Fundamentals of Combustion and Thermal Plasma

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos


Except for Cold Spray, thermal spray processes are based either on combustion or thermal plasmas. This chapter recalls the basic phenomena involved allowing understanding how the high temperature jets are generated and what are their properties. First the bases of combustion are presented with flames, detonation, and explosions: their stability limits, their temperatures and velocities. Then bases of thermal plasmas are discussed with a short presentation of how are calculated their compositions, specific masses, enthalpies, viscosities, and electrical and thermal conductivities with finally the results for the main gases used in thermal spraying. At last the basic concepts in modeling are presented: conservation equations (continuity, momentum, and energy), electromagnetic field equations, and at last laminar and turbulent flows. Bases presented in this chapter are then used in the different chapters related to the various spray processes.


Detonation Wave Thermal Plasma Combustion Wave Cold Spray Spray Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



One dimension


Two dimensions


Three dimensions


Direct current


Left hand side


Radio frequency


Right hand side


  1. 1.
    Glassman I (1977) Combustion. Academic, New York, NYGoogle Scholar
  2. 2.
    Linde catalogue, Acetylene… there is no better fuel gas for Oxyfuel gas processes, Linde AG, Head Office, Klosterhofstr. 1, 80331 Munich, GermanyGoogle Scholar
  3. 3.
    Mackie JC, Smith JC (1990) Inhibition of C2 oxidation by methane under oxidative coupling conditions. Energy Fuels 4(3):277–85CrossRefGoogle Scholar
  4. 4.
    Kee RJ, Rupley FM, Miller JA (1998) A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia National Laboratories Report, SAND89-8009Google Scholar
  5. 5.
    Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas, fundamentals and applications. Plenum Press, New York and LondonCrossRefGoogle Scholar
  6. 6.
    Bourdin E, Boulos M, Fauchais P (1983) Transient conduction to a single sphere under plasma conditions. Int J Heat Mass Transfer 26:567–579CrossRefGoogle Scholar
  7. 7.
    Nogues E, Fauchais P, Vardelle M, Granger P (2007) Relation between the arc-root fluctuations, the cold boundary layer thickness and the particle thermal treatment. J Therm Spray Technol 16(5–6):919–926CrossRefGoogle Scholar
  8. 8.
    Oran ES, Boris JP (2001) Numerical simulation of reactive flow, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  9. 9.
    Hirsch C (1988) Numerical computation of internal and external flows; vol I: Fundamentals of numerical discretization and numerical computation of internal and external flows and vol II: Computational methods for inviscid and viscous flows. Wiley, New York, NYGoogle Scholar
  10. 10.
    Hoffman KA, Chiang ST (1993) Computational fluid dynamics for engineers, vol 1. Engineering Educational Systems, KansasGoogle Scholar
  11. 11.
    Kundu Pijush K, Ira Cohen M (2008) Fluid mechanics. Academic (4th revised ed.)Google Scholar
  12. 12.
    Falkovich G (2011) Fluid mechanics (a short course for physists). Cambridge University Press, CambridgeCrossRefGoogle Scholar
  13. 13.
    Launder BE, Spalding DB (1972) Lectures in mathematical models of turbulence. Academic, LondonGoogle Scholar
  14. 14.
    Launder BE, Spalding DB (1974) The numerical computation of turbulent flow. Comput Methods Appl Mech Eng 35:269–289CrossRefGoogle Scholar
  15. 15.
    Reynolds WC, Cebeci T (1976) Calculation of turbulent flows. In: Bradshaw P (ed) Turbulence. Springer, Berlin, p 193CrossRefGoogle Scholar
  16. 16.
    Rodi W (1980) Turbulence models for environmental problems. In: Kollmann W (ed) Prediction methods for turbulent flows. Hemisphere Publishing Company, Washington, DC, p 260Google Scholar
  17. 17.
    Schiestel R. Modeling and simulation of turbulent flows, new technologies. Dunod University, Paris, France (in French)Google Scholar
  18. 18.
    Favre A, Kovasznay LSG, Dumas R, Gaviglio J, Coantic M (1977) The turbulence in fluid mechanics. Gauthier-Villars Editors, ParisGoogle Scholar
  19. 19.
    Pozorski J, Minier JP (1994) Lagrangian modeling of turbulent flows. EDF Report HE.106, 44/94Google Scholar
  20. 20.
    Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1995) A new eddy viscosity model for high Reynolds number turbulent flows model development and validation. Comput Fluids 24:227–238CrossRefGoogle Scholar
  21. 21.
    Sagaut P (1998) Introduction to large eddy scale simulations for the modeling of uncompresible flows, vol 30 (in French). Mathématiques et Applications. SpringerGoogle Scholar
  22. 22.
    Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. 23.
    Archambeau F, Méchitoua N, Sakiz M (2004) Code_Saturne: a finite volume code for the computation of turbulent incompressible flows—industrial applications. Int J Finite Vol 1(1):1–62Google Scholar
  24. 24.
    Pope SB (2004) Ten questions concerning the large-eddy simulation of turbulent flows. New J Phys 6(35):1–24Google Scholar
  25. 25.
    Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of compressible flows. Comput Methods Appl Mech Eng 197(1–4):173–201CrossRefGoogle Scholar
  26. 26.
    Yap C (1987) Turbulent heat and momentum transfer in recirculating and impinging flows. Ph.D., University of Manchester, G.BGoogle Scholar
  27. 27.
    Chen YS, Kim SW (1987) Computation of turbulent flows, turbulence closure models using and extended k-ε. NASA, CR-179204Google Scholar
  28. 28.
    Legros E. Contribution to 3D modelling of the plasma spray process and application to a two-torch process. University of Limoges, France, Nov 2003 (in French)Google Scholar
  29. 29.
    Storey SH, van Zeggeren F (1970) The computation of chemical equilibria. Cambridge University Press, CambridgeGoogle Scholar
  30. 30.
    Thermodata Data Bank, Scientific Group Thermodata Europe (SGTE), 6 rue du Tour de l’Eau, 38402 St Martin d'HÒres, FranceGoogle Scholar
  31. 31.
    Janaf Thermochemical Tables, Part I and II, Published by the American Chemical Society and The American Institute of Physics for the National Bureau of Standards (1985) MichiganGoogle Scholar
  32. 32.
    Gurvich LV, Veyts IV, Alcock CB (1990) Thermodynamic properties of individual substances, 4th ed. Hemisphere Publishing Corporation, A member of the Taylor and Francis Group, New YorkGoogle Scholar
  33. 33.
    Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New York, NYGoogle Scholar
  34. 34.
    Kee RJ, Rupley FM, Miller JA, Chemkin II (1989) A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia Nat. Lab. Sept. See also Kee RJ, Dixon-Lewis G, Warnatz J, Coltrin ME, Miller JA (1986) Sandia National Laboratories, Report SAND 86-8246Google Scholar
  35. 35.
    Bandyopadhyay R, Nylén P (2003) A computational fluid dynamic analysis of gas and particle flow in flame spraying. J Therm Spray Technol 12(4):492–503CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations