Advertisement

Combustion Spraying Systems

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos
Chapter

Abstract

The growth of combustion processes along the years was driven both by scientific and technical developments providing disruptive innovations and by the market requirements )(e.g., the development of HVOF spraying by Browning in 1983 was pushed forward by the need to produce WC-Co cermet coatings with superior properties). The different processes are presented with for each one the principle, the type of materials used (powder, liquid wire cord or rod), then materials sprayed, sprayed particle temperatures, velocities and oxidation, types of coatings obtained and finally the process modeling. Successively are presented flame spraying, High Velocity Oxy-Fuel (HVOF), and High Velocity Air-Fuel spraying and modified HVOF processes and finally Detonation gun (D-gun).

Keywords

Combustion Chamber Detonation Wave Nozzle Exit Bond Coat Particle Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

D-gun

Detonation gun

HVAF

High Velocity Air-Fuel

HVOF

High Velocity Oxy-Fuel

SHS

Self-propagating High Temperature Synthesis

slm

standard liters per minute

YSZ

Yttria stabilized zirconia

References

  1. 1.
    Anon (1913) Metal plating with the air brush, vol 1. Scientific American, New York, NY, pp 346–352Google Scholar
  2. 2.
    Smith RW (1991) Plasma spray processing… The state of the art and future. From a surface to a materials processing technology. In: Proceedings of the 2nd Plasma Technik symposium, Vol. 1. Plasma Technik, Wohlen, Switzerland, pp 13–38Google Scholar
  3. 3.
    Browning JA (1983) Highly concentrated supersonic liquefied material flame spray method and apparatus. US patent # 4,416,421, November (1983)Google Scholar
  4. 4.
    Thermal Spraying, Practice, Theory and Application (1985). American Welding Society, Miami, FlGoogle Scholar
  5. 5.
    Wigren J et al (1996) On-line diagnostics of traditional flame spraying as a tool to increase reproducibility. In: Berndt CC (ed) Proceedings of national thermal spray conference. ASM International, Materials Park, OH, pp 675–681Google Scholar
  6. 6.
    Nylén P, Bandyopadhyay R (2000) A computational fluid dynamic analysis of gas and particle flow in flame spraying. In: Berndt CC (ed) Thermal spray: surface engineering via applied research. ASM International, Materials Park, OH, pp 237–244Google Scholar
  7. 7.
    Bandyopadhyay R, Nylén P (2003) A computational fluid dynamic analysis of gas and particle flow in flame spraying. J Therm Spray Technol 12(4):492–503Google Scholar
  8. 8.
    Pombo Rodriguez HRM, Paredes RSC, Calixto A, Wido SH (2007) Comparison of aluminum coatings deposited by flame spray and by electric arc spray. Surf Coat Technol 202:172–179Google Scholar
  9. 9.
    Panossian Z, Mariaca L, Morcillo M, Flores S, Rocha J, Pen JJ, Herrera F, Corvo F, Sanchez M, Rincon OT, Pridybailo G, Simancas J (2005) Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere. Surf Coat Technol 190:244–248Google Scholar
  10. 10.
    Paredes RSC, Amico SC, d’Oliveira ASCM (2006) The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying. Surf Coat Technol 200:3049–3055Google Scholar
  11. 11.
    Vijaya BM, Krishna Kumar R, Prabhakar O, Gowri Shankar N (1996) Simultaneous optimization of flame spraying process parameters for high quality molybdenum coatings using Taguchi methods. Surf Coat Technol 79:276–288Google Scholar
  12. 12.
    Brantner HP, Pippan R, Prantl W (2003) Local and global fracture toughness of a flame sprayed molybdenum coating. J Therm Spray Technol 12(4):560–571Google Scholar
  13. 13.
    Laribi M, Vannes AB, Treheux D (2006) On a determination of wear resistance and adhesion of molybdenum, Cr–Ni and Cr–Mn steel coatings thermally sprayed on a 35CrMo4 steel. Surf Coat Technol 200:2704–2710Google Scholar
  14. 14.
    Lin L, Hanb K (1998) Optimization of surface properties by flame spray coating and boriding. Surf Coat Technol 106:100–105Google Scholar
  15. 15.
    Planche MP, Liao H, Normand B, Coddet C (2005) Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes. Surf Coat Technol 200:2465–2473Google Scholar
  16. 16.
    Navas C, Colaço R, de Damborenea J, Vilar R (2006) Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surf Coat Technol 200:6854–6862Google Scholar
  17. 17.
    Sakata K, Nakano K, Miyahara H, Matsubara Y, Ogi K (2007) Microstructure control of thermally sprayed co-based self-fluxing alloy coatings by diffusion treatment. J Therm Spray Technol 16(5–6):991–997Google Scholar
  18. 18.
    Harsha S, Dwivedi DK, and Agarwal A Influence of CrC addition in Ni-Cr-Si-B flame sprayed coatings on microstructure, microhardness and wear behaviour. Int J Adv Manuf Technol DOI: 10.1007/s00170-007-1072-2
  19. 19.
    Harsha S, Dwivedi DK, Agrawal A (2007) Influence of WC addition in Co–Cr–W–Ni–C flame sprayed coatings on microstructure, microhardness and wear behaviour. Surf Coat Technol 201:5766–5775Google Scholar
  20. 20.
    Mesrati N, Ajhrourh H, Nguyen D, Treheux D (2000) Thermal spraying and adhesion of oxides onto graphite. J Therm Spray Technol 9(1):95–99Google Scholar
  21. 21.
    Barthel K, Rambert S, Siegmann S (2000) Microstructure and polarization resistance of thermally sprayed composite cathodes for solid oxide fuel cell use. J Therm Spray Technol 9(3):343–347Google Scholar
  22. 22.
    Jorge LF, Duarte TP, Maia R (2003) Development of coated ceramic components for the aluminium industry. J Therm Spray Technol 12(2):250–257Google Scholar
  23. 23.
    Liu CS, Huang JH, Yin S (2002) The influence of composition and process parameters on the microstructure of TiC-Fe coatings obtained by reactive flame spray process. J Mater Sci 37:5241–5245Google Scholar
  24. 24.
    Hui L, Huang J (2005) Reactive thermal spraying of TiC-Fe composite coating by using asphalt as carbonaceous precursor. J Mater Sci 40:4149–4151Google Scholar
  25. 25.
    Liu HY, Huang JH (2006) Reactive flame spraying of TiC–Fe cermet coating using asphalt as a carbonaceous precursor. Surf Coat Technol 200:5328–5333Google Scholar
  26. 26.
    Zhang G, Liao H, Yu H, Costil S, Mhaisalkar SG, Bordes J-M, Coddet C (2006) Deposition of PEEK coatings using a combined flame spraying–laser remelting process. Surf Coat Technol 201:243–249Google Scholar
  27. 27.
    Li JF, Li L, Stott FH (2004) Multi-layered surface coatings of refractory ceramics prepared by combined laser and flame spraying. Surf Coat Technol 180–181:500–505Google Scholar
  28. 28.
    Ivosevic M, Cairncross RA, Knight R (2007) Melting and degradation of nylon-11 particles during HVOF combustion spraying. J Appl Polym Sci 105(2):827–837Google Scholar
  29. 29.
    Gawne DT, Zhang T, Bao Y (2001) Heating effect of flame impingement on polymer coatings. In: Berndt C, Khor K, Lugscheider E (eds) Thermal spray 2001: new surfaces for a New millennium. ASM International, Materials Park, OH, pp 307–313Google Scholar
  30. 30.
    Ivosevic M, Coguill SL, Galbraith SL (2009) Polymer thermal spraying: a novel coating process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: proceedings of the international thermal spray conference. ASM International, Materials Park, OH, pp 1078–1083Google Scholar
  31. 31.
    Sainz MA, Osendi MI, Miranzo P (2008) Protective Si–Al–O–Y glass coatings on stainless steel in situ prepared by combustion flame spraying. Surf Coat Technol 202:1712–1717Google Scholar
  32. 32.
    Masataka M, Kazumi K, Substrate for flame-sprayed tile, Japanese patent JP1192777, 02-08-1989Google Scholar
  33. 33.
    Koji N, Kunio H, Eiichi Y, Glass-coated metallic work piece, Japanese patent JP2011749, 16-01-1990Google Scholar
  34. 34.
    Hideki I, Shibakumaran U and Kazumasa G, Method for thermally spraying and grazing cement martial, Japanese patent JP3033084, 13-02-1991Google Scholar
  35. 35.
    Tatsuya N, Izozou K, Haruyuki M, Yasuhi S, Improved glaze application for coating and flame spraying and glaze, Japanese patent JP63277583, 15-11-1988Google Scholar
  36. 36.
    Lugsheider E, Remer P, Nyland A, Siking R (1995) Thermal spraying of Bio-active glass ceramics. In: Berndt CC, Sampath S (eds) Thermal spray: science and technology. ASM International, Materials Park, OH, pp 583–587Google Scholar
  37. 37.
    Arcondéguy A, Grimaud A, Denoirjean A, Gasnier G, Huguet C, Pateyron B, Montavon G (2007) Flame-sprayed glaze coatings: effect of operating parameters and feedstock characteristics onto coating structures. J Therm Spray Technol 16(5–6):978–990Google Scholar
  38. 38.
    Zhang T, Qiu Z, Bao Y, Gawne GT, Zhang K (2000) Temperature profile and thermal stress analysis of plasma sprayed glass-composite coatings. In: Berndt CC (ed) Thermal spray: surface engineering via applied research. ASM International, Materials Park, OH, pp 355–361Google Scholar
  39. 39.
    Tikkanen J, Gross KA, Berndt CC, Pitkatnen V, Keskinen J, Raghu S, Rajala M, Karthikeyan J (1997) Characteristics of the liquid flame spray process. Surf Coat Technol 90:210–216Google Scholar
  40. 40.
    Gross KA, Tikkanen J, Keskinen J, Pitkänen V, Eerola M, Siikamaki R, Rajala M (1999) Liquid flame spraying for glass coloring. J Therm Spray Technol 8(4):583–589Google Scholar
  41. 41.
    Poirier T, Vardelle A, Elchinger MF, Vardelle M, Grimaud A, Vesteghem H (2003) Deposition of nanoparticle suspensions by aerosol flame spraying: model of the spray and impact processes. J Therm Spray Technol 12(3):393–402Google Scholar
  42. 42.
    Guan-Jun Y, Li C-J, Wang YY (2005) Phase formation of nano-TiO2 particles during flame spraying with liquid feedstock. J Therm Spray Technol 14(4):480–486Google Scholar
  43. 43.
    Guan-Jun Y, Li CJ, Huang XC, Li CX, Wang YY (2007) Influence of silver doping on photocatalytic activity of liquid-flame-sprayed-nanostructured TiO2 coating. J Therm Spray Technol 16(5–6):881–885Google Scholar
  44. 44.
    Hussary NA, Heberlein JVR (2007) Effect of system parameters on metal breakup and particle formation in the wire arc spray process. J Therm Spray Technol 16(1):140–152Google Scholar
  45. 45.
    Ishikawa K, Suzuki T, Tobe S, Kitamura Y (2001) Resistance of thermal-sprayed duplex coating composed of aluminum and 80ni-20cr alloy against aqueous corrosion. J Therm Spray Technol 10(3):520–525Google Scholar
  46. 46.
    Ishikawa K, Suzuki T, Kitamura Y, Tobe S (1999) Corrosion resistance of thermal sprayed titanium coatings in chloride solution. J Therm Spray Technol 8(2):273–278Google Scholar
  47. 47.
    Thorpe ML, Richter HJ (1992) A pragmatic analysis and comparison of HVOF processes. J Therm Spray Technol 1(2):161–170Google Scholar
  48. 48.
    Korpiola K, Hirvonen JP, Laas L, Rossi F (1997) The influence of the nozzle design on HVOF exit gas velocity and coating microstructure. J Therm Spray Technol 6(4):469–474Google Scholar
  49. 49.
    Gärtner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Therm Spray Technol 15(2):223–232Google Scholar
  50. 50.
    Tawfik HH, Zimmerman F (1997) Mathematical modeling of the gas and powder flow in HVOF systems. J Therm Spray Technol 6(3):345–352Google Scholar
  51. 51.
    Oberkampf WL, Talpallikar M (1996) Analysis of a high velocity oxygen-fuel (HVOF) thermal spray torch part1: numerical simulation. J Thermal Spray Technol 5(1):53–61Google Scholar
  52. 52.
    Oberkampf WL, Talpallikar M (1996) Analysis of a high velocity oxygen-fuel (HVOF) thermal spray torch part 2: computational results. J Thermal Spray Technol 5(1):62–68Google Scholar
  53. 53.
    Gu S, Eastwick CN, Simmons KA, McCartney DG (2001) Computational fluid dynamic modeling of gas flow characteristics in a high-velocity oxy-fuel thermal spray system. J Therm Spray Technol 10(3):461–469Google Scholar
  54. 54.
    Cheng D, Xu Q, Trapaga G, Lavernia EJ (2001) A numerical study of high-velocity oxygen fuel thermal spraying process. Part I: gas phase dynamics. Metallurg Mater Transact A 32A:1609–1620Google Scholar
  55. 55.
    Sakaki K, Shimizu Y (2001) Effect of the increase in the entrance convergent section length of the gun nozzle on the high-velocity oxygen fuel and cold spray process. J Therm Spray Technol 10(3):487–496Google Scholar
  56. 56.
    Katanoda H, Matsuoka T, Kuroda S, Kawakita J, Fukanuma H, Matsuo K (2005) Aerodynamic study on supersonic flows in high-velocity oxy-fuel thermal spray process. J Therm Sci 14(2):126–129Google Scholar
  57. 57.
    Dolatabadi A, Pershin V, Mostaghimi J (2005) New attachment for controlling gas flow in the HVOF process. J Therm Spray Technol 14(1):91–99Google Scholar
  58. 58.
    Katanoda H, Yamamoto H, Matsuo K (2006) Numerical simulation on supersonic flow in high velocity oxy fuel termal spray gun. J Therm Sci 15(1):65–70Google Scholar
  59. 59.
    Yuan X, Wang H, Hou G, Zha B (2006) Numerical modelling of a low temperature high velocity air fuel spraying process with injection of liquid and metal particles. J Therm Spray Technol 15(3):413–421Google Scholar
  60. 60.
    Li M, Christofides PD (2005) Multi-scale modeling and analysis of an industrial HVOF thermal spray process. Chem Eng Sci 60:3649–3669Google Scholar
  61. 61.
    Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications. NASA Reference Publication 1311, Lewis Research Center, Cleveland, OH, USAGoogle Scholar
  62. 62.
    Yang Y, Liao H, Coddet C (2002) Simulation and application of a HVOF process for MCrAlY thermal spraying. J Therm Spray Technol 11(1):36–43Google Scholar
  63. 63.
    Srivatsan VR, Dolatabadi A (2006) Simulation of particle-shock interaction in a high velocity oxygen fuel process. J Therm Spray Technol 15(4):481–487Google Scholar
  64. 64.
    Cheng D, Xu Q, Trapaga G, Lavernia EJ (2001) The effect of particle size and morphology on the in-flight behavior of particles during high-velocity oxyfuel thermal spraying. Metallurg Mater Transact B 32B:525–535Google Scholar
  65. 65.
    Gu S, McCartney DG, Eastwick CN, Simmons K (2004) Numerical modeling of in-flight characteristics of Inconel 625 particles during high-velocity oxy-fuel thermal spraying. J Therm Spray Technol 13(2):200–213Google Scholar
  66. 66.
    Hanson TC, Hackett CM, Settles GS (2002) Independent control of HVOF particle velocity and temperature. J Therm Spray Technol 11(1):75–85Google Scholar
  67. 67.
    He J, Ice M, Lavernia E (2001) Particle melting behavior during high-velocity oxygen fuel thermal spraying. J Therm Spray Technol 10(1):83–93Google Scholar
  68. 68.
    Dobler K, Kreye H, Schwetzke R (2000) Oxidation of stainless steel in the high velocity oxy-fuel process. J Therm Spray Technol 9(3):407–413Google Scholar
  69. 69.
    Hackett CM, Settles GS (1995) Research on HVOF gas shrouding for coating oxidation control. In: Berndt CC, Sampath S (eds) Thermal spray: science and technology. ASM International, Materials Park OH, pp 21–29Google Scholar
  70. 70.
    Ishikawa Y, Kawakita J, Osawa S, Itsukaichi T, Sakamoto Y, Takaya M, Kuroda S (2005) Evaluation of corrosion and wear resistance of hard cermet coatings sprayed by using an improved HVOF process. J Therm Spray Technol 14(3):384–390Google Scholar
  71. 71.
    Schwetzke R, Kreye H (1999) Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems. J Therm Spray Technol 8(3):433–439Google Scholar
  72. 72.
    Browning JA (1992) Hypervelocity impact fusion-a technical note. J Therm Spray Technol 1(4):289–29Google Scholar
  73. 73.
    Browning JA (1999) Viewing the future of HVOF and HVAF thermal spraying. J Therm Spray Technol 8(3):351–356Google Scholar
  74. 74.
    Evdokimenko YI, Kisel VM, Kadyrov VK, Korol’ AA, Get’man OI (2001) High-velocity flame spraying of powder aluminium protective coatings. Powder Metallurg Metal Ceramics 40(3-4):121–126Google Scholar
  75. 75.
    Kawakita J, Kuroda S, Fukushima T, Katanoda H, Matsuo K, Fukanuma H (2006) Dense titanium coatings by modified HVOF spraying. Surf Coat Technol 201:1250–1255Google Scholar
  76. 76.
    Wu T, Kuroda S, Kawakita J, Katanoga K, Reed R (2006) Processing and properties of titanium coatings produced by warm spraying. In: Marple B et al (eds) Thermal spray: building on 100 years of success. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  77. 77.
    Trompetter W, Hyland M, McGrouther D, Munroe P, Markwitz A (2006) Effect of substrate hardness on splat morphology in high-velocity thermal spray coatings. J Therm Spray Technol 15(4):663–669Google Scholar
  78. 78.
    Kuroda S, Tashiro Y, Yumoto H, Taira S, Fukanuma H, Tobe S (2001) Peening action and residual stresses in high-velocity oxygen fuel thermal spraying of 316L stainless steel. J Therm Spray Technol 10(2):367–374Google Scholar
  79. 79.
    Totemeier TC, Wright RN, Swank WD (2002) Microstructure and stresses in HVOF sprayed iron aluminide coatings. J Therm Spray Technol 11(3):400–408Google Scholar
  80. 80.
    Totemeier TC, Wright RN, Swank WD (2004) Residual stresses in high-velocity oxy-fuel metallic coatings. Metallurg Mater Transact A 35A:1807–1814Google Scholar
  81. 81.
    Lima CRC, Nin J, Guilemany JM (2006) Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the Modified Layer Removal Method (MLRM). Surf Coat Technol 200:5963–5972Google Scholar
  82. 82.
    Yilbas BS, Arif AFM (2007) Residual stress analysis for HVOF diamalloy 1005 coating on Ti–6Al–4V alloy. Surf Coat Technol 202:559–568Google Scholar
  83. 83.
    Sidhu TS, Prakash S, Agrawal RD (2005) Science for production studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater Sci 41(6):805–823Google Scholar
  84. 84.
    Wielage B, Wank A, Pokhmurska H, Grund T, Rupprecht C, Reisel G, Friesen E (2006) Development and trends in HVOF spraying technology. Surf Coat Technol 201:2032–2037Google Scholar
  85. 85.
    Neiser RA, Brockmann JE, O’Hern TJ, Dyhkuizen RC, Smith MF, Roemer TJ, Teets RE (1995) Wire melting and droplet atomization in a HVOF jet. In: Berndt CC, Sampath S (eds) Thermal spray science and technology. ASM International, Materials Park, OH, pp 99–104Google Scholar
  86. 86.
    Lopez AR, Hassan B, Oberkampf WL, Neiser RA, Roemer TJ (1998) Computational fluid dynamics analysis of a wire-feed, high-velocity oxygen fuel (HVOF) thermal spray torch. J Therm Spray Technol 7(3):374–382Google Scholar
  87. 87.
    Neiser RA, Smith MF, Dykhuizen RC (1998) Oxidation in wire HVOF-sprayed steel. J Therm Spray Technol 7(4):537–545Google Scholar
  88. 88.
    Hassan B, Lopez AR, Oberkampf WL (1998) Computational analysis of a three-dimensional high-velocity oxygen fuel (HVOF) thermal spray torch. J Therm Spray Technol 7(1):71–77Google Scholar
  89. 89.
    Modi SC, Calla E (2001) A study of high-velocity combustion wire molybdenum coatings. J Therm Spray Technol 10(3):480–486Google Scholar
  90. 90.
    Edrisy A, Perry T, Alpas AT (2005) Wear mechanism maps for thermal-spray steel coatings. Metallurg Mater Transact 36A:2737–2750Google Scholar
  91. 91.
    Sidhu TS, Prakash S, Agrawal RD (2006) Characterisation of NiCr wire coatings on Ni- and Fe-based superalloys by the HVOF process. Surf Coat Technol 200:5542–5549Google Scholar
  92. 92.
    Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J Therm Spray Technol 15(3):387–399Google Scholar
  93. 93.
    Stanisic J, Kosikowski D, Mohanty PS (2006) High-speed visualization and plume characterization of the hybrid spray process. J Therm Spray Technol 15(4):750–758Google Scholar
  94. 94.
    Chow R, Decker TA, Gansert RV, Gansert D, Lee D (2003) Properties of aluminium deposited by a HVOF process. J Therm Spray Technol 12(2):208–213Google Scholar
  95. 95.
    Totemeier TC, Wright RN, Swank WD (2003) Mechanical and physical properties of high-velocity oxy-fuel–sprayed iron aluminide coatings. Metallurg Mater Transact A 34A:2223–2231Google Scholar
  96. 96.
    Higuera V, Belzunce FJ, Carriles A, Poveda S (2002) Influence of the thermal-spray procedure on the properties of a nickel-chromium coating. J Mater Sci 37:649–654Google Scholar
  97. 97.
    Trompetter WJ, Hyland M, Munroe P, Markwitz A (2005) Evidence of mechanical interlocking of NiCr particles thermally sprayed onto Al substrates. J Therm Spray Technol 14(4):524–529Google Scholar
  98. 98.
    Chang-Jiu L, Wang YY (2002) Effect of particle state on the adhesive strength of HVOF sprayed metallic coating. J Therm Spray Technol 11(4):523–529Google Scholar
  99. 99.
    Yuuzou K (2007) Application of high temperature corrosion-resistant materials and coatings under severe corrosive environment in waste-to-energy boilers. J Therm Spray Technol 16(2):202–213Google Scholar
  100. 100.
    Yilbas BS, Khalid M, Abdul-Aleem BJ (2003) Corrosion behavior of HVOF coated sheets. J Therm Spray Technol 12(4):572–575Google Scholar
  101. 101.
    Young-myung Y, Liao H, Coddet C (2002) Simulation and application of a HVOF process for MCrAlY thermal spraying. J Therm Spray Technol 11(1):36–43Google Scholar
  102. 102.
    Lima CRC, Guilemany JM (2007) Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surf Coat Technol 201:4694–4701Google Scholar
  103. 103.
    Chen WR, Wua X, Marple BR, Nagy DR, Patnaik PC (2008) TGO growth behaviour in TBCs with APS and HVOF bond coats. Surf Coat Technol 202(12):2677–2683Google Scholar
  104. 104.
    Brandl W, Toma D, Kruger J, Grabke HJ, Matthäus G (1997) The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings. Surf Coat Technol 93–95:21–26Google Scholar
  105. 105.
    Scrivani A, Bardi U, Carrafiello L, Lavacchi A, Niccolai F et al (2003) A comparative study of high velocity oxygen fuel, vacuum plasma spray, and axial plasma spray for the deposition of CoNiCrAlY bond coat alloy. J Therm Spray Technol 12(4):504–507Google Scholar
  106. 106.
    Rajasekaran B, Mauer G, Vaßen R (2011) Enhanced characteristics of HVOF-sprayed MCrAlY Bond Coats for TBC applications. J Therm Spray Technol 20(6):1209–1216Google Scholar
  107. 107.
    Ni LY, Liu C, Huang H, Zhou CG (2011) Thermal cycling behavior of thermal barrier coatings with HVOF NiCrAlY bond coat. J Therm Spray Technol 20(5):1133–1138Google Scholar
  108. 108.
    Kwon J-Y, Lee J-H, Jung Y-G, Paik U (2006) Effect of bond coat nature and thickness on mechanical characteristic and contact damage of zirconia-based thermal barrier coatings. Surf Coat Technol 201:3483–3490Google Scholar
  109. 109.
    Lima CRC, Guilemany JM (1997) The oxidation behaviour of HVOF thermal-sprayed MCrAlY coatings. Surf Coat Technol 93–95:21–26Google Scholar
  110. 110.
    Richer P, Yandouzi M, Beauvais L, Jodoin B (2010) Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. Surf Coat Technol 204:3962–3974Google Scholar
  111. 111.
    Fossati A, Di Ferdinando M, Lavacchi A, Bardi U, Giolli C (2010) Scrivani Improvement of the isothermal oxidation resistance of CoNiCrAlY coating sprayed by High Velocity Oxygen Fuel. Surf Coat Technol 204:3723–3728Google Scholar
  112. 112.
    Jang H-J, Park D-H, Junga Y-G, Jang J-C, Choi S-C, Paik U (2006) Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs). Surf Coat Technol 200:4355–4362Google Scholar
  113. 113.
    Yuan FH, Chen ZX, Huang ZW, Wang ZG, Zhu SJ (2008) Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bondcoats. Corros Sci 50:1608–1617Google Scholar
  114. 114.
    Kumar Ashok J, Boy RZ, Stephenson LD (2005) Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: a technical note. J Therm Spray Technol 14(2):177–182Google Scholar
  115. 115.
    Hanshin C, Lee S, Kim B, Jo H, Lee C (2005) Effect of in-flight particle oxidation on the phase evolution of HVOF NiTiZrSiSn bulk amorphous coating. J Mater Sci 40:6121–6126Google Scholar
  116. 116.
    Dent AH, DePalo S, Sampath S (2002) Examination of the wear properties of HVOF sprayed nanostructured and conventional WC-Co Cermets with different binder phase contents. J Therm Spray Technol 11(4):551–558Google Scholar
  117. 117.
    Ahmed R, Hadfield M (2002) Mechanisms of fatigue failure in thermal spray coatings. J Therm Spray Technol 11(4):551–558Google Scholar
  118. 118.
    Maria P, Zhao L, Zwick J, Bobzin K, Lugscheider E (2006) Investigation of HVOF spraying on magnesium alloys. Surf Coat Technol 201:3269–3274Google Scholar
  119. 119.
    Perry JM, Neville A, Hodgkiess T (2002) A comparison of the corrosion behavior of WC-Co-Cr and WC-Co HVOF thermally sprayed coatings by in situ atomic force microscopy (AFM). J Therm Spray Technol 11(4):536–541Google Scholar
  120. 120.
    Deng C, Liu M, Wu C, Zhou K, Song J (2007) Impingement resistance of HVAF WC-based coatings. J Therm Spray Technol 16(5–6):604–609Google Scholar
  121. 121.
    Jacobs L, Hyland MM, De Bonte M (1999) Study of the influence of microstructural properties on the sliding-wear behavior of HVOF and HVAF sprayed WC-cermet coatings. J Therm Spray Technol 8(1):125–132Google Scholar
  122. 122.
    Jacobs L, Hyland MM, De Bonte M (1998) Comparative study of WC-cermet coatings sprayed via the HVOF and the HVAF process. J Therm Spray Technol 7(2):213–218Google Scholar
  123. 123.
    Marple BR, Lima RS (2005) Process temperature/velocity-hardness-wear relationships for high-velocity oxyfuel sprayed nanostructured and conventional cermet coatings. Therm Spray Technol 14(1):67–76Google Scholar
  124. 124.
    Moskowitz L, Trelewicz K (1997) HVOF coatings for heavy-wear, high-impact applications. J Therm Spray Technol 6(3):294–299Google Scholar
  125. 125.
    Guilemany JM, Espallargas N, Suegama PH, Benedetti AV, Fernández J (2005) High-velocity oxyfuel Cr3C2-NiCr replacing hard chromium coatings. J Therm Spray Technol 14(3):335–341Google Scholar
  126. 126.
    Gang-Chang J, Li CJ, Wang YY, Li WY (2007) Erosion performance of HVOF-sprayed Cr3C2-NiCr coatings. J Therm Spray Technol 16(4):557–565Google Scholar
  127. 127.
    Matthews S, Hyland M, James B (2004) Long-yerm carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900°C. J Therm Spray Technol 13(4):526–536Google Scholar
  128. 128.
    Mizuno H, Kitamura J (2007) MoB/CoCr cermet coatings by HVOF spraying against erosion by molten Al-Zn Alloy. J Therm Spray Technol 16(3):404–413Google Scholar
  129. 129.
    Horlock AJ, Sadeghian Z, McCartney DG, Shipway PH (2005) High-velocity oxyfuel reactive spraying of mechanically alloyed Ni-Ti-C powders. J Therm Spray Technol 14(1):77–84Google Scholar
  130. 130.
    Thiele S, Heimann RB, Berger L-M, Herrmann M, Nebelung M, Schnick T, Wielage B, Vuoristo P (2002) Microstructure and properties of thermally sprayed silicon nitride-based coatings. J Therm Spray Technol 11(2):218–225Google Scholar
  131. 131.
    Lima RS, Marple BR (2003) High weibull modulus HVOF Titania coatings. J Therm Spray Technol 12(2):240–249Google Scholar
  132. 132.
    Lima RS, Marple BR (2003) Optimized HVOF Titania coatings. J Therm Spray Technol 12(3):360–369Google Scholar
  133. 133.
    Stahr CC, Saaro S, Berger L-M, Dubsky´ J, Neufuss K, Hermann M (2006) Dependence of the stabilization of α-alumina on the spray process. J Therm Spray Technol 16(5–6):822–830Google Scholar
  134. 134.
    Dobbins TA, Knight R, Mayo MJ (2003) HVOF thermal spray deposited Y2O3-stabilized ZrO2 coatings for thermal barrier applications. J Therm Spray Technol 12(2):214–225Google Scholar
  135. 135.
    Petrovicova E, Knight R, Schadler LS, Twardowski TE (2000) Nylon 11/Silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties. J Appl Polym Sci 78:2272–2289Google Scholar
  136. 136.
    Ivosevic M, Knight R, Kalidindi SR, Palmese GR, Sutter JK (2005) Adhesive/cohesive properties of thermally sprayed functionally graded coatings for polymer matrix composites. J Therm Spray Technol 14(1):45–51Google Scholar
  137. 137.
    Jackson L, Ivosevic M, Knight R, Cairncross RA (2007) Sliding wear properties of HVOF thermally sprayed nylon-11 and nylon-11/ceramic composites on steel. J Therm Spray Technol 16(5–6):927–932Google Scholar
  138. 138.
    Aalamialeagha ME, Harris SJ, Emamighomi M (2003) Influence of the HVOF spraying process on the microstructure and corrosion behaviour of Ni-20%Cr coatings. J Mater Sci 38:4587–4596Google Scholar
  139. 139.
    Kawakitaa Jin, Isoyamab K, Kurodaa S, Yumoto H (2006) Effects of deformability of HVOF sprayed copper particles on the density of resultant coatings. Surf Coat Technol 200:4414–4423Google Scholar
  140. 140.
    Kawakitaa Jin, Kuroda S, Fukushima T, Kodama T (2005) Improvement of corrosion resistance of high-velocity oxyfuel-sprayed stainless steel coatings by addition of molybdenum. J Therm Spray Technol 14(2):224–230Google Scholar
  141. 141.
    Totemeier TC (2005) Effect of high-velocity oxygen-fuel thermal spraying on the physical and mechanical properties of type 316 stainless steel. J Therm Spray Technol 14(3):369–372Google Scholar
  142. 142.
    Ashok Kumar J, Boy RZ, Stephenson LD (2005) Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: a technical note. J Therm Spray Technol 14(2):177–183Google Scholar
  143. 143.
    Sundararajan T, Kuroda S, Abe F (2004) Effect of thermal spray on the microstructure and adhesive strength of high-velocity oxy-fuel–sprayed Ni-Cr coatings on 9Cr-1Mo steel. Metallurg Mater Transact A 35A:3187–3199Google Scholar
  144. 144.
    Sundararajan T, Kuroda S, Abe F (2004) Steam oxidation of 80Ni-20Cr high-velocity oxyfuel coatings on 9Cr-1Mo steel: diffusion-induced phase transformations in the substrate adjacent to the coating. Metallurg Mater Transact A 36A:2165–2174Google Scholar
  145. 145.
    Pant BK, Arya V, Mann BS (2007) Development of low-oxide MCrAlY coatings for gas turbine applications. J Therm Spray Technol 16(2):275–280Google Scholar
  146. 146.
    Kim HJ, Lim KM, Seong BG, Park CG (2001) Amorphous phase formation of Zr-based alloy coating by HVOF spraying process. J Mater Sci 36:49–54Google Scholar
  147. 147.
    Bolelli G, Lusvarghi L (2006) Heat treatment effects on the tribological performance of HVOF sprayed Co-Mo-Cr-Si coatings. J Therm Spray Technol 15(4):802–810Google Scholar
  148. 148.
    de Villiers LHL, Richter PW, Benson JM, Young PM (1998) Parameter Study of HP/HVOF Deposited WC-Co Coatings. Journal of Thermal Spray Technology 7(1):97–107Google Scholar
  149. 149.
    Otsubo F, Era H, Uchida T, Kishitake K (2000) Properties of Cr3C2-NiCr cermet coating sprayed by high power plasma and high velocity oxy-fuel processes. J Therm Spray Technol 9(4):499–504Google Scholar
  150. 150.
    Sidhu HS, Sidhu BS, Prakash S (2007) Hot corrosion behavior of hvof sprayed coatings on ASTM SA213-T11 Steel. J Therm Spray Technol 16(3):349–354Google Scholar
  151. 151.
    Bolelli G, Cannillo V, Lusvarghi L, Ricco S (2006) Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surf Coat Technol 200:2995–3009Google Scholar
  152. 152.
    Yasunari I, Kuroda S, Kawakita J, Sakamoto Y, Takaya M (2007) Sliding wear properties of HVOF sprayed WC–20%Cr3C2–7%Ni cermet coatings. Surf Coat Technol 201:4718–4727Google Scholar
  153. 153.
    Maiti AK, Mukhopadhyay N, Raman R (2007) Effect of adding WC powder to the feedstock of WC–Co–Cr based HVOF coating and its impact on erosion and abrasion resistance. Surf Coat Technol 201:7781–7788Google Scholar
  154. 154.
    Sidhu TS, Prakash S, Agrawal RD (2006) Characterizations and hot corrosion resistance of Cr3C2-NiCr coating on Ni-base superalloys in an aggressive environment. J Therm Spray Technol 15(4):811–816Google Scholar
  155. 155.
    Sidhu TS, Malik A, Prakash S, Agrawal RD (2007) Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni- and Fe-based superalloys. J Therm Spray Technol 16(5–6):844–849Google Scholar
  156. 156.
    Marple BR, Voyer J (2001) Improved wear performance by the incorporation of solid lubricants during thermal spraying. J Therm Spray Technol 10(4):626–636Google Scholar
  157. 157.
    Wang Y (2004) Nano- and submicron-structured sulfide self-lubricating coatings produced by thermal spraying. Tribol Lett 17(2):165–168Google Scholar
  158. 158.
    Ozdemir I, Hamanaka I, Tsunekawa Y, Okumiya M (2005) In-process exothermic reaction in high-velocity oxyfuel and plasma spraying with SiO2/Ni/Al-Si-Mg composite powder. J Therm Spray Technol 14(3):321–329Google Scholar
  159. 159.
    Roberson JA, Crowe CT (1997) Engineering fluid dynamics, 6th edn. Wiley, New York, NYGoogle Scholar
  160. 160.
    Li M, Shi D, Christofides PD (2004) Diamond jet hybrid HVOF thermal spray: gas-phase and particle behaviour modelling and feed back control design. Ind Eng Chem Res 43:3632–3652Google Scholar
  161. 161.
    Li M, Shi D, Christofides PD (2004) Model-based estimation and control of particle velocity and melting in HVOF thermal spray. Chem Eng Sci 59:5647–5656Google Scholar
  162. 162.
    Kamnis S, Gu S (2006) Numerical modelling of propane combustion in a high velocity oxygen–fuel thermal spray gun. Chem Eng Proc 45:246–253Google Scholar
  163. 163.
    Furuhata T, Tanno S, Miura T, Ikeda Y, Nakajima T (1997) Performance of numerical spray combustion simulation. Energ Convers Manage 38(10–13):1111–1122Google Scholar
  164. 164.
    Glassman I (1977) Combustion. Academic, New York, NYGoogle Scholar
  165. 165.
    Kadyrov E, Kadyrov V (1995) Gas dynamical parameters of detonation powder spraying. J Therm Spray Technol 4(3):280–286Google Scholar
  166. 166.
    Kharlamov YA (2004) Gaseous pulse detonation spraying: current status, challenges, and future perspective. In: Lugsheider E (ed) ITSC 2008 : Thermal spray crossing borders. DVS, Düsseldorf, Germany, E-proceedingsGoogle Scholar
  167. 167.
    Astakhov EA (2008) Controlling the properties of detonation-sprayed coatings: major aspects. Powder Metallurg Metal Ceramics 47(1–2):70–79Google Scholar
  168. 168.
    Roy GD, Frolov SM, Borisov AA, Netzer DW (2004) Pulse detonation propulsion: challenges, current status, and future perspective. Prog Energ Combust Sci 30:545–672Google Scholar
  169. 169.
    Nikolaev YA, Vasil’ev AA, Ul’yanitskii BY (2003) Gas detonation and its application in engineering and technologies (review). Combust Explos Shock Waves 39(4):382–410Google Scholar
  170. 170.
    Wang T-G, Zhao S-S, Hua W-G, Gong J, Sun C (2009) Design of a separation device used in detonation gun spraying system and its effects on the performance of WC–Co coatings. Surf Coat Technol 203:1637–1644Google Scholar
  171. 171.
    Kadyrov E (1996) Gas-particle interaction in detonation spraying systems. J Therm Spray Technol 5(2):185–195Google Scholar
  172. 172.
    Gavrilenko TP, Nikolaev YA (2006) Limits of gaseous detonation spraying combustion. Explos Shock Waves 42(5):594–597Google Scholar
  173. 173.
    Gavrilenko TP, Nikolaev YA (2007) Calculation of detonation gas spraying combustion. Explos Shock Waves 43(6):724–731Google Scholar
  174. 174.
    Cannon JE, Alkam M, Butler PB (2008) Efficiency of pulsed detonation thermal spraying. J Therm Spray Technol 17(4):456–464Google Scholar
  175. 175.
    Ramadan K, Barry Butler P (2004) Analysis of particle dynamics and heat transfer in detonation thermal spraying systems. J Therm Spray Technol 13(2):248–264Google Scholar
  176. 176.
    Kim JH, Kim MC, Park CG (2003) Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique. Surf Coat Technol 168:275–280Google Scholar
  177. 177.
    Rajasekaran B, Ganesh Sundara Raman S, Joshi SV, Sundararajan G (2006) Effect of detonation gun sprayed Cu–Ni–In coating on plain fatigue and fretting fatigue behaviour of Al–Mg–Si alloy. Surf Coat Technol 201:1548–1558Google Scholar
  178. 178.
    Ganesh Sundara Raman S, Rajasekaran B, Joshi SV, Sundararajan G (2007) Influence of substrate material on plain fatigue and fretting fatigue behavior of detonation gun sprayed Cu-Ni-In Coating. J Therm Spray Technol 16(4):571–579Google Scholar
  179. 179.
    Rajasekaran B, Ganesh Sundara Raman S, Rajasekaran B, Joshi SV, Sundararajan G (2008) Performance of plasma sprayed and detonation gun sprayed Cu–Ni–In coatings on Ti–6Al–4V under plain fatigue and fretting fatigue loading. Mater Sci Eng A 479:83–92Google Scholar
  180. 180.
    Oliker VE, Barabash MY, Grechishkin EF, Timofeeva II, Gridasova TY (2007) High-temperature air oxidation based on eutectic (β-NiAl + γ- and NiAl intermetallide. Powder Metallurg Metal Ceramics 46(3–4):175–181Google Scholar
  181. 181.
    Oliker VE, Pritulyak AA, Syrovatka VL, Grechishkin EF, Gridasova TY (2007) Formation and high-temperature oxidation of thermal-barrier coatings with Ti–Al–Cr binding layer. Powder Metallurg Metal Ceramics 46(9–10):483–491Google Scholar
  182. 182.
    Belzunce FJ, Higuera V, Poveda S, Carriles A (2002) High temperature of HFPD thermal-sprayed MCrAlY coatings in simulated gas turbine environments. J Therm Spray Technol 11(4):461–467Google Scholar
  183. 183.
    Yu-Juan Z, Sun XF, Guana HR, Hua ZQ (2002) 1050°C isothermal oxidation behavior of detonation gun sprayed NiCrAlY coating. Surf Coat Technol 161:302–305Google Scholar
  184. 184.
    Taylor TA, Knapp JK (1995) Dispersion-strengthened Modified MCrAlY Coatings Produced by Reactive Deposition. Surf Coat Technol 76–77:34–40Google Scholar
  185. 185.
    Zhang YJ, Sun XF, Zhang YC, Jin T, Deng CG, Guan HR, Hu ZQ (2003) A comparative study of DS NiCrAlY coating and LPPS NiCrAlY coating. Mater Sci Eng A360:65–69Google Scholar
  186. 186.
    Ke PL, Wu YN, Wang QM, Gong J, Sun C, Wen LS (2005) Study on thermal barrier coatings deposited by detonation gun. Surf Coat Technol 200:2271–2276Google Scholar
  187. 187.
    Wu YN, Wang FH, Hua WG, Gong J, Sun C, Wen LS (2003) Oxidation behavior of thermal barrier coatings obtained by detonation spraying. Surf Coat Technol 166:189–194Google Scholar
  188. 188.
    Wu YN, Ke PL, Wang QM, Sun C, Wang FH (2004) High temperature properties of thermal barrier coatings obtained by detonation spraying. Corros Sci 46:2925–2935Google Scholar
  189. 189.
    Suresh BP, Basu B, Sundararajan G (2008) Processing–structure–property correlation and decarburization phenomenon in detonation sprayed WC–12Co coatings. Acta Mater 56:5012–5026Google Scholar
  190. 190.
    Sundararajan G, Sen D, Sivakumar G (2005) The tribological behaviour of detonation sprayed coatings: the importance of coating process parameters. Wear 258:377–391Google Scholar
  191. 191.
    Murthy JKN, Venkataraman B (2006) Abrasive wear behaviour of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surf Coat Technol 200:2642–2652Google Scholar
  192. 192.
    Wang T-G, Zhao S-S, Hua W-G, Li J-B, Gong J, Sun C (2010) Estimation of residual stress and its effects on the mechanical properties of detonation gun sprayed WC–Co coatings. Mater Sci Eng A 527(3):454–461Google Scholar
  193. 193.
    Park SY, Kim MC, Park CG (2007) Mechanical properties and microstructure evolution of the nano WC–Co coatings fabricated by detonation gun spraying with post heat treatment. Mater Sci Eng A 449–451:894–897Google Scholar
  194. 194.
    Du H, Hua W, Liu J, Gong J, Sun C, Wen L (2005) Influence of process variables on the qualities of detonation gun sprayed WC–Co coatings. Mater Sci Eng A 408:202–210Google Scholar
  195. 195.
    Suresh BP, Rao DS, Rao GVN, Sundararajan G (2007) Effect of feedstock size and its distribution on the properties of detonation sprayed coatings. J Therm Spray Technol 16(2):281–290Google Scholar
  196. 196.
    Oliker VE, Grechishkin EF, Polotai VV, Loskutov MG, Timofeeva II (2004) Influence of the structure and properties of WC-Co alloy powders on the structure and wear resistance of detonation coatings. Powder Metallurg Metal Ceramics 43(5–6):258–264Google Scholar
  197. 197.
    Du H, Sun C, Hua WG, Zhang YS, Han Z, Wang TG, Gong J, Lee SW (2006) Fabrication and evaluation of D-gun sprayed WC–Co coating with self-lubricating property. Tribol Lett 23(3):261–266Google Scholar
  198. 198.
    Murthy JKN, Rao DS, Venkataraman B (2001) Effect of grinding on the erosion behaviour of a WC–Co–Cr coating deposited by HVOF and detonation gun spray processes. Wear 249:592–600Google Scholar
  199. 199.
    Li C-J, Ohmori A (1996) The lamellar structure of a detonation gun sprayed A12O3 coating. Surf Coat Technol 82:254–258Google Scholar
  200. 200.
    Saravanan P, Selvarajan V, Rao DS, Joshi SV, Sundararajan G (2000) Influence of process variables on the quality of detonation gun sprayed alumina coating. Surf Coat Technol 123:44–54Google Scholar
  201. 201.
    Niemi K, Vuoristo P, Mantyla T (1994) Properties of alumina-based coatings deposited by plasma spray and detonation gun spray processes. J Therm Spray Technol 3(2):99–203Google Scholar
  202. 202.
    Saravanan P, Selvarajan V, Srivastava MP, Rao DS, Joshi SV, Sundararajan G (2000) Study of plasma- and detonation gun-sprayed alumina coatings using taguchi experimental design. J Therm Spray Technol 9(4):505–512Google Scholar
  203. 203.
    Pogrebnyak AD, Tyurin YN, Ivanov YF, Kobzev AP, Kul’ment’eva OP, Il’yashenko MI (2000) Preparation and Investigation of the Structure and Properties of Al2O3 Plasma-Detonation Coatings. Tech Phys Lett 26(11):960–963Google Scholar
  204. 204.
    Sobiecki JR, Ewertowshi J, Babul T, Wierzchon T (2004) Properties of alumina coatings produced by gas-detonation method. Surf Coat Technol 180–181:556–560Google Scholar
  205. 205.
    Venkataraman R, Ravikumar B, Krishnamurthy R, Das DK (2006) A study on phase stability observed in as sprayed Alumina-13 wt.% Titania coatings grown by detonation gun and plasma spraying on low alloy steel substrates. Surf Coat Technol 201:3087–3095Google Scholar
  206. 206.
    Semenov SY, Cetegen BM (2002) Experiments and modeling of the deposition of nano-structured alumina–titania coatings by detonation waves. Mater Sci Eng A335:67–81Google Scholar
  207. 207.
    Sundararajan G, Sivakumar G, Sen D, Srinivasa Rao D, Ravichandra G (2010) The tribological behaviour of detonation sprayed TiMo(CN) based cermet coatings. Int J Refract Metals Hard Mater 28:71–81Google Scholar
  208. 208.
    Du H, Sun C, Hua W, Wang T, Gong J, Jiang X, Wohn Lee S (2007) Structure, mechanical and sliding wear properties of WC–Co/MoS2–Ni coatings by detonation gun spray. Mater Sci Eng A 445–446:122–134Google Scholar
  209. 209.
    Wang J, Li Zhang B, Sun YZ (2000) Study of the Cr3C2-NiCr detonation spray coating. Surf Coat Technol 130:69–73Google Scholar
  210. 210.
    Sundararajan G, Sivakumar G, Sen D, Srinivasa Rao D, Ravichandra G (2010) The tribological behaviour of detonation sprayed TiMo(CN) based cermet coatings, Int. J Refract Metals Hard Mater 28:71–81Google Scholar
  211. 211.
    Kamal S, Jayaganthan R, Prakash S, Kumar S (2008) Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900◦C. J Alloys Compd 463:358–372Google Scholar
  212. 212.
    Kamal S, Jayaganthan R, Prakash S (2009) High temperature oxidation studies of detonation-gun-sprayed Cr3C2–NiCr coating on Fe- and Ni-based superalloys in air under cyclic condition at 900◦C. J Alloys Compd 472:378–389Google Scholar
  213. 213.
    Wang J, Sun B, Guo Q, Nishio M, Ogawa H (2002) Wear resistance of a detonation spray coating. J Therm Spray Technol 11(2):261–265Google Scholar
  214. 214.
    Jun W, Sun B, Guo Q, Nishio M, Ogawa H (2002) Wear resistance of a Cr3C2-NiCr detonation spray coating. J Therm Spray Technol 11(2):261–265Google Scholar
  215. 215.
    Murthy JKN, Bysakh S, Gopinath K, Venkataraman B (2007) Microstructure dependent erosion in Cr3C2–20(NiCr) coating deposited by a detonation gun. Surf Coat Technol 202:1–12Google Scholar
  216. 216.
    Wood RJK, Mellor BG, Binfield ML (1997) Binfield, Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear 211:70–83Google Scholar
  217. 217.
    Manish R (2002) Dynamic hardness detonation sprayed WC-Co coatings. J Therm Spray Technol 11(3):393–399Google Scholar
  218. 218.
    Oliker VE, Sirovatka VL, Timofeeva II, Gridasova TY, Hrechyshkin YF (2006) Formation of detonation coatings based on titanium aluminide alloys and aluminium titanate ceramic sprayed from mechanically alloyed powders Ti—Al. Surf Coat Technol 200:3573–3581Google Scholar
  219. 219.
    Tillmann W, Vogli E, Nebel J (2007) Development of detonation flame sprayed cu-base coatings containing large ceramic particles. J Therm Spray Technol 16(5–6):751–758Google Scholar
  220. 220.
    Astakhov EA, Mits IV, Kaplina GS, Kokorina NN, Kil’dii AI (2005) Study of the process of phase formation during detonation spraying of composite powders of the FeTi − SiC system. Powder Metallurg Metal Ceramics 44(1–2):55–59Google Scholar
  221. 221.
    Oliker VE, Sirovatka VL, Timofeeva II, Grechishkin EF, Gridasova TY (2005) Effects of properties of titanium aluminide powders and detonation spraying conditions on phase and structure formation in coatings. Powder Metallurg Metal Ceramics 44(9–10):472–480Google Scholar
  222. 222.
    Filimonov VY, Yakovlev VI, Korchagin MA, Loginova MV, Semenchina AS, Afanas’ev AV (2008) Structure formation during gas-detonation spraying of coatings from composite powders TiAl3 and Ni3Al. Combust Explos Shock Waves 44(5):591–596Google Scholar
  223. 223.
    Podchernyaeva IA, Shchepetov VV, Panasyuk AD, Gromenko VY, Yurechko DV, Katashinskii VP (2003) Refractory and ceramic materials structure and properties of wear-resistant detonation coatings based on titanium carbonitride. Powder Metallurg Metal Ceramics 42(9–10):497–502Google Scholar
  224. 224.
    Zhu JL, Huang JH, Wang HT, Xu JL, Zhao XK, Zhang H (2008) In-situ synthesis and microstructure of TiC–Fe36Ni composite coatings by reactive detonation-gun spraying. Mater Lett 62:2009–2012Google Scholar
  225. 225.
    Yang G, Zu-kun H, Xiaolei X, Gang X (2001) Formation of molybdenum boride cermet coating by the detonation spray process. J Therm Spray Technol 10(3):456–460Google Scholar
  226. 226.
    Gao Y, Zu-kun H, Xiaolei X, Gang X (2001) Formation of molybdenum boride cermet coating by the detonation spray process. J Therm Spray Technol 10(3):456–460Google Scholar
  227. 227.
    Senderowski C, Bojar Z (2008) Gas detonation spray forming of Fe–Al coatings in the presence of interlayer. Surf Coat Technol 202:3538–3548Google Scholar
  228. 228.
    Senderowski C, Bojar Z (2009) Influence of detonation gun spraying conditions on the quality of Fe-Al intermetallic protective coatings in the presence of NiAl and NiCr interlayers. J Therm Spray Technol 18(3):435–447Google Scholar
  229. 229.
    Min’kov DV, Lakunin VY, Kartashov ST, Bashkirov OM, Ivanov AS, Kasatkin AV, Min’kov MD (2008) Restoration of drying cylinders on spinning machines by gas detonation spraying. Fibre Chem 40(6):545–547Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations