Advertisement

D.C. Plasma Spraying

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos
Chapter

Abstract

In plasma spraying, an electric arc generates plasma within a plasma torch. The arc is struck between a cathode (usually a rod or button-type design) and a cylindrical anode nozzle, and the plasma gas is injected at the base of the cathode, heated by the arc, and exits the nozzle as a high temperature, high velocity jet (see Fig. 7.1). Figure  2.1 presents the details of coating generation by plasma spraying.

Keywords

Nozzle Exit Bond Coat Particle Temperature Plasma Torch Atmospheric Plasma Spray 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

APS

Atmospheric Plasma Spraying

CBL

Cold Boundary Layer

CPS

Controlled Atmosphere Plasma Spraying

EB-PVD

Electron Beam Physical Vapor Deposition

i.d.

internal diameter

LPPS

Low Pressure Plasma Spraying

PS-PVD

Plasma Spraying Physical Vapor Deposition

PYSZ

Partially Yttria-Stabilized Zirconia

SHS

Self-propagating High-temperature Synthesis

SOFC

Solid Oxide Fuel Cells

TGO

Thermal Grown Oxide

VPS

Vacuum Plasma Spraying

WPS

Water Plasma Spraying

References

  1. 1.
    Fauchais P (2004) Understanding plasma spraying. J Phys D Appl Phys 37:86–108Google Scholar
  2. 2.
    Fauchais P, Vardelle M (2003) How to improve the reliability and reproducibility of plasma sprayed coatings. In: Moreau C, Marple B (eds) Proceedings of thermal spray: Advancing the science and applying the technology, Orlando, FL. ASM International, Materials Park, OH, pp 1165–1173Google Scholar
  3. 3.
    Janisson S, Meillot E, Vardelle A, Coudert J-F, Pateyron B, Fauchais P (1998) Plasma spraying using Ar-He-H2 gas mixtures. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 803–814Google Scholar
  4. 4.
    Boulos M, Fauchais P, Pfender E (1994) Thermal plasma fundamentals and applications, vol 1. Plenum, New York, NYGoogle Scholar
  5. 5.
    Peters J, Yin F, Borges C, Heberlein J, Hackett C (2005) Erosion mechanisms of hafnium cathodes at high current. J Phys D Appl Phys 38:1781–1794Google Scholar
  6. 6.
    Maecker H (1955) Plasmaströmungen in Lichtbögen infolge eigenmagnetischer Kompression. Z Phys 141:198–216Google Scholar
  7. 7.
    Murphy AB (1996) The influence of demixing on the properties of a free-burning arc. Appl Phys Lett 69:328–330Google Scholar
  8. 8.
    Snyder SC, Murphy AB, Hofeldt DL, Reynolds LD (1995) Diffusion of atomic hydrogen in an atmospheric pressure free-burning arc discharge. Phys Rev E 52:2999–3009Google Scholar
  9. 9.
    Fincke JR, Swank WD, Haggard DC (1993) Entrainment and demixing in subsonic argon:helium plasma jets. J Therm Spray Technol 2(4):345–350Google Scholar
  10. 10.
    Mariaux G, Fauchais P, Vardelle A, Pateyron B (2001) Modeling of the plasma spray process: from powder injection to coating formation. J High Temp Mater Process 5:61–85Google Scholar
  11. 11.
    Baudry C, Vardelle A, Mariaux G, Abbaoui M, Lefort A (2005) Numerical modeling of a dc non-transferred plasma torch: movement of the arc anode attachment and resulting anode erosion. High Temp Mater Processes 9(1):1–18Google Scholar
  12. 12.
    Dussoubs B (1998) 3D modeling of the plasma spray process. Ph.D. Thesis, University of Limoges, Limoges, FranceGoogle Scholar
  13. 13.
    Trelles JP, Heberlein J (2006) Simulation results of arc behavior in different plasma spray torches. J Therm Spray Technol 15(4):563–569Google Scholar
  14. 14.
    Trelles JP (2007) Finite element modeling of flow instabilities in arc plasma torches. Ph.D. Thesis, University of Minnesota, MinneapolisGoogle Scholar
  15. 15.
    Paik S, Huang PC, Heberlein J, Pfender E (1993) Determination of the arc-root position in a DC plasma torch. Plasma Chem Plasma Process 13(3):379–397Google Scholar
  16. 16.
    Trelles JP, Heberlein J, Pfender E (2007) Non-equilibrium modeling of arc plasma torches. J Phys D Appl Phys 40:5937–5952Google Scholar
  17. 17.
    Dinulescu HA, Pfender E (1980) Analysis of the anode boundary layer of high intensity arcs. J Appl Phys 51(6):3149–3157Google Scholar
  18. 18.
    Leveroni E, Rahal AM, Pfender E (1987) Electron temperature measurements in the near-wall region of wall-stabilized arcs. In: Akashi K, Kinbara A (eds) Proceedings of 8th international symposium on plasma chemistry, Tokyo, Japan. University of Tokyo, Tokyo, pp 346–351Google Scholar
  19. 19.
    Pfender E (1994) Thermal plasma-wall boundary layers. In: Fauchais P (ed) Proceedings of international symposium on heat and mass transfer under plasma conditions, Cesme, Turkey. Begell House, New York, NY, pp 223–235Google Scholar
  20. 20.
    Jenista J, Heberlein J, Pfender E (1997) Model for anode heat transfer from an electric arc. In: Fauchais P (ed) Proceedings of fourth international thermal plasma processes conference, Athens, Greece. Begell House, New York, NY, pp 805–815Google Scholar
  21. 21.
    Jenista J, Heberlein J, Pfender E (1997) Numerical model of the anode region of high-current electric arcs. IEEE Trans Plasma Sci 25(5):883–890Google Scholar
  22. 22.
    Roumilhac P, Coudert J-F, Fauchais P (1990) Influence of the arc chamber design and the surrounding atmosphere on the characteristics and temperature distribution of Ar-H2 and Ar-He spraying plasma jets. In: Apelian D, Szekely J (eds) Plasma processing and synthesis of materials, vol 190. MRS, Pittsburgh, PA, pp 227–333Google Scholar
  23. 23.
    Rahmane M, Soucy G, Boulos M, Henne R (1998) Fluid dynamic study of direct current plasma jets for plasma spraying applications. J Therm Spray Technol 7(3):349–356Google Scholar
  24. 24.
    Sanders NA, Pfender E (1984) Measurement of anode falls and anode heat transfer in atmospheric pressure high intensity arcs. J Appl Phys 55(3):714–722Google Scholar
  25. 25.
    Pfender E (1978) Electric arcs and arc gas heaters. In: Hirsh MN, Oskam HJ (eds) Gaseous electronics: electrical discharges, vol 1. Academic, New York, pp 291–398Google Scholar
  26. 26.
    Sun X, Heberlein J (2005) Fluid dynamic effects on plasma torch anode erosion. J Therm Spray Technol 14(1):39–44Google Scholar
  27. 27.
    Yang G, Heberlein J (2007) The anode region of high intensity arcs with cold cross flows. J Phys D Appl Phys 40:5649–5662Google Scholar
  28. 28.
    Wutzke SA, Pfender E, Eckert ERG (1968) Symptomatic behavior of an electric arc with a superimposed flow. AIAA J 6(8):1474–1482Google Scholar
  29. 29.
    Duan Z, Heberlein J (2000) Anode boundary layer effects in plasma spray torches. In: Berndt CC (ed) Proceedings of 1st international thermal spray conference, Montreal, Quebec. ASM International, Materials Park, OH, pp 1–7Google Scholar
  30. 30.
    Coudert J-F, Planche M-P, Fauchais P (1994) Anode-arc attachment instabilities in a spray plasma torch. J High Temp Mater Process 3:639–651Google Scholar
  31. 31.
    Coudert J-F, Planche M-P, Fauchais P (1995) Characterization of d.c. plasma torch voltage fluctuations. Plasma Chem Plasma Process 16(1):211S–227SGoogle Scholar
  32. 32.
    Duan Z, Heberlein J (2002) Arc instabilities in a plasma spray torch. J Therm Spray Technol 11(1):44–51Google Scholar
  33. 33.
    Duan Z, Janisson S, Wittmann K, Coudert J-F, Heberlein J, Fauchais P (1999) Effects of nozzle fluid dynamics on the dynamic characterisitcs of a plasma spray torch. In: Lugscheider E, Kammer PA (eds) Proceedings of united thermal spray conference, Düsseldorf, Germany. ASM International, Materials Park, OH, pp 247–252Google Scholar
  34. 34.
    Planche M-P, Duan Z, Lagnox O, Heberlein J, Coudert J-F, Pfender E (1997) Study of arc fluctuations with different plasma spray torch configurations. In: Wu CK (ed) Proceedings of 13th international symposium on plasma chemistry, Beijing, P.R. China. International Union of Pure and Applied Chemistry, Zürich, pp 1460–1465Google Scholar
  35. 35.
    Dorier JL, Hollenstein C, Salito A, Loch M, Barbezat G (2000) Influence of external parameters on arc fluctuations in a F4 DC plasma torch used for thermal spraying. In: Berndt CC (ed) Proceedings of the 1st international thermal spray conference, Montreal, Quebec, Canada. ASM International, Materials Park, OH, pp 37–43Google Scholar
  36. 36.
    Nogues E, Fauchais P, Vardelle M, Granger P (2007) Relation between the arc-root fluctuations, the cold boundary layer thickness and the particle thermal treatment. J Therm Spray Technol 16(5–6):919–926Google Scholar
  37. 37.
    Coudert J-F, Rat V, Rigot D (2007) Influence of Helmholtz oscillations on arc voltage fluctuations in a dc plasma spraying torch. J Phys D Appl Phys 40:7357–7366Google Scholar
  38. 38.
    Coudert J-F, Rat V (2008) Influence of configuration and operating conditions on the electric arc instabilities of a plasma spray torch: role of acoustic resonance. J Phys D Appl Phys 41:205–208Google Scholar
  39. 39.
    Rat V, Coudert J-F (2011) Improvement of plasma spray torch stability by controlling pressure and voltage dynamic coupling. J Therm Spray Technol 20(1–2):28–38Google Scholar
  40. 40.
    Zhou X, Heberlein J (1998) An experimental investigation of factors affecting arc-cathoe erosion. J Phys D Appl Phys 31(19):2577–2590Google Scholar
  41. 41.
    Yang G, Heberlein J (2007) Instabilities in the anode region of atmospheric pressure arc plasmas. Plasma Sources Sci Technol 16:765–772Google Scholar
  42. 42.
    Rigot D, Delluc G, Pateyron B, Coudert J, Fauchais P, Wigren J (2003) Transient evolution and shift of signals emitted by a d.c. plasma gun (type PTF4). J High Temp Mater Process 7:175–186Google Scholar
  43. 43.
    Leblanc L, Moreau C (2002) The long-term stability of plasma spraying. J Therm Spray Technol 11(3):380–386Google Scholar
  44. 44.
    Duan Z, Beall L, Schein J, Heberlein J, Stachowicz M (2000) Diagnostics and modeling of an argon/helium plasma spray process. J Therm Spray Technol 9(2):225–234Google Scholar
  45. 45.
    Bisson JF, Moreau C, Dorfman M, Dambra C, Mailon J (2005) Influence of hydrogen on the microstructure of plasma-sprayed yttria-stabilized zirconia coatings. J Therm Spray Technol 14(1):85–90Google Scholar
  46. 46.
    Vardelle A, Vardelle M, Fauchais P, Li K-I, Dussoubs B, Themelis NJ (2001) Controlling particle injection in plasma spraying. J Thermal Spray Technol 10:267–289Google Scholar
  47. 47.
    Williamson RL, Fincke JR, Chang CH (2002) Numerical study of the relative importance of turbulence, particle size and density, and injection parameters on particle behavior during thermal plasma spraying. J Therm Spray Technol 11(1):107–118Google Scholar
  48. 48.
    Renouard-Vallet G, Bianchi L, Sauvet AL, Fauchais P, Vardelle M, Boulos M, Gitzhofer F (2004) Elaboration of SOFCs electrolyte by air plasma spraying and vacuum plasma spraying: comparison of electrolyte properties. In: Ohmori A (ed) Proceedings of international thermal spray conference, Osaka, Japan. ASM International, Materials Park, OH, pp 132–137Google Scholar
  49. 49.
    Fauchais P, Vardelle M (2010) Sensors in spray processes. J Therm Spray Technol 19(4):668–694Google Scholar
  50. 50.
    Swank WD, Fincke J, Haggard DC, Sampath S, Smith W (1997) The influence of gun parameters on co-injected particles in the spraying of metal-ceramic functionally graded materials. In: Berndt CC (ed) Proceedings of the united thermal spray conference, Indianapolis, IN. ASM International, Materials Park, OH, pp 451–458Google Scholar
  51. 51.
    Wan YP, Gupta V, Deng Q, Sampath S, Prasada V, Williamson RL, Fincke J (2001) Modeling and visualization of plasma spraying of functionally graded materials and its application to the optimization of spray conditions. J Therm Spray Technol 10(2):382–389Google Scholar
  52. 52.
    Dussoubs B, Vardelle A, Mariaux G, Fauchais P, Themelis NJ (1999) Modeling of simultaneous plasma spraying of two powders. In: Lugsheider E, Kammer PA (eds) Proceedings of united thermal spray society, Düsseldorf, Germany. ASM International, Materials Park, OH, pp 793–798Google Scholar
  53. 53.
    Dussoubs B, Vardelle A, Mariaux G, Themelis NJ, Fauchais P (2001) Modeling of plasma spraying of two powders. J Therm Spray Technol 10:105–110Google Scholar
  54. 54.
    Pfender E (1989) Particle behavior in thermal plasmas. Plasma Chem Plamsa Process 9(1):167S–194SGoogle Scholar
  55. 55.
    Pfender E, Lee YC (1985) Particle dynamics and particle heat and mass transfer in thermal plasmas. Part I. The motion of a single particle without thermal effects. Plasma Chem Plasma Process 5(3):211–237Google Scholar
  56. 56.
    Chyou YP, Pfender E (1989) Modeling of plasma jets with superimposed vortex flow. Plasma Chem Plasma Process 9(2):291–328Google Scholar
  57. 57.
    Chyou YP, Pfender E (1989) Behavior of particulates in thermal plasma flows. Plasma Chem Plamsa Process 9(1):45–71Google Scholar
  58. 58.
    Li HP, Pfender E (2005) Three-dimensional effects inside a dc arc plasma torch. IEEE Trans Plasma Sci 33(2):400–401Google Scholar
  59. 59.
    Muggli F, Molz R, McCullough R, Hawley D (2007) Improvement of plasma gun performance using comprehensive fluid element modeling: Part I. J Therm Spray Technol 16(5–6):677–683Google Scholar
  60. 60.
    Molz R, McCullough R, Hawley D, Muggli F (2007) Improvement of plasma gun performance using comprehensive fluid element modeling II. J Therm Spray Technol 16(5–6):684–689Google Scholar
  61. 61.
    Park JH, Duan Z, Heberlein J, Pfender E, Lau YC, Wang HP (1997) Modeling of fluctuations experienced in N2 and N2H2 plasma jets issuing into atmospheric air. In: Wu CK (ed) Proceedings of 13th international symposium on plasma chemistry, Beijing, P.R. China. International Union of Pure and Applied Chemistry, Zurich, pp 326–331Google Scholar
  62. 62.
    Park JH, Heberlein J, Pfender E, Lan YC, Rund J, Wang HP (1999) Particle behavior in a fluctuating plasma jet. In: Fauchais P, Van der Mullen J, Heberlein J (eds) Proceedings of 2nd international symposium on heat and mass transfer under plasma conditions, Antalya, Turkey. New York Academy of Sciences, New York, pp 417–424Google Scholar
  63. 63.
    Huang PC, Heberlein J, Pfender E (1995) Particle behavior in a two-fluid turbulent plasma jet. Surf Coat Technol 73(3):142–151Google Scholar
  64. 64.
    Huang PC, Pfender E, Heberlein J (1995) New modeling approach for calculating particle trajectories in a turbulent plasma spray jet. In: Ohmori A (ed) Proceedings of 14th international thermal spray conference, Kobe, Japan. High Temperature Society of Japan, Osaka, pp 1159–1163Google Scholar
  65. 65.
    Huang PC, Heberlein J, Pfender E (1995) A two-fluid model of turbulence for a thermal plasma jet. Plasma Chem Plasma Process 15(1):25–46Google Scholar
  66. 66.
    Williamson RL, Fincke JR, Crawford DM, Snyder SC, Swank WD, Haggard DC (2003) Entrainment in high-velocity, high-temperature plasma jets. Part II: Computational results and comparison to experiment. Int J Heat Mass Transfer 46:4215–4228Google Scholar
  67. 67.
    Fincke JR, Crawford DM, Snyder SC, Swank WD, Haggard DC, Williamson RL (2003) Entrainment in high-velocity, high temperature plasma jets. Part I: Experimental results. Int J Heat Mass Transfer 46:4201–4213Google Scholar
  68. 68.
    Mariaux G, Baudry C, Vardelle A (2001) 3-D modeling of gas flow and particle spray jet in plasma spraying. In: Berndt CC, Khor KA, Lugsheider E (eds) Proceedings of the international thermal spray conference, Singapore. ASM International, Materials Park, OH, pp 933–942Google Scholar
  69. 69.
    Baudry C, Vardelle A, Mariaux G, Delalondre C, Meillot E (2004) Three-dimensional and time-dependent model of the dynamic behavior of the arc in a plasma spray torch. In: Ohmori A (ed) Proceedings of the international thermal spray conference, Osaka, Japan. ASM International, Materials Park, OH, pp 717–723Google Scholar
  70. 70.
    Moreau E, Chazelas C, Mariaux G, Vardelle A (2006) Modeling of the restrike mode operation of a DC plasma spray torch. J Therm Spray Technol 15(4):524–530Google Scholar
  71. 71.
    Trelles JP, Pfender E, Heberlein J (2006) Multiscale finite element modeling of arc dynamics in a DC plasma torch. Plasma Chem Plasma Process 26:557–575Google Scholar
  72. 72.
    Trelles JP, Pfender E, Heberlein J (2007) Modeling of the arc reattachment process in plasma torches. J Phys D Appl Phys 40:5635–5641Google Scholar
  73. 73.
    Trelles JP, Chazelas C, Vardelle A, Heberlein J (2009) Arc plasma torch modeling. J Therm Spray Technol 18(5–6):728–752Google Scholar
  74. 74.
    Rat V, Coudert J-F (2006) A simplified analytical model for dc plasma spray torch: influence of gas properties and experimental conditions. J Phys D Appl Phys 39:4799–4807Google Scholar
  75. 75.
    Vardelle M, Vardelle A, Fauchais P, Boulos MI (1983) Plasma-particle momentum and heat transfer in modeling and measurements. AIChE 29:236–243Google Scholar
  76. 76.
    Vardelle A, Vardelle M, Fauchais P (1982) Influence of velocity and surface temperature of alumina particles on the properties of plasma sprayed coatings. Plasma Chem Plasma Process 2(3):255–291Google Scholar
  77. 77.
    Fincke J, Swank WD, Haggard DC (1993) Plasma spraying of alumina: plasma and particle flow fields. Plasma Chem Plasma Process 13(4):569–600Google Scholar
  78. 78.
    Roumilhac P, Coudert J-F, Fauchais P (1990) Designing parameters of spraying plasma torches. In: Bernecki T (ed) Proceedings of national thermal spray conference, Long Beach, CA. ASM International, Materials Park, OH, pp 11–19Google Scholar
  79. 79.
    Roumilhac P (1990) Contribution to the metrology and understanding of the DC plasma spray torches and transferred arcs for reclamation at atmospheric pressure. Ph.D. Thesis, Université de Limoges, Limoges, FranceGoogle Scholar
  80. 80.
    Coudert J-F, Planche M-P, Fauchais P (1995) Velocity measurement of DC plasma jets based on arc roof fluctuations. Plasma Chem Plasma Process 15(47–70)Google Scholar
  81. 81.
    Outcalt D, Hallberg M, Yang G, Heberlein J, Strykowski P, Pfender E (2007) Diagnostics and control of instabilities in a plasma spray torch. In: Tachibana K (ed) Proceedings of international symposium on plasma chemistry, Kyoto, Japan, 2007. Kyoto University, Kyoto, Unpaginated CDGoogle Scholar
  82. 82.
    Henne R, Bouyer E, Borck V, Schiller G (2001) Influence of anode nozzle and external torch contour on the quality of the atmospheric dc plasma spray process. In: Berndt CC, Khor KA, Lugsheider E (eds) Proceedings of the international thermal spray conference, Singapore. ASM International, Materials Park, OH, pp 471–478Google Scholar
  83. 83.
    Schwenk A, Gruner H, Zimmermann X, Landes K, Nutsch G (2004) Improved nozzle design of de-laval-type nozzles of the atmospheric plamsa spraying. In: Ohmori A (ed) Proceedings of the international thermal spray conference, Osaka, Japan. ASM International, Materials Park, OH, pp 600–605Google Scholar
  84. 84.
    Coudert J-F, Planche M-P, Betoule O, Vardelle M, Fauchais P (1993) Measurement of flow velocity and correlation to particle velocity under plasma spraying conditions. In: Berndt CC, Bernecki TF (eds) Proceedings of the 5th national thermal spray conference, Anaheim, CA. ASM International, Materials Park, OH, pp 19–24Google Scholar
  85. 85.
    Fincke J, Swank WD, Haggard DC (1993) Atmospheric plasma spraying of WC:Co. In: Harry J (ed) Proceedings of international symposium on plasma chemistry. University of Loughborough, Loughborough, pp 145–149Google Scholar
  86. 86.
    Fincke J, Swank WD (1992) Air plasma spraying of zirconia: spray characteristics, deposition efficiency and porosity control by standoff distance. In: Berndt CC (ed) Proceedings of international thermal spray conference, Orlando, FL. ASM International, Materials Park, OH, pp 513–518Google Scholar
  87. 87.
    Planche M-P, Coudert J-F, Fauchais P (1995) Evolution of the plasma flow characteristics, during the first hours, after replacing the set of electrodes. In: Heberlein JV, Ernie DW, Roberts JT (eds) Proceedings of 12th international symposium on plasma chemistry. University of Minnesota, Minneapolis, MN, pp 1475–1480Google Scholar
  88. 88.
    Prystay M, Gougeon P, Moreau C (1996) Correlation between particle temperatrue and velocity and the structure of plasma sprayed zirconia coatings. In: Berndt CC (ed) Proceedings of the 9th national thermal spray conference, Cincinnati, OH. ASM International, Materials Park, OH, pp 511–516Google Scholar
  89. 89.
    Fincke J, Swank WD, Haggard DC (1995) Feedback control of subsonic plasma spray process: system model. In: Berndt CC, Sampath S (eds) Proceedings of national thermal spray conference, Houston, TX. ASM International, Materials Park, OH, pp 117–122Google Scholar
  90. 90.
    Spores R, Pfender E (1989) Flow structure of a turbulent thermal plasma jet. Surf Coat Technol 37(3):251–270Google Scholar
  91. 91.
    Spores R, Pfender E, Heberlein J (1990) Fluid-dynamic characteristics of a plasma spray jet. In: Solonenko OP, Fedorchenko AI (eds) Proceedings of plasma jets in the development of new material technology, Frunze, USSR. V.S.P, Utrecht, pp 699–716Google Scholar
  92. 92.
    Pfender E, Chen WLT, Spores R (1990) A new look at the thermal and gas dynamic characteristics of a plasma jet. In: Berndt CC (ed) Proceedings of the 3rd national thermal spray conference, Long Beach, CA. ASM International, Materials Park, OH, pp 1–10Google Scholar
  93. 93.
    Pfender E, Fincke J, Spores R (1991) Entrainment of cold gas into thermal plasma jets. Plasma Chem Plasma Process 11(4):529–543Google Scholar
  94. 94.
    Brilhac JF, Pateyron B, Delluc G, Coudert J-F, Fauchais P (1995) Study of the dynamic and static behavior of dc vortex plasma torches. Part I: Button type cathode. Plasma Chem Plasma Process 15(1–2):231–255Google Scholar
  95. 95.
    Duan Z, Wittmann K, Coudert J-F, Heberlein J, Fauchais P (1999) Effects of the cold gas boundary layer on arc fluctuations. In: Hrabovsk’y M, Konrád M, Kopeck’y V (eds) Proceedings of 14th international symposium on plasma chemistry, Prague, Czech Republic. Institute of Plasma Physics, CAS, Prague, pp 233–238Google Scholar
  96. 96.
    Fincke J, Swank WD (1991) The effect of plasma jet fluctuations on particle time-temperature histories. In: Bernecki TF (ed) Proceedings of 4th NTSC, Pittsburgh, PA. ASM International, Materials Park, OH, pp 193–198Google Scholar
  97. 97.
    Gregori G, Kortshagen U, Pfender E, Heberlein J (2003) Time-resolved temperature measurements in a turbulent argon plasma jet. In: d’Agostino R, Favia P, Fracassi F, Palumbo F (eds) Proceedings of 16th international symposium on plasma chemistry, Taormina, Italy, 2003. University of Bari, Italy, Unpaginated CDGoogle Scholar
  98. 98.
    Duan Z, Beall L, Planche M-P, Heberlein J, Pfender E, Stachowicz M (1997) Arc voltage fluctuations as an indication of spray torch anode condition. In: Berndt CC (ed) Proceedings of 1st united thermal spray conference, Indianapolis, IN. ASM International, Materials Park, OH, pp 407–411Google Scholar
  99. 99.
    Bisson JF, Gauthier B, Moreau C (2003) Effect of plasma fluctuations on in-flight particle parameters. J Therm Spray Technol 12(1):38–43Google Scholar
  100. 100.
    Bisson JF, Moreau C (2003) Effect of direct current plasma fluctuations on in-flight particle parameters: Part II. J Therm Spray Technol 12(2):258–264Google Scholar
  101. 101.
    Moreau C, Leblanc L (2001) Optimization and process control for high performance thermal spray coatings. Key Eng Mater 197:27–58Google Scholar
  102. 102.
    Betoule O (1994) Influence of velocity and temperature distributions of d.c. plasma jets and alumina particles in flight onto coating properties. Universite de Limoges, LimogesGoogle Scholar
  103. 103.
    Mohanty M, Smith RW, Knight R, Chen WLT, Heberlein J (1996) Shrouded air plasma processing of lightweight coatings. In: Berndt CC (ed) Proceedings of 9th NTSC, Cincinnati, OH. ASM International, Materials Park, OHGoogle Scholar
  104. 104.
    Burgess A (2002) Hastelloy C-276 parameter study using the axial III plasma spray system. In: Lugsheider E (ed) Proceedings of international thermal spray conference, Essen, Germany. ASM International, Materials Park, OH, pp 516–518Google Scholar
  105. 105.
    Chen HC, Duan Z, Heberlein J, Pfender E (1996) Influence of shroud gas flow and swirl magnitude on arc jet stability and coating quality in plasma spray. In: Berndt CC (ed) Proceedings of thermal spray: Particle solutions for engineering problems, Cincinnati, OH. AMS International, Materials Park, OH, pp 533–561Google Scholar
  106. 106.
    Malmberg S, Leung K, Heberlein J, Pfender E (1995) Particle trajectory control for DC plasma spraying. In: Ohmori A (ed) Proceedings of thermal spraying: Current status and future trends, Kobe, Japan. High Temperature Society of Japan, Kobe, pp 371–375Google Scholar
  107. 107.
    Outcalt D, Hallberg M, Yang G, Strykowski P, Heberlein J, Pfender E (2006) Instabilities in plasma spray jets. In: Marple B (ed) Proceedings of international thermal spray conference, Seattle, WA. ASM International, Materials Park, OH, Unpaginated CDGoogle Scholar
  108. 108.
    Vincenzi L, Suzuki S, Outcalt D, Heberlein J (2010) Controlling spray torch fluid dynamics – effect on spray particle and coating characteristics. J Therm Spray Technol 19(4):713–722Google Scholar
  109. 109.
    Okada M, Marno H (1968) New plasma spraying and its application. British Welding J.:371–378Google Scholar
  110. 110.
    Guest CJS, Ford KG (1975) US Patent 3892882Google Scholar
  111. 111.
    Houben JM, Zaat JH (1976) Shielded open air plasma spraying of reactive materials. In: Proceedings of 8th international thermal spray conference. American Welding Society, FL, p 78Google Scholar
  112. 112.
    Borisov Y (1993) Structure and parameters of hetergeneous plasma jets shielded by water flow. In: Proceedings of 2nd plasma Technik symposium, Wohlen, Switzerland, pp 1–8Google Scholar
  113. 113.
    Dykhuizen RC, Smith MF (1989) Investigations into the plasma spray process. Surf Coat Technol 37(4):349–358Google Scholar
  114. 114.
    Maecker H (1956) Arc source for spectroscopic measurements of isothermal plasma. Z Naturforsch 11a:457Google Scholar
  115. 115.
    Hermann W, Schade E (1970) Transportfunktionen von Stickstoff bis 26000. KZ Physik 233:333–350Google Scholar
  116. 116.
    Zhukov MF (1994) Linear direct current plasma torches. In: Solonenko OP, Zhukov MF (eds) Proceedings of thermal plasma and new materials technology. Cambridge Interscience, Cambridge, pp 9–21Google Scholar
  117. 117.
    Zhukov MF (1989) Electric arc generators of low temperature plasma. High temperature dust laden jets. VPS, UtrechtGoogle Scholar
  118. 118.
    Zierhut J, Haslbeck P, Landes KD, Muller M, Schutz M (1998) TRIPLEX – an innovative three-cathode plasma torch. In: Coddet C (ed) Proceedings of international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 1374–1380Google Scholar
  119. 119.
    Barbezat G, Landes K (2000) Plasma technology TRIPLEX for the deposition of ceramic coatings in the industry. In: Berndt CC (ed) Proceedings of 1st international thermal spray conference, Montreal, Canada. ASM International, Materials Park, OH, pp 881–885Google Scholar
  120. 120.
    Mauer G, Vaßen R, Stöver D, Kirner S, Marqués JL, Zimmermann S, Forster G, Schein J (2011) Improving power injection in plasma spraying by optical diagnostics of the plasma and particle characterization. J Spray Technol 20(1–2):3–11Google Scholar
  121. 121.
    Mauer G, Vaßen R, Stöver D (2011) Plasma and particle temperature measurements. J Therm Spray Technol 20(3):391–406Google Scholar
  122. 122.
    Moreau C, Gougeon P, Burgess A, Ross D (1995) Characterization of particle flows in an axial injection plasma torch. In: Berndt CC, Sampath S (eds) Proceedings of 8th national thermal spray conference, Houston, TX. ASM International, Materials Park, OH, pp 141–147Google Scholar
  123. 123.
    Lu ZP, Pfender E (1989) Synthesis of AIN powder in a triple torch plasma reactor. In: d’Agostino R (ed) Proceedings of 9th international symposium on plasma chemistry, Pugnochiuso, Italy. University of Bari, Bari, pp 675–680Google Scholar
  124. 124.
    Young RM, Pfender E (1989) A novel approach for introducing particulate matter into thermal plasmas: the triple-cathode arc. Plasma Chem Plasma Process 9(4):465–481Google Scholar
  125. 125.
    Chen HC, Heberlein J, Henne R (2000) Integrated fabrication process for solid oxide fuel cells in a triple torch plasma reactor. J Therm Spray Technol 9(3):348–353Google Scholar
  126. 126.
    Asmann M, Wank A, Kim H, Heberlein J, Pfender E (2001) Characterization of the converging jet region in a triple torch plasma reactor. Plasma Chem Plasma Process 21:37–63Google Scholar
  127. 127.
    Guru DN, Palacio M, Mook W, Chambers M, Racek O, Heberlein J, Gerberich W, Berndt CC (2004) Nanophase partially stabilized zirconia intermediate layer for strain accommodation in a multi-layer thermal barrier coating. In: Ohmori A (ed) Proceedings of international thermal spray conference, Osaka, Japan. ASM International, Materials Park, OHGoogle Scholar
  128. 128.
    Guru DN, Heberlein J, Mook W, Gerberich W, Berndt CC (2006) Nanostructured partially stabilized zirconia as an interlayer in a multi layered thermal barrier coating. In: Marple B (ed) Proceedings of international thermal spray conference, Seattle, WA. ASM International, Materials Park, OH, Unpaginated CDGoogle Scholar
  129. 129.
    Barbezat G (2001) The internal plasma spraying on powerful technology for the aerospace and automotive industries. In: Berndt CC, Khor KA, Lugscheider EF (eds) Proceedings of international thermal spray conference, Singapore. ASM International, Materials Park, OH, pp 135–140Google Scholar
  130. 130.
    Morishita T (1991) Coatings by 250 kW plasma jet spray system. In: Blum-Sandmeier S, Eschnauer H, Huber P, Nicoll A (eds) Proceedings of 2nd plasma technik symposium, Luzern, Switzerland. Plasma Technik, Wohlen, pp 137–145Google Scholar
  131. 131.
    Gerdien H, Lotz A (1922) Wiss. Veröff. Siemens-Konz.489-4Google Scholar
  132. 132.
    Hrabovsky M (1992) Plasma generator with water stabilized DC arc. In: Hooke W, Sindoni E (eds) Proceedings of industrial applications of plasma physics, Varenna, Italy. Italian Physical Society, Varenna, pp 557–562Google Scholar
  133. 133.
    Chraska P, Hrabovsky M (1992) An overview of water stabilized plasma guns and their applications. In: Berndt CC (ed) Proceedings of thermal spray: International advances in coatings technology, Orlando, FL. ASM International, Materials Park, OH, pp 81–85Google Scholar
  134. 134.
    Hrabovsky M, Kopecky V, Sember V (1995) Water stabilized arc as a source of thermal plasma. In: Fauchais P (ed) Proceedings of international symposium on heat and mass transfer under plasma conditions, Cesme, Turkey. Begell House, New York, NY, pp 91–98Google Scholar
  135. 135.
    Muehlberger E (1988) Industrial plasma processing technology. In: Eschnauer H, Huber P, Nicoll AR, Sondermeier S (eds) Proceedings of 1st plasma-technik symposium, Lucerne, Switzerland. Plasma-Technik AG, Wohlen, pp 105–118Google Scholar
  136. 136.
    Meyer PJ, Hawley D (1991) LPPS production systems. In: Bernecki TF (ed) Proceedings of 4th national thermal spray conference, Pittsburgh, PA, 1991. ASM International, Materials Park, OH, pp 29–38Google Scholar
  137. 137.
    Lang M, Henne R, Schaper S, Schiller G (2001) Development and characterization of vacuum plasma sprayed thin film solid oxide fuel cells. J Therm Spray Technol 10(4):618–625Google Scholar
  138. 138.
    Refke A, Barbezat G, Dorier JL, Gindrat M, Hollenstein C (2003) Characterization of LPPS processes under various spray conditions for potential applications. In: Marple B, Moreau C (eds) Proceedings of the international thermal spray conference, Orlando, FL. ASM International, Materials Park, OH, pp 581–588Google Scholar
  139. 139.
    Scrivani A, Bardi U, Carrafiello L, Lavacchi A, Niccolai F, Rizzi G (2003) A comparative study of high velocity oxygen fuel, vacuum plasma spray, and axial plasma spray for the deposition of CoNiCrAIY bond coat alloy. J Therm Spray Technol 12(4):504–507Google Scholar
  140. 140.
    Mayr W, Henne R (1988) Investigation of a VPS burner with laval nozzel using an automated laser doppler measuring system. In: Eschnauer H, Huber P, Nicoll AR, Sandmeier S (eds) Proceedings of 1st plasma-technik symposium, Lucerne, Switzerland. Plasma Technik, Wohlen, pp 87–97Google Scholar
  141. 141.
    Henne R, Mayr W, Reusch A (1993) Influence of nozzle geometry on particle behavior and coating quality in high velocity VPS. In: Proceedings of thermal spray conference TS93, Aachen, Germany. DVS, Aachen, pp 7–11Google Scholar
  142. 142.
    Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas turbine engine applications. Science 296(5566):280–284Google Scholar
  143. 143.
    von Niessen K, Gindrat M (2011) Plasma sprayed-PVD: a new thermal spray process to deposit out of the vapor phase. J Therm Spray Technol 20(4):736–743Google Scholar
  144. 144.
    Freslon A (1995) Plasma spraying at a controlled temperature and atmosphere. In: Berndt CC, Sampath S (eds) Proceedings of 8th national thermal spray conference, Houston, TX. ASM International, Materials Park, OH, pp 57–63Google Scholar
  145. 145.
    Jäger DA, Stöver D, Schlump W (1992) High pressure plasma spraying in controlled atmosphere up to 2 bars. In: Berndt CC (ed) Proceedings of international thermal spray conference, Orlando, FL. ASM International, Material Park, OH, pp 57–63Google Scholar
  146. 146.
    Stahr C, Saaro S, Berger L-M, Dubsky J, Neufuss K, Hermann M (2007) Dependence of the stabilization of alpha-alumina on the spray process. J Therm Spray Technol 16(5–6):822–830Google Scholar
  147. 147.
    Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23(1):1–46Google Scholar
  148. 148.
    Kitamura J, Ibe H, Yuasa F, Mizuno H (2008) Plasma sprayed coatings of high-purity ceramics for semiconductor and flat-panel-display production equipment. J Therm Spray Technol 17(5–6):878–886Google Scholar
  149. 149.
    Toma FL, Scheitz S, Berger L-M, Sauchuk V, Kusnezoff M, Thiele S (2011) Comparative study of the electrical properties and characteristics of thermally sprayed alumina and spinal coatings. J Therm Spray Technol 20(1–2):195–204Google Scholar
  150. 150.
    Costil S, Verdy C, Bolot R, Coddet C (2007) On the role of spraying process on microstructural, mechanical, and thermal response of alumina coatings. J Therm Spray Technol 16(5–6):839–843Google Scholar
  151. 151.
    Darut G, Ageorges H, Denoirjean A, Montavon G, Fauchais P (2008) Effect of the structural scale of plasma-sprayed alumina coatings on their friction coefficients. J Therm Spray Technol 17(5–6):788–795Google Scholar
  152. 152.
    Leivo EM, Vippola MS, Sorsa PPA, Vuoristo PM, Mantyla TA (1997) Wear and corrosion properties of plasma sprayed AI2O3 and Cr2O3 coatings sealed by aluminum phosphates. J Therm Spray Technol 6(2):205–210Google Scholar
  153. 153.
    Berard G, Brun P, Lacombe J, Montavon G, Denoirjean A, Antou G (2008) Influence of a sealing treatment on the behavior of plasma-sprayed alumina coatings operating in extreme environments. J Therm Spray Technol 17(3):410–419Google Scholar
  154. 154.
    Mesrati N, Ajhrourh H, Du N, Treheux D (2000) Thermal spraying and adhesion of oxides onto graphite. J Therm Spray Technol 9(1):95–99Google Scholar
  155. 155.
    Keshri AK, Agarwal A (2011) Wear behavior of plasma-sprayed carbon nanotube-reinforced aluminum oxide coating in marine and high-temperature environments. J Therm Spray Technol 20(6):1217–1230Google Scholar
  156. 156.
    Branland N, Meillot E, Fauchais P, Vardelle A, Gitzhofer F, Boulos M (2006) Relationships between microstructure and electrical properties of RF and DC plasma-sprayed titania coatings. J Therm Spray Technol 15(1):53–62Google Scholar
  157. 157.
    Ctibor P, Neufuss K, Chraska P (2006) Microstructure and abrasion resistance of plasma sprayed titania coatings. J Therm Spray Technol 15(4):689–694Google Scholar
  158. 158.
    Ye FX, Ohmori A, Tsumura T, Nakata K, Li CJ (2007) Microstructural analysis and photocatalytic activity of plasma-sprayed titania-hydroxyapatite coatings. J Therm Spray Technol 16(5–6):776–782Google Scholar
  159. 159.
    Ilavsky J, Berndt CC, Herman H, Chraska P, Dubsky J (1997) Alumina-base plasma-sprayed materials – Part II: Phase transformations in aluminas. J Therm Spray Technol 6(4):439–444Google Scholar
  160. 160.
    Fervel V, Normand B, Coddet C (1999) Tribological behavior of plasma sprayed Ai2O3-based cermet coatings. Wear 230:70–77Google Scholar
  161. 161.
    Yilmaz R, Kurt AO, Demir A, Tath Z (2007) Effects of TiO2 on the mechanical properties of the AI2O3-TiO2 plasma sprayed coating. J Eur Ceram Soc 27:1319–1323Google Scholar
  162. 162.
    Fervel V, Normand B, Liao H, Coddet C, Beche E, Berjoan R (1999) Friction and wear mechanisms of thermally sprayed ceramic and cermet coatings. Surf Coat Technol 111(255–262)Google Scholar
  163. 163.
    Normand B, Fervel V, Coddet C, Nikitine V (2000) Tribological properties of plasma sprayed alumina-titania coatings: role and control of the microstructure. Surf Coat Technol 123:278–287Google Scholar
  164. 164.
    Pawlowski L (1996) Technology of thermally sprayed anilox rolls: state of art, problems, and perspectives. J Therm Spray Technol 5(3):317–334Google Scholar
  165. 165.
    Ahn HS, Kwon OK (1999) Tribological behavior of plasma-sprayed chromium oxide coating. Wear 225–229:814–824Google Scholar
  166. 166.
    Usmani S, Tandon KN (1992) Evaluation of thermally sprayed coatings under reciprocating lubricated wear conditions. J Therm Spray Technol 1(3):249–255Google Scholar
  167. 167.
    Miller RA (1997) Thermal barrier coatings for aircraft engines: history and directions. J Therm Spray Technol 6(1):35–42Google Scholar
  168. 168.
    Parks WP, Hoffman EE, Lee WY, Wright IG (1997) Thermal barrier coatings issues in advanced land-based gas turbines. J Therm Spray Technol 6(2):187–192Google Scholar
  169. 169.
    Marple B, Lima RS, Moreau C, Kruger SE, Xie L, Dorfman M (2007) Yttria-stabilized zirconia thermal barriers sprayed using N2-H2 and Ar-H2 plasmas: influence of processing and heat treatment on coating properties. J Therm Spray Technol 16(5–6):791–797Google Scholar
  170. 170.
    Vaßen R, Jarligo MO, Steinke T, Mack DE, Stöver D (2010) Overview on advanced thermal barrier coatings. Surf Coat Technol 205:938–942Google Scholar
  171. 171.
    Henne R (2007) Solid oxide fuel cells: a challenge for plasma deposition processes. J Therm Spray Technol 16(3):381–403Google Scholar
  172. 172.
    Tsukuda H, Notomi A, Hisatome N (2000) Application of plasma spraying to tubular-type solid oxide fuel cells production. J Therm Spray Technol 9(3):364–368Google Scholar
  173. 173.
    Ma XQ, Zhang H, Dai J, Roth J, Hui R, Xiao TD, Reisner DE (2005) Intermediate temperature solid oxide fuel cell based on fully integrated plasma-sprayed components. J Therm Spray Technol 14(1):61–66Google Scholar
  174. 174.
    Abdel-Samad AA, El-Bahloul AMM, Lugscheider E, Rassoul SA (2000) A comparative study on thermally sprayed alumina based ceramic coatings. J Mater Sci 35:3127–3130Google Scholar
  175. 175.
    Carayon MT, Lacout JL (2003) Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyapatite coatings. J Solid State Chem 172:339–350Google Scholar
  176. 176.
    Khor KA, Cheang P, Wang Y (1998) Plasma spraying of combustion flame spheroidized hydroxyaptite (HA) powders. J Therm Spray Technol 7(2):254–260Google Scholar
  177. 177.
    Heimann RB (1999) Design of novel plasma sprayed hydroxyapatite-bond coat bioceramic systems. J Therm Spray Technol 8(4):597–603Google Scholar
  178. 178.
    Besov AV, Batrak IK (2005) Application of technology of plasma spraying in the fabrication of articles for medical devices. Powder Metallurgy Metal Ceram 44(9–10):511–516Google Scholar
  179. 179.
    Kitamura J, Mizuno H, Kato N, Aoki I (2006) Ceramic coatings prepared by plasma spraying for semiconductor production equipment. Mater Trans 47(7):1677–1683Google Scholar
  180. 180.
    Kitamura J, Tang Z, Mizuno H, Sato K, Burgess A (2011) Structural, mechanical and erosion properties of yttrium oxide coatings by axial suspension plasma spraying for electronics applications. J Therm Spray Technol 20(1–2):170–185Google Scholar
  181. 181.
    Moldovan M, Weyant CM, Lynn Johnson D, Faber KT (2004) Tantalum oxide coatings as candidate environmental barriers. J Therm Spray Technol 13(1):51–56Google Scholar
  182. 182.
    Cojocaru CV, Wang Y, Moreau C, Lima RS, Mesquita-Guimaraes J, Garcia E, Miranzo P, Osendi MI (2011) Mechanical behavior of air plasma-sprayed YSZ functionally graded mullite coatings investigated via instrumented indentation. J Therm Spray Technol 20(1–2):100–107Google Scholar
  183. 183.
    Das S, Ghosh S, Pandit A, Bandyopadhyay K, Chattopadhyay AB, Das K (2005) Processing and characterisation of plasma sprayed zirconia-alumina-mullite composite coating on a mild-steel substrate. J Mater Sci Lett 0022–2460Google Scholar
  184. 184.
    Zeng Y, Lee SW, Ding C (2002) Study on plasma sprayed boron carbide coating. J Therm Spray Technol 11(1):129–133Google Scholar
  185. 185.
    Matejicek J, Chraska P, Linke J (2007) Thermal spray coatings for fusion applications-review. J Therm Spray Technol 16(1):64–83Google Scholar
  186. 186.
    Greuner H, Balden M et al (2004) Evaluation of vacuum plasma-sprayed boron carbide protection for the stainless steel first wall. J Nucl Mater 329–333:849–854Google Scholar
  187. 187.
    Tului M, Ruffini F, Arezzo F, Lasisz S, Znamirowski Z, Pawlowski L (2002) Some properties of atmospheric air and inert gas high-pressure plasma sprayed ZrB2 coatings. Surf Coat Technol 151–152:483–489Google Scholar
  188. 188.
    Pulci G, Tului M, Tirillo J, Marra F, Lionetti S, Valente T (2011) High temperature mechanical behavior of UHTC coatings for thermal protection of re-entry vehicles. J Therm Spray Technol 20(1–2):139–144Google Scholar
  189. 189.
    Li HJ, Fu QG, Yao DJ, Wang YJ, Ma C, Wei JF, Han ZH (2011) Microstructures and ablation resistance of ZrC coating for SiC-coated carbon/carbon composites prepared by supersonic plasma spraying. J Therm Spray Technol 20(6):1286–1291Google Scholar
  190. 190.
    Hu C, Niu Y, Li HJ, Ren M, Zheng X, Sun J (2012) SiC coatings for carbon/carbon composites fabricated by vacuum plasma spraying technology. J Therm Spray Technol 21(1):16–22Google Scholar
  191. 191.
    Siegmann S, Brandt O, Dvorak M (2004) Thermally sprayed wear resistant coatings with nanostructured hard phases. J Therm Spray Technol 31(1):37–43Google Scholar
  192. 192.
    Borisova, Yu S (2008) Self-propagating high-temperature synthesis for the deposition of thermally-sprayed coatings. Powder Metallurgy Metal Ceram 47(1–2):80–94Google Scholar
  193. 193.
    Basak AK, Achanta S, Celis JP, Vardavoulias M, Matteazzi P (2008) Structure and mechanical properties of plasma sprayed nanostructured alumina and FeCuAl-alumina cermet coatings. Surf Coat Technol 202:2368–2373Google Scholar
  194. 194.
    Hwang JH, Han MS, Kim DY, Youn JG (2006) Tribological behavior of plasma spray coatings for marine diesel engine piston ring and cylinder liner. J Mater Eng Perform 15(3):328–335Google Scholar
  195. 195.
    Ageorges H, Ctibor P, Medarhri Z, Touimi S, Fauchais P (2006) Influence of the metallic matrix ratio on the wear resistance (dry and slurry abrasion) of plasma sprayed cermet (chromia/stainless steel) coatings. Surf Coat Technol 201:2006–2011Google Scholar
  196. 196.
    Hashemi SM, Enayati MH, Fathi MH (2009) Plasma spray coatings of Ni-Al-SiC composite. J Therm Spray Technol 18(2):284–291Google Scholar
  197. 197.
    Economou S, De Bonte M, Celis JP, Smith RW, Lugscheider E (2000) Tribological behaviour at room temperature and at 550°C of TiC-based plasma sprayed coatings in fretting gross slip conditions. Wear 244:165–179Google Scholar
  198. 198.
    Brindley WJ (1997) Properties of plasma-sprayed bond coats. J Therm Spray Technol 6(1):85–90Google Scholar
  199. 199.
    Feuerstein A, Knapp J, Taylor T, Ashary A, Bolcavage A, Hitchman N (2008) Technical and economical aspects of current thermal barrier coating systems for gas turbine engines by thermal spray and EBPVD: a review. J Therm Spray Technol 17(2):199–213Google Scholar
  200. 200.
    Koomparkping T, Damrongrat S, Niranatlumpong P (2005) Al-rich precipitation in CoNiCrAlY bondcoat at high temperature. J Therm Spray Technol 14(2):264–267Google Scholar
  201. 201.
    Sidhu BS, Prakash S (2007) Analytical studies on the behavior of nickel and cobalt base shrouded plasma spray coatings at elevated temperature in air. Oxid Met 67:279–298Google Scholar
  202. 202.
    Castro RG, Bartlett AH, Hollis KJ, Fields RD (1997) The effect of substrate temperature on the thermally diffusivity and bonding characteristics of plasma sprayed beryllium. Fusion Eng Design 37:243–252Google Scholar
  203. 203.
    Morks MF, Tsunekawa Y, Okumiya M, Shoeib MA (2003) Splat microstructure of plasma sprayed cast iron with different chamber pressures. J Therm Spray Technol 12(2):282Google Scholar
  204. 204.
    Schiller G, Henne R, Borck V (1995) Vacuum plasma spraying of high-performance electrodes for alkaline water electrolysis. J Therm Spray Technol 4(2):185–194Google Scholar
  205. 205.
    Tani K, Harada Y (2007) Enhancement of service life of steam generating tubes in oil-fired boiler for power generation employing plasma spray technology. J Therm Spray Technol 16(1):111–117Google Scholar
  206. 206.
    Longa-Nava E, Takemoto M, Hidaka K (1995) High-temperature corrosion performance of plasma-sprayed CrNiMoSiB coatings. J Therm Spray Technol 4(2):169–174Google Scholar
  207. 207.
    Singh H, Prakash S, Puri D, Phase DM (2006) Cyclic oxidation behavior of some plasma sprayed coatings in Na2SO4-60%V2O5 environment. J Mater Eng Perform 15(6):729–741Google Scholar
  208. 208.
    Miguel JM, Vizcaino S, Lorenzana C, Cinca N, Guilemany JM (2011) Tribological behavior of bronze composite coatings obtained by plasma thermal spraying. Tribol Lett 42:263–273Google Scholar
  209. 209.
    Ahn J, Hwang B, Lee S (2005) Improvement of wear resistance of plasma-sprayed molybdenum blending coatings. J Therm Spray Technol 14(2):251–257Google Scholar
  210. 210.
    Niranatlumpong P, Koipraser H (2010) The effect of Mo content in plasma-sprayed Mo-NiCrBSi coating on the tribological behavior. Surf Coat Technol 205:483–489Google Scholar
  211. 211.
    Prudenziati M, Lassinantti Gualtieri M (2008) Electrical properties of thermally sprayed Ni and Ni20Cr-based resistors. J Therm Spray Technol 17(3):385–394Google Scholar
  212. 212.
    Floristán M, Fontarnau R, Killinger A, Gadow R (2010) Development of electrically conductive plasma sprayed coatings on glass ceramic substrates. Surf Coat Technol 205:1021–1028Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations