Advertisement

Stellar Spectra and Radiation Fields

  • Tomokazu Kogure
  • Kam-Ching Leung
Part of the Astrophysics and Space Science Library book series (ASSL, volume 342)

Abstract

Apparent magnitude m of a star is defined by the logarithms of energy I received above the Earth’s atmosphere as follows:
$$ m = - 2.5\log I + c, $$
(2.1.1)
where c is the constant to be determined by comparison with a standard star.

Keywords

Absorption Line Optical Depth Spectral Type Equivalent Width Local Thermodynamic Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further reading

  1. Aller, L. H. (1963). Astrophysics: The Atmospheres of the Sun and Stars, 2nd edition. Ronald.Google Scholar
  2. Böhm-Vitense, E. A. (1989). Introduction to Stellar Astrophysics, Vols.1 and 2. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  3. Kaler, J.B. (1989). Stars and Their Spectra. Cambridge University Press, Cambridge.Google Scholar
  4. Kudritzki, R. P. and Hummer, D. G. (1990). Quantitative spectroscopy of hot stars. Ann. Rev. A.A, 28, 303–345.CrossRefADSGoogle Scholar

References

  1. Aller, L. H. (1963). Astrophysics: The Atmospheres of the Sun and Stars, 2nd edition. Ronald.Google Scholar
  2. Cassinelli, J. P. (1971). Extended model atmospheres for the central stars of planetary nebulae. Ap. J., 165, 265–284.CrossRefADSGoogle Scholar
  3. Cassinelli, J. P. and Castor, J. I. (1973). Optically thin stellar winds in early-type stars. Ap. J., 179, 189–207.CrossRefADSGoogle Scholar
  4. Castor, J. I. (1974). The effect of sphericity on stellar continous energy distributions. Ap. J., 189, 273–283.CrossRefADSGoogle Scholar
  5. Castor, J. I., Abbott, D. C., and Klein, R. I. (1975). Radiation driven winds of Of stars. Ap. J., 195, 157–174.CrossRefADSGoogle Scholar
  6. Chalonge, D. and Divan, L. (1952). Recherche sur les spectres continues stellaires. V. Ann. d’Ap., 15, 201–236.ADSGoogle Scholar
  7. Chalonge, D. and Divan, L. (1973). La classification stellaire BCD: Paramètres caractéristiques du type spectral calibration en magnitudes absolues. A.A., 23, 69–79.Google Scholar
  8. Chandrasekhar, S. (1934). The radiative equilibrium of extended stellar atmospheres. M. N. R. A. S, 94, 444–466.MATHADSGoogle Scholar
  9. Chauville, J., Zorec, J., Ballereau, D., Morrell, N., Didal, L., and Garcia, A. (2001), High and intermediate-resolution spectroscopy of Be stars 4481 lines. A. A. 378, 861–882.Google Scholar
  10. Cox, A. N. (1999). Allen’s Astrophysical Quantities, 4th edition. Springer Verlag, Chapter 15, Normal stars.Google Scholar
  11. Crawford, D. L. (1958). Two-dimensional spectral classification by narrow-band photometry for stars in clusters and associations. Ap. J., 128, 185–206.CrossRefADSGoogle Scholar
  12. Fukuda, I. (1982). A statistical study of rotational velocities of the stars. Pub. A.S.P., 94, 271–284.CrossRefADSGoogle Scholar
  13. Gabler, A., Gabler, R., Kudritzki, R. P., Puls, J., and Pauldrach, A. W. A. (1989). Unified NLTE model atmospheres including spherical extention and stellar winds: Method and first results. A. A, 226, 162–182.Google Scholar
  14. Gömez, A. E. (1993). Stellar distances and Hipparcos, in Inside the Stars, IAU Coll. 137, A.S.P. Conf. Ser. Vol. 40, 324–332.ADSGoogle Scholar
  15. Gray, D. F. and Turner, C. G. (1987). An analysis of the photospheric line profiles in F, G, and K supergiants. Ap. J., 322, 360–367.CrossRefADSGoogle Scholar
  16. Herzberg, G. (1944). Atomic Spectra and Atomic Structure, Dover Book Publ., N.Y.Google Scholar
  17. Huang, S. S. and Struve, O. (1953). A study of line profiles: The spectrum of Rho Leonis. Ap. J., 118, 463–476.CrossRefADSGoogle Scholar
  18. Inglis, D. R. and Teller, E. (1939). Ionic depresssion of series limits in one-electron spectra. Ap. J., 90, 439–448.MATHCrossRefADSGoogle Scholar
  19. Johnson, H. L. (1963). Vol.3, Chapter 8. Basic Astronomical Data, Stars and Stellar Systems, K. A Strand (ed.), University of Chicago Press, IL.Google Scholar
  20. Keenan, P. C. (1963). Classification of stellar spectra. Vol. 3. Basic Astronomical Data, Stars and Stellar Systems, Strand K. A. (ed.), University of Chicago Press, IL.Google Scholar
  21. Kirkpatrick, J.D., Reid, I. N., and 8 co-authors (1999). Dwarfs cooler than M. The definition of spectral type L using discovering from the 1-micron all-sky survey (2MASS). Ap. J., 519, 802–833.CrossRefADSGoogle Scholar
  22. Kosirev, N. A. (1934). Radiation equilibrium of the extended photosphere. M. N. R. A. S., 94, 430–443.MATHADSGoogle Scholar
  23. Kudritzki, R. P. (1973). Non-LTE effects and influence of helium abundance in A0 Ia supergiant-atmospheres. A.A., 28, 103–107.Google Scholar
  24. Kudritzki, R. P. (1976). Non-LTE model atmospheres of subluminous O-stars. A.A., 52, 11–21.Google Scholar
  25. Kurucz, R. L. (1979). Model atmospheres for G, F, A, B, and O stars. Ap. J. Suppl., 40, 1–340.CrossRefADSGoogle Scholar
  26. Kurucz, R. L. (1993). A new opacity-sampling model atmosphere program for arbitrary abundances, in Peculiar Versus Normal Phenomena in A-type and Related Stars, A.S.P. Conf. Vol. 44, 87–97.ADSGoogle Scholar
  27. Lang, K. R. (1991). Section 9.5, Spectral classification of the stars, Section 9.7, Stellar temperature and luminosity. Astrophysical Data: Planets and Stars. Springer-Verlag, Berlin.Google Scholar
  28. Maury, A. C. and Pickering, E. C. (1897). Spectra of bright stars photographed with the 11-inch Draper telescope as a part of the Henry Draper Memorial and discussed by Antonia C. Mauary under the direction of E. d. Pickering Annals of the Astronomical Observatory of Harvard College, 28 (Part 1), 1–128.ADSGoogle Scholar
  29. Merrill, P. W. (1958). Lines of the Chemical Elements in Astronomical Spectra. Carnegie Institute of Washington Publication, Washington, DC.Google Scholar
  30. Mihalas, D. (1974). Progress towards an interpretation of stellar spectra. A. J., 79, 1111–1121.CrossRefADSGoogle Scholar
  31. Mihalas, D. and Hummer, D. G. (1974). Theory of extended stellar atmospheres. I. Computational method and first results for static spherical models. Ap. J. Suppl., 28, 343–372.CrossRefADSGoogle Scholar
  32. Morgan, W. W. (1937). On the spectral classification of the stars of types A to K., Ap. J., 85, 380–397.CrossRefADSGoogle Scholar
  33. Morgan, W. W., Keenan, P. C., and Kellman, E. (1943). An Atlas of Stellar Spectra. Astrophysical Monograph, Chicago, IL.Google Scholar
  34. Reid, I. N. (1999). M dwarfs, L dwarfs, T dwarfs and subdwarfs: Ψ(M) at and below the hydrogen-burning limit, Proc. of Star Formation 1999, Nakamoto, T. (ed.), Nobeyama Radio Observatory, Nagano, Japan, 327–332.Google Scholar
  35. Stebbins, J. and Kron, G. E. (1964). Six-color photometry of stars. XI. Black-body color temperature of 25 stars. Ap. J., 139, 424–434.CrossRefADSGoogle Scholar
  36. Strömgren, B. (1963). Vol. 3, Chaper 9, Quantitative classification methods. Basic Astronomical Data, Stars and stellar Systems, K. Strand (ed.),Universtiy of Chicago Press, IL.Google Scholar
  37. Takeda, Y. (1995). Self-consistent multi-parameter fitting of stellar flux spectra. Pub. A.S. Japan, 47, 287–298.ADSGoogle Scholar
  38. Unsöld, A. (1955). Physik der Atematmosphären, Springer-Verlag, Berlin. p. 509, Figure 168.Google Scholar
  39. van Altena, W. F., Lee, J. T., and Hoffleit, E. D. (1992). The General Catalogue of Trigonometric Stellar Parallaxes. Yale University Observatory, IL.Google Scholar
  40. Yamashita, Y., Nariai, K., and Norimoto, Y. (1977). An Atlas of Representative Stellar Spectra. University of Tokyo Press, Tokyo.Google Scholar
  41. Zinn, R. J. (1970). The temperature dependence of Hβ strength in O stars. Ap. J., 162, 909 912.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Tomokazu Kogure
    • 1
  • Kam-Ching Leung
    • 2
    • 3
    • 4
  1. 1.Kyoto UniversityYawata, KyotoJapan
  2. 2.Institute of Astronomy and AstrophysicsAcademia SinicaTaiwan, China
  3. 3.Department of Physics & AstronomyUniversity of Nebraska-LincolnLincolnUSA
  4. 4.Brace LaboratoryUSA

Personalised recommendations