. A.A., 28, 103–107.

    Google Scholar 

  • Kudritzki, R. P. (1976). Non-LTE model atmospheres of subluminous O-stars. A.A., 52, 11–21.

    Google Scholar 

  • Kurucz, R. L. (1979). Model atmospheres for G, F, A, B, and O stars. Ap. J. Suppl., 40, 1–340.

    Article  ADS  Google Scholar 

  • Kurucz, R. L. (1993). A new opacity-sampling model atmosphere program for arbitrary abundances, in Peculiar Versus Normal Phenomena in A-type and Related Stars, A.S.P. Conf. Vol. 44, 87–97.

    ADS  Google Scholar 

  • Lang, K. R. (1991). Section 9.5, Spectral classification of the stars, Section 9.7, Stellar temperature and luminosity. Astrophysical Data: Planets and Stars. Springer-Verlag, Berlin.

    Google Scholar 

  • Maury, A. C. and Pickering, E. C. (1897). Spectra of bright stars photographed with the 11-inch Draper telescope as a part of the Henry Draper Memorial and discussed by Antonia C. Mauary under the direction of E. d. Pickering Annals of the Astronomical Observatory of Harvard College, 28 (Part 1), 1–128.

    ADS  Google Scholar 

  • Merrill, P. W. (1958). Lines of the Chemical Elements in Astronomical Spectra. Carnegie Institute of Washington Publication, Washington, DC.

    Google Scholar 

  • Mihalas, D. (1974). Progress towards an interpretation of stellar spectra. A. J., 79, 1111–1121.

    Article  ADS  Google Scholar 

  • Mihalas, D. and Hummer, D. G. (1974). Theory of extended stellar atmospheres. I. Computational method and first results for static spherical models. Ap. J. Suppl., 28, 343–372.

    Article  ADS  Google Scholar 

  • Morgan, W. W. (1937). On the spectral classification of the stars of types A to K., Ap. J., 85, 380–397.

    Article  ADS  Google Scholar 

  • Morgan, W. W., Keenan, P. C., and Kellman, E. (1943). An Atlas of Stellar Spectra. Astrophysical Monograph, Chicago, IL.

    Google Scholar 

  • Reid, I. N. (1999). M dwarfs, L dwarfs, T dwarfs and subdwarfs: Ψ(M) at and below the hydrogen-burning limit, Proc. of Star Formation 1999, Nakamoto, T. (ed.), Nobeyama Radio Observatory, Nagano, Japan, 327–332.

    Google Scholar 

  • Stebbins, J. and Kron, G. E. (1964). Six-color photometry of stars. XI. Black-body color temperature of 25 stars. Ap. J., 139, 424–434.

    Article  ADS  Google Scholar 

  • Strömgren, B. (1963). Vol. 3, Chaper 9, Quantitative classification methods. Basic Astronomical Data, Stars and stellar Systems, K. Strand (ed.),Universtiy of Chicago Press, IL.

    Google Scholar 

  • Takeda, Y. (1995). Self-consistent multi-parameter fitting of stellar flux spectra. Pub. A.S. Japan, 47, 287–298.

    ADS  Google Scholar 

  • Unsöld, A. (1955). Physik der Atematmosphären, Springer-Verlag, Berlin. p. 509, Figure 168.

    Google Scholar 

  • van Altena, W. F., Lee, J. T., and Hoffleit, E. D. (1992). The General Catalogue of Trigonometric Stellar Parallaxes. Yale University Observatory, IL.

    Google Scholar 

  • Yamashita, Y., Nariai, K., and Norimoto, Y. (1977). An Atlas of Representative Stellar Spectra. University of Tokyo Press, Tokyo.

    Google Scholar 

  • Zinn, R. J. (1970). The temperature dependence of Hβ strength in O stars. Ap. J., 162, 909 912.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kogure, T., Leung, KC. (2007). Stellar Spectra and Radiation Fields. In: The Astrophysics of Emission-Line Stars. Astrophysics and Space Science Library, vol 342. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68995-1_2

Download citation

Publish with us

Policies and ethics