Advertisement

Wire Arc Spraying

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos
Chapter

Abstract

Wire arc spraying is the oldest thermal spray process, having been patented in the USA in 1915 [1]. However, only since the 1960s, there has been progress in expanding the applications based on improvements of the understanding of the essentials of the process using systematic studies with high time resolution [2]. This expansion has accelerated over the past twenty years with several significant improvements in the equipment and processes [3, 4].

Keywords

Droplet Velocity Supply Pressure Core Wire Wire Feed Rate Droplet Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Schoop MU (1915) Apparatus for spraying molten metal and other fusible substances. US Patent No. 1,133,507Google Scholar
  2. 2.
    Steffens HD (1966) Metallurgical changes in the arc spraying of steel. Br Welding J 13(10):597–605Google Scholar
  3. 3.
    Steffens HD, Babiak Z, Wewel M (1990) Recent developments in arc spraying. IEEE Trans Plasma Sci 18(6):974–979CrossRefGoogle Scholar
  4. 4.
    Marantz D, Marantz D (1990) State of the art arc spray technology. In: Bernecki TF (ed) Proceedings of the thermal spray research and applications proceedings of the 3rd national thermal spray conference, Long Beach, California. ASM International, Materials Park, OH, pp 113–118Google Scholar
  5. 5.
    Lester T (2005) Metallized coatings application, an overview of the flame-and arc-spraying processes used for surface finishing. Organ Finishing July/August:35–38Google Scholar
  6. 6.
    Liu X (2001) Arc spraying in China. J Therm Spray Technol 10(1):40–43CrossRefGoogle Scholar
  7. 7.
    Wang R, Song D, Liu W, He X (2010) Effect of arc spraying power on the microstucture and mechanical properties of Zn-Al coating deposited onto carbon fiber reinforced epoxy composites. Appl Surf Sci 257:203–209CrossRefGoogle Scholar
  8. 8.
    Varis T, Rajamake E (2002) Effect of the nozzle design and atomization gas on the properties of the electric arc sprayed Ni18Cr6A12Mn-coatings. In: Lugscheider E (ed) Proceedings of the international thermal spray conference Tagungsband conference proceedings, Essen. ASM Thermal Spray Society, Materials Park, OH, pp 550–552Google Scholar
  9. 9.
    Chang CH, Jeng MC, Su CY, Huang TS (2011) A study of wear and corrosion resistance of arc-sprayed Ni-Ti composite coatings. J Therm Spray Technol 20(6):1278–1285CrossRefGoogle Scholar
  10. 10.
    Sakoda N, Hida M, Takemoto Y, Sakakibara A, Tajiri T (2003) Influence of atomoization gas on coating properties under Ti arc spraying. Mater Sci Eng A342:264–269CrossRefGoogle Scholar
  11. 11.
    Sampson ER (1993) The economics of arc vs. plasma spray for aircraft components. In: Berndt CC, Bernecki TF (eds) Proceedings of the 5th national thermal spray conference, Anaheim, CA. ASM International, Materials Park, OH, pp 257–262Google Scholar
  12. 12.
    Zajchowski P, Crapo HB (1669) Evaluation of three dual-wire electric arc-sprayed coatings: industrial note. J Therm Spray Technol 5(4):457–462CrossRefGoogle Scholar
  13. 13.
    Nakagawa M, Shimoda K, Tomoda T, Koyama M, Ishikawa Y, Nakajima T (1990) Development of mass production technology of arc spraying for automotive engine aluminum alloy valve lifters. In: Proceedings of the 3rd national thermal spray conference, pp 457–464Google Scholar
  14. 14.
    Marantz DR, Kowalsky KA, Marantz D (1991) Wire-arc-plasma spray process—basic principles and its versatility. In: Bernecki TF (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 381–387Google Scholar
  15. 15.
    Cook D, Zaluzec M, Kowalsky KA (2003) Development of thermal spray for automotive cylinder bores. In: Marple B, Moreau C (eds) Proceedings of the 2003 international thermal spray conference, Orlando, FL. ASM International, Materials Park, OH, pp 143–147Google Scholar
  16. 16.
    Zhang ZL, Li DY, Wang SY (2006) High temperature performance of arc-sprayed aluminum bronze coatings for steel. Trans Nonferrous Met Soc 16:868–872CrossRefGoogle Scholar
  17. 17.
    Cooke K, Oliver G, Buchanan V, Palmer N (2007) Optimization of the electric wire arc-spraying process for improved wear resistance of sugar mill roller shells. Surf Coat Technol 202:185–188CrossRefGoogle Scholar
  18. 18.
    Chen Y, Liang X, Wei S, Liu Y, Xu B (2009) Heat treatment induced intermetallic phase transition of arc-sprayed coating prepared by the wires combination of aluminum-cathode and steel-anode. Appl Surf Sci 255:8299–8304CrossRefGoogle Scholar
  19. 19.
    Wilden J, Bergmann JP, Jahn S, Knapp S, van Rodijnen F, Fischer G (2007) Investigation about the chrome steel wire arc spray process and the resulting coating properties. J Therm Spray Technol 16(5–6):759–767CrossRefGoogle Scholar
  20. 20.
    Laika A, Chakravarthyb DP, Kale GB (2005) On characterisation of wire-arc-plasma-sprayed Ni on alumina substrate. Mater Charact 55:118–126CrossRefGoogle Scholar
  21. 21.
    Fang JC, Xu WJ, Zhao ZY (2005) Arc spray forming. J Mater Process Technol 164–165:1032–1037CrossRefGoogle Scholar
  22. 22.
    Grant PS, Duncan SR, Roche A, Johnson CF (2006) Scientific, technological, and economic aspects of rapid tooling by electric arc spray forming. In: Marple B, Hyland MM, Lau Y-C, Lima RS, Voyer J (eds) Proceedings of the 2006 international thermal spray conference, Seattle, Washington, vol 4. ASM International, Materials Park, OH, pp 796–801Google Scholar
  23. 23.
    Newbery AP, Grant PS (2009) Arc sprayed steel: microstructure in severe substrate features. J Therm Spray Technol 18(2):256CrossRefGoogle Scholar
  24. 24.
    Sampson ER, Zwetsloot MP (1997) Arc spray process for the aircraft and stationary gas turbine industry. J Therm Spray Technol 6(2):150–152CrossRefGoogle Scholar
  25. 25.
    Tillmann W, Vogli E, Abdulgader M (2008) Asymmetric melting behavior in twin wire arc spraying with cored wires. J Therm Spray Technol 17(5–6):974–982CrossRefGoogle Scholar
  26. 26.
    Tillmann W, Vogli E, Abdulgader M, Gurris M, Kuzmin D, Turek S (2008) Particle behavior during the arc spraying process with cord wires. J Therm Spray Technol 17(5–6):966–973CrossRefGoogle Scholar
  27. 27.
    Pokhmurskii V, Student M, Dovhuny V, Sydorak I, Pokhmurska H (2002) Wear resistance arc-sprayed coating from power wires. In: Lugscheider E (ed) Proceedings of the international thermal spray conference, Essen. ASM Thermal Spray Society, Materials Park, OH, pp 559–562Google Scholar
  28. 28.
    Zhao L, Fu B, He D, Kutschmann P (2009) Development of a new wear resistant coating by arc spraying of a steel-based cored wire. Front Mech Eng 4(1):1–4CrossRefGoogle Scholar
  29. 29.
    Meng FJ, Xu BS, Zhu S, Ma SN, Zhang W (2005) Oxidation performance of Fe-AI/WC composite coatings produced by high velocity arc spraying. J Cent South Univ Technol 12(2):222–225CrossRefGoogle Scholar
  30. 30.
    Fang JY, Li ZX, Jiang JM, Shi YW (2007) Difference in particle characteristics and coating properties between spraying metallic and ceramic powder cored wires. Trans Nonferrous Met Soc 17:537–542CrossRefGoogle Scholar
  31. 31.
    Fang JJ, Li ZX, Shi YW (2008) Microstructure and properties of TiB2 containing coatings prepared by arc spraying. Appl Surf Sci 254:3849–3858CrossRefGoogle Scholar
  32. 32.
    Pokhmurska H, Dovhunykb V, Studentb M, Bielanskac E, Beltowska E (2002) Tribological properties of arc sprayed coatings obtained from FeCrB and FeCr-based powder wires. Surf Coat Technol 151–152:490–494CrossRefGoogle Scholar
  33. 33.
    Skoblo TS, Vlasovets VM, Moroz VV (2001) Structure and distribution of components in the wroking layers upon reconditioning of parts by electric-arc metallization. Metal Sci Heat Treatment 43(11–12):497–500CrossRefGoogle Scholar
  34. 34.
    He D, Dong N, Jiang J (2007) Corrosion behavior of arc sprayed nickel-based b coatings. J Therm Spray Technol 16(5–6):850–586CrossRefGoogle Scholar
  35. 35.
    Luo LM, Liu SG, Yu J, Luo J, Li J (2010) Effect of AI content on high temperature erosion properties of arc-sprayed FeMnCrAI/Cr3C2 coatings. Trans Nonferrous Met Soc 20:201–206CrossRefGoogle Scholar
  36. 36.
    Luo LM, Yu J, Liu SG, Li J (2010) Thermal shock resistance of FeMnCr-Cr3C2 coatings deposited by arc spraying. J Wuhan Univ Technol Mater Sci April:243–247Google Scholar
  37. 37.
    Halter K, Sickinger A, Zysset L, Siegmann S (2003) Low pressure wire arc and vacuum plasma spraying of NiTi shape memory alloys. In: Marple B, Moreau C (eds) Proceedings of the 2003 international thermal spray conference, Orlando, FL. ASM International, Materials Park, OH, pp 289–295Google Scholar
  38. 38.
    Wang X, Heberlein J, Pfender E, Gerberich W (1999) Effect of nozzle configuration, gas pressure and gas type on coating properties in wire arc spray. J Therm Spray Technol 8(4):565–575CrossRefGoogle Scholar
  39. 39.
    Hussary NA, Heberlein J (2001) Atomization and particle jet interactions in the wire-arc spaying process. J Therm Spray Technol 10(4):604–610CrossRefGoogle Scholar
  40. 40.
    Hussary NA, Heberlein J (2007) Effect of system parameters on metal breakup and particle formation in the wire arc spray process. J Therm Spray Technol 16(1):140–152CrossRefGoogle Scholar
  41. 41.
    Sheard J, Heberlein J, Stelson K, Pfender E (1997) Diagnostic development for control of wire-arc spraying. In: Berndt CC (ed) Proceedings of 1st united thermal spray conference, Indianapolis, IN. ASM International, Materials Park, OH, pp 613–618Google Scholar
  42. 42.
    Hussary NA (1999) Fluid dynamic investigations of wire arc spraying process. MS Thesis, University of Minnesota, MinneapolisGoogle Scholar
  43. 43.
    Chigier N (1981) Energy, combustion and environment. McGraw Hill, New York, NYGoogle Scholar
  44. 44.
    Mansour A, Chigier N (1990) Disintegration of liquid sheets. Phys Fluids A 2(5):706–719CrossRefGoogle Scholar
  45. 45.
    Hussary NA (2003) Investigations into the wire arc spray process. University of MinnesotaGoogle Scholar
  46. 46.
    Wang X, Heberlein J, Pfender E, Gerberich W (1995) Enhancement of coating uniformity with secondary gas atomization in wire arc spray. In: Heberlein J, Ernie DW, Roberts JT (eds) Proceedings of the 12th international symposium on plasma chemistry, Minneapolis, MN. International Union of Pure and Applied Chemistry, pp 907–913Google Scholar
  47. 47.
    Liao H, Zhu YL, Bolot R, Coddet C, Ma SN (2005) Size distribution of particles from individual wires and the effects of nozzle geometry in twin wire arc spraying. Surf Coat Technol 200:2123–2130CrossRefGoogle Scholar
  48. 48.
    Planche MP, Lakat A, Liao H, Coddet C (2003) Investigations of in-flight particle characteristics through DPV measurements and correlation with impact analysis and coating properties. In: Marple B, Moreau C (eds) Proceedings of the international thermal spray conference, Orlando, FL. ASM International, Materials Park, OH, pp 1175–1182Google Scholar
  49. 49.
    Pourmousa A, Mostaghimi J, Abedini A, Chandra S (2005) Particle size distribution in a wire-arc spraying system. J Therm Spray Technol 14(4):502–510CrossRefGoogle Scholar
  50. 50.
    Watanabe T, Sato T, Nezu A (2002) Electrode phenomena investigation of wire arc spraying for preparation of Ti-Al intermetallic compounds. Thin Solid Films 407:98–103CrossRefGoogle Scholar
  51. 51.
    Kawase R, Kureishi M, Minehisa S (1984) Relation between arc spraying condition and adhesive strength of sprayed coating. Trans Jpn Welding Soc 15(2):27–33Google Scholar
  52. 52.
    Kawase R, Kureishi M, Maehara K (1984) Arc phenomena and wire fusion in arc spraying. Trans Jpn Welding Soc 15(2):34–39Google Scholar
  53. 53.
    Kawase R, Kureishi M (1985) Fused metal temperature in arc spraying. Trans Jpn Welding Soc 16(1):82–88Google Scholar
  54. 54.
    Kawase R, Kureishi M (1985) Relation between adhesion strength of arc sprayed coating and fused metal temperature. Trans Jpn Welding Soc 16(2):69–73Google Scholar
  55. 55.
    Hussary NA, Schein J, Heberlein J (1999) Control of jet convergence in wire arc spray systems. In: Lugscheider E, Kammer PA (eds) Proceedings of the united thermal spray conference, Düsseldorf, Germany. ASM International, Materials Park, OH, pp 335–339Google Scholar
  56. 56.
    Wang X, Heberlein J, Pfender E, Gerberich W (1996) Effect of gas velocity and particle velocity on coating adhesion in wire arc spraying. In: Berndt CC (ed) Proceedings of 9th national thermal spray conference, Cincinnati, OH. ASM International, Materials Park, OH, pp 807–811Google Scholar
  57. 57.
    Pourmousa A, Abedini A, Mostaghimi J, Chandra S (2004) Particle diagnostics in wire-arc spraying system. In: Ohmori A (ed) Proceedings of the international thermal spray conference Osaka, Japan. ASM International, Materials Park, OH, pp 962–967Google Scholar
  58. 58.
    Jandin G, Planche M-P, Liao H, Coddet C (2002) Relationships between in-flight particle characteristics and coating microstructure for the twin wire arc spray process. In: Lugscheider E (ed) Proceedings of the international thermal spray conference, Essen. ASM International, Materials Park, OH, pp 954–959Google Scholar
  59. 59.
    Planche M-P, Liao H, Coddet C (2004) Relatioship between in-flight particle characteristics and coating microstructure with a twin wire arc spray process and different working conditions. Surf Coat Technol 182(2–3):215–226CrossRefGoogle Scholar
  60. 60.
    Wilden J, Bergmann JP, Jahn S, Knapp S, van Rodijnen F, Fischer G (2007) Investigation about the chrome steel wire arc spray process and the resulting coating properties. In: Marple B, Hyland M, Lau YC, Li CJ, Lima RS, Montavon G (eds) Proceedings of the international thermal spray conference, Beijing, People’s Republic of China. ASM International, Materials Park, OH, pp 759–767Google Scholar
  61. 61.
    Mohanty PS, Allor R, Lechowicz P, Parker RA, Craig JE (2003) Particle temperature and velocity characterization in spray tooling process by thermal imaging technique. In: Marple B, Moreau C (eds) Proceedings of the international thermal spray conference, Orlando, FL. ASM International, Materials Park, OH, pp 1183–1190Google Scholar
  62. 62.
    Watanabe T, Wang X, Heberlein J, Pfender E, Herwig W (1996) Voltage and current fluctuations in wire arc spraying as indications for coating properties. In: Berndt CC (ed) Proceedings of 9th national thermal spray conference, Cincinnati, OH. ASM International, Materials Park, OH, pp 577–583Google Scholar
  63. 63.
    Wang X, Heberlein J, Pfender E, Gerberich W (1995) Effect of shrouded CO2 gas atomization on coating properties in wire arc spray. In: Berndt CC, Sampath S (eds) Proceedings of the 8th national thermal spray conference, Houston, TX. ASM International, Materials Park, OH, pp 31–37Google Scholar
  64. 64.
    Steffens HD, Nasenstein K (1999) Influence of spray velocity on arc-sprayed coating structures. J Therm Spray Technol 8(3):454–460CrossRefGoogle Scholar
  65. 65.
    Watanabe T, Wang X, Heberlein J, Pfender E (1995) Fume generation mechanism in wire arc spraying. In: Heberlein J, Ernie DW, Roberts JT (eds) Proceedings of the 12th international symposium on plasma chemistry, Minneapolis, MN. International Union of Pure and Applied Chemistry, pp 889–894Google Scholar
  66. 66.
    Kelkar M, Heberlein J (2000) Physics of an arc in cross flow. J Phys D Appl Phys 33:2172–2182CrossRefGoogle Scholar
  67. 67.
    Kelkar M, Heberlein J (2002) Wire-arc spray modeling. Plasma Chem Plasma Process 22(1):1–25CrossRefGoogle Scholar
  68. 68.
    Kelkar M, Hussary NA, Schein J, Heberlein J (1998) Optical diagnostics and modeling of gas and droplet flow in wire arc spraying. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 329–324Google Scholar
  69. 69.
    Hsiang LP, Faeth GM (1992) Near-limit drop deformation and secondary breakup. Int J Multiphase Flow 18:635–652CrossRefGoogle Scholar
  70. 70.
    Bolot R, Bonnet R, Jandin G, Coddet C (2001) Application of CAD to CFD for the wire arc spray process. In: Berndt CC, Khor KA, Lugscheider E (eds) Proceedings of the international thermal spray conference, Singapore. ASM International, Materials Park, OH, pp 889–894Google Scholar
  71. 71.
    Gedzevicius I, Bolot R, Liao H, Coddet C (2003) Application of CFD for wire-arc nozzle geometry improvement. In: Marple B, Moreau C (eds) Proceedings of the international thermal spray conference, Orlando, FL. ASM International, Materials Park, OH, pp 977–980Google Scholar
  72. 72.
    Bolot R, Planche M-P, Liao H, Coddet C (2008) A three-dimensional model of the wire-arc spray process and its experimental validation. J Mater Process Technol:94–105Google Scholar
  73. 73.
    Kowalsky KA, Marantz DR, Herman H (1991) Characterization of coatings produced by the wire-arc-plasma spray process. In: Bernecki TF (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 389–394Google Scholar
  74. 74.
    Steffens HD, Wewel M (1991) One wire vacuum arc spraying-a new modified process. In: Bernecki TF (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 395–398Google Scholar
  75. 75.
    Steffens HD, Nassenstein K (1994) Recent developments in single-wire vacuum arc spraying. J Therm Spray Technol 3(4):412–417CrossRefGoogle Scholar
  76. 76.
    Carlson RR, Heberlein J, Hussary NA, Shi K (2000) High-definition single-wire-arc-spray. In: Berndt CC (ed) Proceedings of the 1st international thermal spray conference, Montreal, QBC. ASM International, Materials Park, OH, pp 709–716Google Scholar
  77. 77.
    Carlson RR, Heberlein J (2001) Effects of operating parameters on high definition single wire arc spraying. In: Berndt CC, Khor KA, Lugscheider E (eds) Proceedings of the international thermal spray conference, Singapore. ASM International, Materials Park, OH, pp 447–453Google Scholar
  78. 78.
    Carlson RR, Heberlein JVR (2002) Single-wire arc spray apparatus and methods for using same. US Patent No. 6,610,959 B2Google Scholar
  79. 79.
    Kowalsky KA, Marantz DR, Neiser R, Smith MF (1992) Diagnostic behavior of the wire-arc-plasma spray process. In: Berndt CC (ed) Proceedings of the thermal spray: international advances in coatings technology, Orlando, FL. ASM International, Materials Park, OH, pp 337–342Google Scholar
  80. 80.
    McCune RC Jr, Reatherford LV, Zaluzec M (1993) Thermally spraying metal/solid lubricant composites using wire feedstock. US Patent No. 5,194,304Google Scholar
  81. 81.
    Carlson RR (2005) Single wire arc spray. University of MinnesotaGoogle Scholar
  82. 82.
    Benary R (2000) Thermal spray gun extension and gas jet member therefore. US Patent No. 6,091,042Google Scholar
  83. 83.
    Dunkerley JP, Friedrich TA, Irons G (1999) Apparatus for rotary spraying a metallic coating. US Patent No. 5,908,670Google Scholar
  84. 84.
    Bolot R, Liao H, Mateus C, Coddet C, Bordes J-M (2007) Optimization of a rotating twin wire-arc spray gun. In: Marple B, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Proceedings of the 2007 international thermal spray conference, Beijing, People’s Republic of China, vol 5–6. ASM International, Materials Park, OH, pp 783–790Google Scholar
  85. 85.
    Benary R, Margolies J, Gutleber J (1999) A study and comparison of spray stream formation using two wire arc 90-degree, and 0-degree spray processes. In: Lugsheider E, Kammer PA (eds) Proceedings of the united thermal spray conference, Dusseldorf. ASM Thermal Spray Society, Materials Park, OH, pp 242–246Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations