Advertisement

Cold Spray

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos
Chapter

Abstract

Cold spray is a kinetic spray process, utilizing supersonic jets of compressed gas to accelerate near-room temperature powder particles to ultrahigh velocities. The solid ductile particles, travelling at velocities between 300 and 1500 m/s, plastically deform on impact with the substrate and consolidate to create a coating. First are presented the different types of cold sprays: conventional ones, using nitrogen or helium, with particle velocities in the 500–900 m/s range, the kinetic spray process working in air, the pulsed gas dynamic spraying process, using a shock generator, the low pressure cold spray (p < 1 MPa), and finally the vacuum cold spray. Conventional cold spray, representing most processes, is developed: models, deposition of the first layer, critical and erosion velocities, coating formation with deposition parameters, and the influence of substrates and deposited materials. The sprayed materials and applications are then discussed. At last is presented summarily low pressure cold spray process.

Keywords

Mach Number Particle Velocity Composite Coating Nozzle Exit Critical Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

ABS

Adiabatic shear band

LPCS

Low pressure cold spray

HV

Vickers hardness

PGDS

Pulsed gas dynamic spraying

PIC

Particle impact conditions

WS

Window of spray ability

References

  1. 1.
    Irissou E, Legoux J-G, Ryabinin AN, Jodoin B, Moreau C (2008) Review on cold spray process and technology: part I – intellectual property. J Therm Spray Technol 17(4):495–516Google Scholar
  2. 2.
    Davis JR (ed) (2004) Handbook of thermal spray technology. ASM International, Materials Park, OHGoogle Scholar
  3. 3.
    Dykhuizen RC, Smith MF (1998) Gas dynamic principles of cold spray. J Therm Spray Technol 7(2):205–212Google Scholar
  4. 4.
    Champagne V (ed) (2007) The cold spray materials deposition process: fundamentals and applications. Woodhead Publications, CambridgeGoogle Scholar
  5. 5.
    Papyrin A (2001) Cold spray technology. Adv Mater Process 159:49–51Google Scholar
  6. 6.
    Champagne VK Jr, Helfritch D, Leyman P, Grendahl S, Klotz B (2005) Interface material mixing formed by the deposition of copper on aluminum by means of the cold spray process. J Therm Spray Technol 14(3):330–335Google Scholar
  7. 7.
    Van Steenkiste TH, Smith JR, Teets RE, Moleski JJ, Gorkiewicz DW 2000 U.S. Patent 6,139,913, Kinetic spray coating method and apparatusGoogle Scholar
  8. 8.
    Van Steenkiste TH, Smith JR, Teets RE, Moleski JJ, Gorkiewicz DW (2001) U.S. Patent 6,283,386B1, Kinetic spray coating apparatusGoogle Scholar
  9. 9.
    Van Steenkiste TH, Smith JR, Teets RE (2002) Aluminum coatings via kinetic spray with relatively large powder particles. Surf Coat Technol 54:237–52Google Scholar
  10. 10.
    Van Steenkiste T, Smith JR (2004) Evaluation of coatings produced via kinetic and cold spray processes. J Therm Spray Technol 13(2):274–282Google Scholar
  11. 11.
    Jodoin B, Richer P, Bérubé G, Ajdelsztajn L, Erdi-Betchi A, Yandouzi M (2007) Pulsed-gas dynamic spraying: process analysis, development and selected coating examples. Surf Coat Technol 201:7544–7551Google Scholar
  12. 12.
    Yandouzi M, Sansoucy E, Ajdelsztajn L, Jodoin B (2007) WC-based cermet coatings produced by cold gas dynamic and pulsed gas dynamic spraying processes. Surf Coat Technol 202:382–39Google Scholar
  13. 13.
    Yandouzi M, Ajdelsztajn L, Jodoin B (2008) WC-based composite coatings prepared by the pulsed gas dynamic spraying process: Effect of the feedstock powders. Surf Coat Technol 202:3866–3877Google Scholar
  14. 14.
    Boro Djordjevic B, Maev RG (2006) SIMAT application for aerospace corrosion protection and structural repair. In: Marple B (ed) ITSC 2006. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  15. 15.
    Kashirin A, Klynev O, Buzdygar T, Shkodin A (2007) DYMET technology evolution and application. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  16. 16.
    Kosarev VF, Alkhimov AP, Klinkov SV, Papyrin AN (2003) On some aspects of gas dynamics of the cold spray process. J Therm Spray Technol 12(2):265–281Google Scholar
  17. 17.
    Alkimov AP, Kosarev VF, Nesterovich NI, Papyrin AN “Method of Applying Coatings,” Russian Patent No. 1,618,778, Sept 8, 1990 (Priority of the Invention: Jun 6, 1986)Google Scholar
  18. 18.
    Alkimov AP, Papyrin AN, Kosarev VF, Nesterovich NI, Shushpanov MM Gas dynamic spraying method for applying a coating. US Patent No. 5,302,414, Apr 12, 1994, Re-examination Certificate, Feb 25, 1997Google Scholar
  19. 19.
    Alkimov AP, Papyrin AN, Kosarev VF, Nesterovich NI, Shushpanov MM “Method and Device for Coating,” European Patent No. 0484533, Jan 25, 1995Google Scholar
  20. 20.
    Fan S-Q, Yang G-J, Liu G-J, Li C-X, Li C-J, Zhang LZ (2006) Characterization of microstructure of TiO2 coating deposited by vacuum cold spraying. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  21. 21.
    Sheng-Qiang F, Guan-Jun Y, Guang-Jian L, Cheng-Xin L, Chang-jiu L, Ling-Zi Z (2006) Characterization of microstructure of TiO2 coating deposited by vacuum cold spraying. J Therm Spray Technol 15(4):513–520Google Scholar
  22. 22.
    Guan-Jun Y, Li C-J, Fan S-Q, Wang Y-Y, Li C-X (2007) Influence of annealing on photocatalytic performance and adhesion of vacuum cold-sprayed nanostructured TiO2 coating. J Therm Spray Technol 16(5–6):873–880Google Scholar
  23. 23.
    Sheng-Qiang F, Li C-J, Yang G-J, Zhang L-Z, Gao J-C, Xi Y-X (2007) Fabrication of nano-TiO2 coating for dye-sensitized solar cell by vacuum cold spraying at room temperature. J Therm Spray Technol 16(5–6):893–897Google Scholar
  24. 24.
    Stoltenhoff T, Kreye H, Richter HJ (2002) An analysis of the cold spray process and its coatings. J Therm Spray Technol 11(4):542–550Google Scholar
  25. 25.
    Alkhimov AP, Kosarev VF, Klinkov SV (2001) The features of cold spray nozzle design. J Therm Spray Technol 10(2):375–381Google Scholar
  26. 26.
    Sakaki K, Shimizu Y (2001) Effect of the increase in the entrance convergent section length of the gun nozzle on the high-velocity oxygen fuel and cold spray process. J Therm Spray Technol 10(3):487–496Google Scholar
  27. 27.
    Jodoin B (2002) Cold spray nozzle Mach number limitation. J Therm Spray Technol 11(4):496–507Google Scholar
  28. 28.
    Wen-Ya L, Li C-J (2005) Optimal design of a novel cold spray gun nozzle at a limited space. J Therm Spray Technol 14(3):391–396Google Scholar
  29. 29.
    Shapiro AH (1953) The dynamics and thermodynamics of compressible fluid flow. Ronald Press, New YorkGoogle Scholar
  30. 30.
    Samareh B, Dolatabadi A (2007) A three-dimensional analysis of the cold spray process: the effects of substrate location and shape. J Therm Spray Technol 16(5–6):634–642Google Scholar
  31. 31.
    Voyer J, Stoltenhoff T, Kreye H (2003) Development of cold gas sprayed coatings. In: Moreau C, Marple B (eds) ITSC 2003. ASM International, Materials Park, OH, pp 71–78Google Scholar
  32. 32.
    Dykhuizen RC, Neiser RA (2003) Optimizing the cold spray process. In: Moreau C, Marple B (eds) ITSC 2003. ASM International, Materials Park, OH, pp 19–26Google Scholar
  33. 33.
    Alkhimov AP, Klinkov SV, Kosarev VF (2000) Study of heat exchange of supersonic plane jet with obstacle at gas-dynamic spraying. Thermophys Aeromechanics 7(3):375–82Google Scholar
  34. 34.
    Chang-Jiu L, Li W-Y, Wang Y-Y, Yang G-J, Fukanuma H (2005) A theoretical model for prediction of deposition efficiency in cold spraying. Thin Solid Films 489:79–85Google Scholar
  35. 35.
    Katanoda H, Fukuhara M, Iino N (2007) Numerical study of combination parameters for particle impact velocity and temperature in cold spray. J Therm Spray Technol 16(5–6):627–633Google Scholar
  36. 36.
    Samareh B, Stier O, Lüthen V, Dolatabadi A (2009) Assessment of CFD modeling via flow visualization in cold spray process. J Therm Spray Technol 18(5–6):934–943Google Scholar
  37. 37.
    Heinrich P, Kreye H, Stoltenhoff T (2005) Laval nozzle for thermal and kinetic spraying, U.S. Patent 2005/0001075 A1, January 6, 2005Google Scholar
  38. 38.
    Gilmore DL, Dykhuizen RC, Neiser RA, Roemer TJ, Smith MF (1999) Particle velocity and deposition efficiency in the cold spray process. J Therm Spray Technol 8(4):576–582Google Scholar
  39. 39.
    Blose RE, Roemer TJ, Mayer AJ, Beatty DE, Papyrin AN (2003) Automated cold spray system: description of equipment and performance data. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park, OH, pp 103–111Google Scholar
  40. 40.
    Gärtner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Therm Spray Technol 15(2):223–232Google Scholar
  41. 41.
    Klinkov SV, Kosarev VF (2006) Measurements of cold spray deposition efficiency. J Therm Spray Technol 15(3):364–371Google Scholar
  42. 42.
    Grujicic M, Zhao CL, DeRosset WS, Helfritch D (2004) Adiabatic shear instability based mechanism for particles/substrate bonding in the cold-gas dynamic-spray process. Mater Design 25:681–688Google Scholar
  43. 43.
    Schmidt T, Gärtner F, Assadi H, Kreye H (2006) Development of a generalized parameter window for cold spray deposition. Acta Materialia 54:729–742Google Scholar
  44. 44.
    Assadi H, Gartner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Mater 51:4379–4394Google Scholar
  45. 45.
    Schmidt T, Assadi H, Gärtner F, Richter H, Kreye H, Klassen T (2009) From particle acceleration to impact and bonding in cold spraying. J Therm Spray Technol 18(5–6):794–808Google Scholar
  46. 46.
    Price TS, Shipway PH, McCartney DG, Calla E, Zhang D (2007) A method for characterizing the degree of inter-particle bond formation in cold sprayed coatings. J Therm Spray Technol 16(4):566–570Google Scholar
  47. 47.
    Wank A, Wielage B, Podlesak H, Grund T (2006) High-resolution microstructural investigations of interfaces between light metal alloy substrates and cold gas-sprayed coatings. J Therm Spray Technol 15(2):280–283Google Scholar
  48. 48.
    Li W-Y, Zhang C, Guo XP, Dembinski L, Liao H, Coddet C (2007) Impact fusion of particle interfaces in cold spraying and its effect on coating microstructure. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OHGoogle Scholar
  49. 49.
    Li C-J, Wen-Ya L, Fukanuma H (2004) Impact fusion phenomenon during cold spraying of zinc, in ITSC 2004. DVS, Dusseldorf, Germany, e-proceedingsGoogle Scholar
  50. 50.
    Papyrin AN, Klinkov SV, Kosarev VF (2003) Modeling of particle-substrate adhesive interaction under the cold spray process. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park, OH, pp 27–35Google Scholar
  51. 51.
    Vlcek J, Gimeno L, Huber H, Lugscheider E (2005) A systematic approach to material eligibility for the cold-spray process. J Therm Spray Technol 14(1):125–133Google Scholar
  52. 52.
    Zhang D, Shipway PH, McCartney DG (2005) Cold gas dynamic spraying of aluminum: the role of substrate characteristics in deposit formation. J Therm Spray Technol 14(1):109–116Google Scholar
  53. 53.
    Zhang D, Shipway PH, McCartney DG (2003) Particle-substrate interactions in cold gas dynamic spraying. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park, OH, pp 45–52Google Scholar
  54. 54.
    Dykhuizen RC, Smith MF, Gilmore DL, Neiser RA, Jiang X, Sampath S (1999) Impact of high velocity cold spray particles. J Therm Spray Technol 8(4):559–564Google Scholar
  55. 55.
    Raletz F (2005) Contribution to the development of a Cold Gas Dynamic Spray system (C.G.D.S.) for the realization of nickel coatings. Ph. D, University of Limoges, France, in FrenchGoogle Scholar
  56. 56.
    Alkhimov AP, Klinkov SV, Shin SM, Lee CH, Kim HJ (2006) Effect of particle temperature on the critical velocity for particle deposition by kinetic spraying. In: Marple B (ed) Thermal spray 2006. ASM International, Materials Park, OH, e-procGoogle Scholar
  57. 57.
    Gärtner F, Borchers C, Stoltenhoff T, Kreye H (2003) Numerical and microstructural investigations of the bonding mechanisms in cold spraying. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park, OH, pp 1–8Google Scholar
  58. 58.
    Schmidt T, Gärtner F, Stoltenhoff T, Kreye H, Assadi H (2005) High velocity impact phenomena and coating quality in cold spraying. In: Lugsheider E (ed) ITSC 2005. DVS, Dusseldorf, Germany, e-procGoogle Scholar
  59. 59.
    Wu JW, Fang HY, Lee CH, Yoon SH, Kim HJ (2006) Critical and maximum velocities in kinetic spraying. In: Marple BR et al (eds) Thermal spray. ASM International, Materials Park, OH, e-procGoogle Scholar
  60. 60.
    Papyrin AN, Konsarev VF, Kinkov SV (2006) Effect of coating erosion on the cold spray process. In: Marple B (ed) Thermal spray 2006. ASM International, Materials Park, OH, e-procGoogle Scholar
  61. 61.
    Alkhimov AP, Kosarev VF, Papyrin AN (1998) Gas dynamic spraying. an experimental study of the spraying process. J Appl Mech Tech Phys 39(2):318–323Google Scholar
  62. 62.
    Han T, Zhao Z, Gillispie BA, Smith JR (2004) A fundamental study of the kinetic spray process, ITSC 2004. DVS, Düsseldorf, Germany, e.proceedingsGoogle Scholar
  63. 63.
    Li W-Y, Liao HL, Zang G, Coddet C, Wang H-T, Li C-J (2006) Optimal design of a convergent-barrel cold spray nozzle by numerical method. In: Marple B (ed) Thermal spray 2006. ASM International, Materials Park, OH, e-procGoogle Scholar
  64. 64.
    Stoltenhoff T, Voyer J, Kreye H (2002) Cold spraying: state of the art and applicability. In: Lugsheider E (ed) ITSC 2002. DVS, Dusseldorf, Germany, e-proceedingsGoogle Scholar
  65. 65.
    Chang-Jiu L, Li W-Y, Liao H (2006) Examination of the critical velocity for deposition of particles in cold spraying. J Therm Spray Technol 15(2):212–222Google Scholar
  66. 66.
    Lee JH, Kim JS, Shin SM, Lee CH, Kim HJ (2006) Effect of particle temperature on the critical velocity for particle deposition by kinetic spraying. In: Marple B (ed) Thermal spray 2006. ASM International, Materials Park, OH, e-procGoogle Scholar
  67. 67.
    Katanoda H, Fukuhara M, Iino N (2007) Numerical study of combination parameters for particle impact velocity and temperature in cold spray. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  68. 68.
    Mäkinen H, Lagerbom J, Vuoristo P (2007) Adhesion of cold sprayed coatings: effect of powder, substrate, and heat treatment. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  69. 69.
    Helfritch D, Champagne V (2006) Optimal particle size for the cold spray process. In: Marple B (ed) Thermal spray 2006. ASM International, Materials Park, OH, e-procGoogle Scholar
  70. 70.
    Papyrin AN, Alkhimov AP, Kosarev VF (1993) Device for applying coatings by deposition, SU1674585, year of priority (issued): 1989Google Scholar
  71. 71.
    Kim H-J, Lee C-H, Hwang S-Y (2005) Superhard nano WC–12%Co coating by cold spray deposition. Mater Sci Eng A 391:243–248Google Scholar
  72. 72.
    Zieris R, Nowotny S, Berger L-M, Haubold L, Beyer E (2003) Characterization of coatings deposited by laser-assisted atmospheric plasma spraying, CD-ROM. In: Proceeding of the international thermal spray conference.ASM International, Materials Park, OHGoogle Scholar
  73. 73.
    Kulmala M, Vuoristo P (2008) Influence of process conditions in laser-assisted low-pressure cold spraying. Surf Coat Technol 202:4503–4508Google Scholar
  74. 74.
    Bray M, Cockburn A, O’Neill W (2009) The laser-assisted cold spray process and deposit characterisation. Surf Coat Technol 203:2851–2857Google Scholar
  75. 75.
    Kang KC, Yoon SH, Ji YG, Lee C (2007) Oxidation effects on the critical velocity of pure al feedstock deposition in the kinetic spraying process. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-procGoogle Scholar
  76. 76.
    Balani K, Laha T, Agarwal A, Karthikeyan J, Munroe N (2005) Effect of carrier gases on microstructural and electrochemical behavior of cold-sprayed 1100 aluminum coating. Surf Coat Technol 195:272–279Google Scholar
  77. 77.
    Taylor K, Jodoin B, Karov J (2006) Particle loading effect in cold spray. J Therm Spray Technol 15(2):273–279Google Scholar
  78. 78.
    Fukanama H, Ohno N, Sun B, Huang R (2006) The influence of particle morphology on in-flight particle velocity in cold spray. In: Marple B (ed) Thermal spray 2006. ASM International, Materials Park, OH, e-procGoogle Scholar
  79. 79.
    Legoux JG, Irissou E, Moreau M (2007) Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings. J Therm Spray Technol 16(5–6):643–650Google Scholar
  80. 80.
    Fukumoto M, Wada H, Tanabe K, Yamada M, Yamaguchi E, Niwa A, Sugimoto M, Izawa M (2007) Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process. J Therm Spray Technol 16(5–6):643–650Google Scholar
  81. 81.
    Sakaki K, Tajima T, Li H, Shinkai S, Shimizu Y (2004) Influence of substrate conditions and traverse speed on cold sprayed coatings, ITSC 2004. DVS, Düsseldorf, Germany, e. proceedingsGoogle Scholar
  82. 82.
    Siao Ming Ang A, Berndt CC, Cheang P (2011) Deposition effects of WC particle size on cold-sprayed WC–Co coatings. Surf Coat Technol 205:3260–3267Google Scholar
  83. 83.
    Gao P-H, Li C-J, Yang G-J, Li Y-G, Li C-X (2008) Influence of substrate hardness on deposition behavior of single porous WC-12Co particle in cold spraying. Surf Coat Technol 203:384–390Google Scholar
  84. 84.
    Shkodkin A, Kashirin A, Klyuev O, Buzdygar T (2006) Metal particle deposition stimulation by surface abrasive treatment in gas dynamic spraying. J Therm Spray Technol 15(3):382–386Google Scholar
  85. 85.
    Klinkov SV, Kosarev VF, Sova AA, Smurov I (2008) Deposition of multicomponent coatings by cold spray. Surf Coat Technol 202:5858–5862Google Scholar
  86. 86.
    Klinkov SV, Kosarev VF, Sova AA, Smurov I (2009) Calculation of particle parameters spraying of metal-ceramic mixtures. J Therm Spray Technol 18(5–6):944–956Google Scholar
  87. 87.
    Sova A, Papyrin A, Smurov I (2009) Influence of ceramic powder size on process of cermet coating formation by cold spray. J Therm Spray Technol 18(4):633–641Google Scholar
  88. 88.
    Sova A, Pervushin D, Smurov I (2010) Development of multimaterial coatings by cold spray and gas detonation spraying. Surf Coat Technol 205:1108–1114Google Scholar
  89. 89.
    Sova A, Kosarev VF, Papyrin A, Smurov I (2011) Effect of ceramic particle velocity on cold spray deposition of metal-ceramic coatings. J Therm Spray Technol 20(1–2):285–291Google Scholar
  90. 90.
    Spencer K, Fabijanic DM, Zhang M-X (2009) The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surf Coat Technol 204:336–344Google Scholar
  91. 91.
    King PC, Zahiri SH, Jahedi MZ (2007) Rare earth/metal composite formation by cold spray. J Therm Spray Technol 17(2):221–227Google Scholar
  92. 92.
    Sansoucy E, Marcoux P, Ajdelsztajn L, Jodoin B (2008) Properties of SiC-reinforced aluminum alloy coatings produced by the cold gas dynamic spraying process. Surf Coat Technol 202:3988–3996Google Scholar
  93. 93.
    Li W-Y, Zhang G, Liao HL, Coddet C (2008) Characterizations of cold sprayed TiN particle reinforced Al2319 composite coating. J Mater Proc Technol 202:508–513Google Scholar
  94. 94.
    Tao Y, Xiong T, Sun C, Jin H, Du H, Li T (2009) Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D magnesium alloy. Appl Surf Sci 256:261–266Google Scholar
  95. 95.
    Hu HX, Jiang SL, Tao YS, Xiong TY, Zheng YG (2011) Cavitation erosion and jet impingement erosion mechanism of cold sprayed Ni–Al2O3 coating. Nuc Eng Design 241:4929–4937Google Scholar
  96. 96.
    Li W-Y, Zhang C, Liao H, Li J, Coddet C (2008) Characterizations of cold-sprayed nickel–alumina composite coating with relatively large nickel-coated alumina powder. Surf Coat Technol 202:4855–4860Google Scholar
  97. 97.
    Wang H-T, Li C-J, Yang G-J, Li C-X (2009) Effect of heat treatment on the microstructure and property of cold-sprayed nanostructured FeAl/Al2O3 intermetallic composite coating. Vacuum 83:146–152Google Scholar
  98. 98.
    Luo X-T, Yang G-J, Li C-J (2011) Multiple strengthening mechanisms of cold-sprayed cBNp/NiCrAl composite coating. Surf Coat Technol 205:4808–4813Google Scholar
  99. 99.
    Lee HY, Hun Jung S, Yong Lee S, Hyun Ko K (2007) Alloying of cold-sprayed Al–Ni composite coatings by post-annealing. Appl Surf Sci 253:3496–3502Google Scholar
  100. 100.
    Lee H, Shin H, Ko K (2010) Effects of gas pressure of cold spray on the formation of Al-based intermetallic compound. J Therm Spray Technol 19(1–2):102–109Google Scholar
  101. 101.
    Novoselova T, Celotto S, Morgan R, Foxa P, O’Neill W (2007) Formation of TiAl intermetallics by heat treatment of cold-sprayed precursor deposits. J Alloys Comp 436:69–77Google Scholar
  102. 102.
    Lugsheider E (2006) High kinetic process developments in thermal spray technology. J Therm Spray Technol 15(2):155–156Google Scholar
  103. 103.
    Marx S, Paul A, Köhler A, Hüttl G (2006) Cold spraying: innovative layers for new applications. J Therm Spray Techno 15(2):177–183Google Scholar
  104. 104.
    Li W-Y, Zhang C, Guo XP, Liao HL, Coddet C (2007) Deposition characteristics of Al-12Si alloy coating fabricated by cold spraying with relatively large powder particles. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-procGoogle Scholar
  105. 105.
    Hall AC, Cook DJ, Neiser RA, Roemer TJ, Hirschfeld DA (2006) The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminium. J Therm Spray Technol 15(2):233–238Google Scholar
  106. 106.
    Yoon SH, Lee C, Kim HJ (2007) Process development of brazed aluminium heat exchanger using a kinetic spraying process. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-procGoogle Scholar
  107. 107.
    Makinen H, Lagerbom J, Vuoristo P (2006) Mechanical properties and corrosion resistance of cold sprayed coatings. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  108. 108.
    Sansoucy E, Kim GE, Moran AL, Jodoin B (2007) Mechanical characteristics of Al-Co-Ce coatings produced by the cold spray process. J Therm Spray Technol 16(5–6):651–660Google Scholar
  109. 109.
    Lee JC, Kang HJ, Chu WS, Ah SH (2007) Repair of damaged mold surface by cold-spray method. Ann CIRP 56(1):577–580Google Scholar
  110. 110.
    Bobzin K, Zhao L, Ernst F, Richardt K (2008) Flux-free brazing of Mg-containing aluminium alloys by means of cold spraying. Front Mech Eng China 3(4):355–359Google Scholar
  111. 111.
    DeForce BS, Eden TJ, Potter JK (2011) Cold spray Al-5% Mg coatings for the corrosion protection of magnesium alloys. J Therm Spray Technol 20(6):1352–1358Google Scholar
  112. 112.
    Richer P, Jodoin B, Ajdelsztajn L, Lavernia EJ (2006) Substrate roughness and thickness effects on cold spray nanocrystalline Al-Mg coatings. J Therm Spray Technol 15(2):246–254Google Scholar
  113. 113.
    Zhang YY, Wu XK, Cui H, Zhang JS (2011) Cold-spray processing of a high density nano crystalline aluminium alloy 2009 coating using a mixture of as-atomized and as-cryomilled powders. J Therm Spray Technol 20(5):1125–1132Google Scholar
  114. 114.
    Ajdelsztajn L, Zúñiga A, Jodoin B, Lavernia EJ (2006) Cold-Spray Processing of a Nanocrystalline Al-Cu-Mg-Fe-Ni Alloy with Sc. J Therm Spray Technol 15(2):184–190Google Scholar
  115. 115.
    Kairet T, Degrez M, Campana F, Janssen J-P (2007) Influence of the powder size distribution on the microstructure of cold sprayed copper coatings studied by X-ray diffraction. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-procGoogle Scholar
  116. 116.
    Sudharshan PP, Srinivasa Rao D, Joshi SV, Sundararajan G (2007) Effect of process parameters and heat treatments on properties of cold sprayed copper coatings. J Therm Spray Technol 16(3):424–434Google Scholar
  117. 117.
    Sudharshan Phani P, Srinivasa Rao D, Tanabe K, Yamada M, Yamaguchi E, Niwa A, Sugimoto M, Izawa M (2007) Deposition behavior of sprayed metallic particle on substrate surface in cold spray process. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-procGoogle Scholar
  118. 118.
    Kairet T, Di Stephano G, Degrez M, Campana F, Janssen J-P (2006) Comparison between coatings from two different copper powders: mechanical properties, hardness and bond strength. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  119. 119.
    Calla E, McCartney DG, Shipway PH (2006) Effect of deposition conditions on the properties and annealing behavior of cold-sprayed copper. J Therm Spray Technol 15(2):255–262Google Scholar
  120. 120.
    Zahiri SH, Fraser D, Gulizia S, Jahedi M (2006) Effect of processing conditions on porosity formation in cold gas dynamic spraying of copper. J Therm Spray Technol 15(3):422–430Google Scholar
  121. 121.
    McCune RC, Donlon WT, Popoola OO, Cartwright EL (2000) Characterization of copper layers produced by cold gas-dynamic spraying. J Therm Spray Technol 9(1):73–82Google Scholar
  122. 122.
    Koivuluoto H, Lagerbom J, Vuoristo P (2007) Microstructural studies of cold sprayed copper, nickel, and nickel-30% copper coatings. J Therm Spray Technol 16(4):488–497Google Scholar
  123. 123.
    Fukumoto M, Mashiko M, Yamada M, Yamaguchi E (2010) Deposition behavior of copper fine particles onto flat substrate surface in cold spraying. J Therm Spray Technol 19(1–2):89–94Google Scholar
  124. 124.
    Eason PD, Fewkes JA, Kennett SC, Eden TJ, Tello K, Kaufman MJ, Tiryakioglu M (2011) On the characterization of bulk copper produced by cold gas dynamic spray processing in as fabricated and annealed conditions. Mater Sci Eng A 528:8174–8178Google Scholar
  125. 125.
    Donner K-R, Gaertner F, Klassen T (2011) Metallization of thin Al2O3 layers in power electronics using cold gas spraying. J Therm Spray Technol 20(1–2):299–306Google Scholar
  126. 126.
    Jin Y-M, Cho J-H, Park D-Y, Kim J-H, Lee K-A (2011) Manufacturing and macroscopic properties of cold sprayed cu-in coating material for sputtering target. J Therm Spray Technol 20(3):497–507Google Scholar
  127. 127.
    Koivuluoto H, Vuoristo P (2010) Structural analysis of cold-sprayed nickel-based metallic and metallic-ceramic coatings. J Therm Spray Technol 19(5):975–989Google Scholar
  128. 128.
    Blose RE, Walker BH, Froes SH (2006) Depositing titanium alloy additive features to forgings and extrusions using the cold spray process. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  129. 129.
    Zhang Q, Li C-J, Wang X-R, Ren Z-L, Li C-X, Yang G-J (2008) Formation of NiAl intermetallic compound by cold spraying of ball-milled Ni/Al alloy powder through post-annealing treatment. J Therm Spray Technol 17(5–6):715–720Google Scholar
  130. 130.
    Bala N, Singh H, Prakash S (2010) Accelerated hot corrosion studies of cold spray Ni–50Cr coating on boiler steels. Mater Design 31:244–253Google Scholar
  131. 131.
    Ichikawa Y, Sakaguchi K, Ogawa K, Shoji T, Barradas S, Jeandin M, Boustie M (2006) Deposition mechanisms of cold gas dynamic sprayed MCrAlY coatings. In: Marple B et al (eds) Proceedings of the 2007 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  132. 132.
    Marrocco T, McCartney DG, Shipway PH, Sturgeon AJ (2006) Comparison of microstructure of cold sprayed and thermally sprayed IN718 coatings. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OHGoogle Scholar
  133. 133.
    Richer P, Zúñiga A, Yandouzi M, Jodoin B (2008) CoNiCrAlY microstructural changes induced during cold gas dynamic spraying. Surf Coat Technol 203:364–371Google Scholar
  134. 134.
    Chen WR, Irissou E, Wu X, Legoux J-G, Marple BR (2011) The oxidation behaviour of TBC with cold spray CoNiCrAlY bond coat. J Therm Spray Technol 20(1–2):132–138Google Scholar
  135. 135.
    Chang-Jiu L, Li W-Y (2003) Deposition characteristics of titanium coating in cold spraying. Surf Coat Technol 167:278–283Google Scholar
  136. 136.
    Novoselova T, Fox P, Morgan R, O’Neill W (2006) Experimental study of titanium/aluminium deposits produced by cold gas dynamic spray. Surf Coat Technol 200:2775–2783Google Scholar
  137. 137.
    Price TS, Shipway PH, McCartney D-G (2006) The effect of cold spray deposition of a titanium coating on the fatigue behaviour of a titanium alloy. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  138. 138.
    Marrocco T, McCartney DG, Shipway PH, Sturgeon AJ (2006) Production of titanium deposits by cold-gas dynamic spray: numerical modeling and experimental characterization. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  139. 139.
    Binder K, Gottschalk J, Kollenda M, Gärtner F, Klassen T (2011) Influence of impact angle and gas temperature on mechanical properties of titanium cold spray deposits. J Therm Spray Technol 20(1–2):234–242Google Scholar
  140. 140.
    Christoulis DK, Guetta S, Guipont V, Jeandin M (2011) The influence of the substrate on the deposition of cold-sprayed titanium: an experimental and numerical Study. J Therm Spray Technol 20(3):523–533Google Scholar
  141. 141.
    Lima RS, Kucuk A, Berndt CC (2002) Deposition efficiency, mechanical properties and coating roughness in cold-sprayed titanium. J Mater Sci Lett 21:1687–1689Google Scholar
  142. 142.
    Zahiri SH, Antonio CI, Jahedi M (2009) Elimination of porosity in directly fabricated titanium via cold gas dynamic spraying. J Mater Proc Technol 209:922–929Google Scholar
  143. 143.
    Li W-Y, Zhang C, Liao H, Coddet C (2009) Effect of heat treatment on microstructure and mechanical properties of cold sprayed Ti coatings with relatively large powder particles. J Coat Technol Res 6(3):401–406Google Scholar
  144. 144.
    Cinca N, Barbosa M, Dosta S, Guilemany JM (2010) Study of Ti deposition onto Al alloy by cold gas spraying. Surf Coat Technol 205:1096–1102Google Scholar
  145. 145.
    Sun B, Huang R-Z, Ohno N, Fukanuma H (2006) Effect of spraying parameters on stainless steel particle velocity and deposition efficiency in cold spraying. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  146. 146.
    Ajdelsztajn L, Jodoin B, Richer P, Sansoucy E, Lavernia EJ (2006) Cold gas dynamic spraying of iron-based amorphous alloy. J Therm Spray Technol 15(4):495–500Google Scholar
  147. 147.
    Jodoin B, Ajdelsztajn L, Bérubé G (2006) Cold spray deposition of metastable alloys. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  148. 148.
    Wang H-T, Li C-J, Yang G-J, Li C-X, Zhang Q, Li W-Y (2007) Microstructural characterization of cold-sprayed nanostructured FeAl intermetallic compound coating and its ball-milled feedstock powders. J Therm Spray Technol 16(5–6):669–676Google Scholar
  149. 149.
    Alexandre S, Laguionie T, Baccaud B (2007) Realization of an internal cold spray coating of stainless steel in an aluminum cylinder. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-procGoogle Scholar
  150. 150.
    Spencer K, Zhang M-X (2011) Optimisation of stainless steel cold spray coatings using mixed particle size distributions. Surf Coat Technol 205:5135–5140Google Scholar
  151. 151.
    Van Steenkiste T, Gorkiewicz DW (2004) Analysis of tantalum coatings produced by the kinetic spray process. J Therm Spray Technol 13(2):265–273Google Scholar
  152. 152.
    Koivuluoto H, Nakki J, Vuoristo P (2009) Corrosion properties of cold-sprayed tantalum coatings. J Therm Spray Technol 18(1):75–82Google Scholar
  153. 153.
    Sakaki K, Shinkai S, Shimizu Y (2007) Investigation of spray conditions and performances of cold-sprayed pure silicon anodes for lithium secondary batteries. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-procGoogle Scholar
  154. 154.
    Manhar CN, Ramakrishna M, Sudharshan Phani P, Srinivasa Rao D, Sundararajan G (2011) The influence of process parameters and heat treatment on the properties of cold sprayed silver coatings. Surf Coat Technol 205:4798–4807Google Scholar
  155. 155.
    Zhou XL, Chen AF, Liu JC, Wu XK, Zhang JS (2011) Preparation of metallic coatings on polymer matrix composites by cold spray. Surf Coat Technol 206:132–136Google Scholar
  156. 156.
    Lupoi R, O’Neil W (2010) Deposition of metallic coatings on polymer surfaces using cold spray. Surf Coat Technol 205:2167–2173Google Scholar
  157. 157.
    Kim HJ, Jung DH, Jang JH, Lee CH (2006) Assessment of metal/diamond composite coatings by cold spray deposition. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  158. 158.
    Haynes J, Pandey A, Karthikeyan J, Kay A (2006) Cold sprayed discontinuously reinforced aluminium. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  159. 159.
    Sansoucy E, Ajdelsztajn L, Jodoin B, Marcoux P (2007) Properties of SiC-reinforced aluminium alloy coatings produced by the cold spray deposition process. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OHGoogle Scholar
  160. 160.
    Yong LH, Young Ho Y, Lee YC, Hong YP, Ko KH (2004) Cold spray of SiC and Al2O3 with soft metal incorporation: a technical contribution. J Therm Spray Technol 13(2):184–189Google Scholar
  161. 161.
    Irissou E, Legoux J-G, Arsenault B, Moreau C (2007) Investigation of Al-Al2O3 cold spray coating formation and properties. J Therm Spray Technol 16(5–6):661–668Google Scholar
  162. 162.
    Poirier D, Legoux J-G, Drew RAL, Gauvin R (2011) Consolidation of Al2O3/Al nanocomposite powder by cold spray. J Therm Spray Technol 20(1–2):275–284Google Scholar
  163. 163.
    Kong LY, Shen L, Lu B, Yang R, Cui XY, Li TF, Xiong TY (2010) Preparation of TiAl3-Al composite coating by cold spray and its high temperature oxidation behavior. J Therm Spray Technol 19(6):1206–1210Google Scholar
  164. 164.
    Van Steenkiste T (2006) Kinetic sprayed rare earth iron alloy composite coatings. J Therm Spray Technol 15(4):501–506Google Scholar
  165. 165.
    Hyung-Jun K, Lee C-H, Hwang S-Y (2005) Fabrication of WC–Co coatings by cold spray deposition. Surf Coat Technol 191:335–340Google Scholar
  166. 166.
    Kim H-J, Leeb C-H, Hwang S-Y (2005) Fabrication of WC–Co coatings by cold spray deposition. Surf Coat Technol 191:335–340Google Scholar
  167. 167.
    Wolfe DE, Eden TJ, Potter JK, Jaroh AP (2006) Investigation and characterization of Cr3C2-based wear-resistant coatings applied by the cold spray process. J Therm Spray Technol 15(3):400–412Google Scholar
  168. 168.
    Wang H-T, Li C-J, Yang G-J, Li C-X (2006) Formation of Fe-Al intermetallic compound coating through cold spraying. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  169. 169.
    Yang G-J, Li C-J, Han F, Li W-Y, Ohmori A (2008) Low temperature deposition and characterization of TiO2 photo catalytic film through cold spray. Appl Surf Sci 254:3979–3982Google Scholar
  170. 170.
    Yamada M, Isago H, Nakano H, Fukumoto M (2010) Cold spraying of TiO2 photocatalyst coating with nitrogen process gas. J Therm Spray Technol 19(6):1218–1223Google Scholar
  171. 171.
    Tjitra SN, Yamada M, Nakano H, Shima K, Isago H, Fukumoto M (2011) The effect of post-treatments on the powder morphology of titanium dioxide (TiO2) powders synthesized for cold spray. Surf Coat Technol 206:366–371Google Scholar
  172. 172.
    Maev RGR, Leshchinsky V (2006) Low pressure gas dynamic spray: shear localization during particle shock consolidation. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  173. 173.
    Wright JT (2002) The physics and mathematics of adiabatic shear bands. Cambridge University Press, CambridgeGoogle Scholar
  174. 174.
    Beneteau M, Birtch W, Villafuerte J, Paille J, Petrocik M, Maev RGR, Strumban E, Leshchinsky V (2006) Gas dynamic spray composite coatings for iron and steel castings. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  175. 175.
    Weinert H, Maeva E, Leshchinsky V (2006) Low pressure GAS dynamic spray forming near-net shape parts. In: Marple B et al (eds) Proceedings of the 2006 thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  176. 176.
    Ogawa K, Ito K, Ichimura K, Ichikawa Y, Ohno S, Onda N (2008) Characterization of low-pressure cold-sprayed aluminum coatings. J Therm Spray Technol 17(5–6):728–735Google Scholar
  177. 177.
    Koivuluoto H, Lagerbom J, Kylmälahti M, Vuoristo P (2008) Microstructure and mechanical properties of low-pressure cold-sprayed (LPCS) coatings. J Therm Spray Technol 17:721–727Google Scholar
  178. 178.
    Koivuluoto H, Vuoristo P (2010) Effect of powder type and composition on structure and mechanical properties of Cu + Al2O3 coatings prepared by using low-pressure cold spray process. J Therm Spray Technol 19(5):1081–1092Google Scholar
  179. 179.
    Xian-Jin N, Jang J-H, Kim H-J, Li C-J, Lee C (2008) Cold spraying of Al–Sn binary alloy: coating characteristics and particle bonding features. Surf Coat Technol 202(9):1681–1687Google Scholar
  180. 180.
    Yong LH, Young Ho Y, Lee YC, Hong YP, Ko KH (2005) Thin film coatings of WO3 by cold gas dynamic spray: a technical note. J Therm Spray Technol 14(2):183–186Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations