Overview of Thermal Spray

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos


In order to be competitive in the market, it is important to be able to produce surfaces that wear only a little, are more resistant to tarnishing and corrosion, and retain their electrical, optical, or thermal properties over a long period. It is also interesting to have technologies to simplify product ranges or maintenance requirements. Surface treatments and coatings have a prominent role to play in this respect. This chapter is an overview of the different surface treatments; among them are set thermal spray processes, whose applications are briefly described. Then the different processes are summarily discussed together with the different ways to supply powders, wires, rods, cords, and also liquids (suspensions or solutions). Then the interactions high-energy gas particles or liquids are briefly described, before the coating formation is presented.


Thermal Spray Plasma Torch Cold Spray Spray Process Core Wire 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Mass ratio between gas and suspension


Computational fluid dynamics


direct current


Detonation gun


High-velocity oxy-fuel flame


Plasma-assisted chemical vapor deposition


Plasma-enhanced chemical vapor deposition


Partially stabilized zirconia


Plasma-transferred arc


Physical vapor deposition


Radio frequency


Gas to liquid volume flow rates (generally over 100)


Standard liter per minute


Thermal barrier coating


  1. 1.
    Cartier M (2003) Handbook of surface treatments and coatings. ASME Press, New York, NYGoogle Scholar
  2. 2.
    Davis JR (ed) (2004) Handbook of thermal spray technology. ASM International, Materials Park, OHGoogle Scholar
  3. 3.
    Chattopadhyay R (2001) Surface wear. ASM International, Materials Park, OHGoogle Scholar
  4. 4.
    Kanani N (2004) Electroplating, basic principles, processes and practice. Elsevier, AmsterdamGoogle Scholar
  5. 5.
    Djokic SS (2010) Electroless deposition: theory and applications, chapter 6. In: Djokic SS, Cavallotti P (eds) Modern aspects of electrochemistry, vol 48. Springer, New York, NY, pp 251–289Google Scholar
  6. 6.
    Maaß P, Peißker P (2011) Handbook of hot-dip galvanization. Wiley, New York, NY, 494 pCrossRefGoogle Scholar
  7. 7.
    Dobkin DM, Zuraw MK (2003) Principles of chemical vapor deposition. Kluwer Academic, DordrechtCrossRefGoogle Scholar
  8. 8.
    Pawlowski L (2003) Dépôts physiques. Presses polytechniques et universitaires romandes, LausanneGoogle Scholar
  9. 9.
    Glocker DA, Shah SI (1995) Handbook of thin film process technology (2 vol. set). Institute of Physics, BristolGoogle Scholar
  10. 10.
    Mahan JE (2000) Physical vapor deposition of thin films. Wiley, New York, NYGoogle Scholar
  11. 11.
    Erkens G, Vetter J, Müller J, auf dem Brinke T, Fromme M, Mohnfeld A (2011) Plasma-assisted surface coating processes, methods, systems and applications. Sulzer Metco, Süddeutscher Verlag onpact GmbH, MunichGoogle Scholar
  12. 12.
    Frey H, Khan HR (2013) Handbook of thin film technology. Springer, Berlin, 550 pagesGoogle Scholar
  13. 13.
    Gladush GG, Smurov I (2011) Physics of laser materials processing: theory and experiment, Springer series in materials science. Springer, BerlinCrossRefGoogle Scholar
  14. 14.
    American Welding Society (1985) Thermal spraying, practice, theory and application. American Welding Society, Miami, FLGoogle Scholar
  15. 15.
    Pawlowski L. The science and engineering of thermal spray coatings. Wiley, New York, NY, 1st edition (1995) and 2nd edition (2008)Google Scholar
  16. 16.
    Seyed A. Co-spraying of alumina and stainless steel by d.c. plasma jets. PhD Thesis, University of Limoges France and GIK Institute, Topi, Pakistan, 26 Feb 2004, Limoges FranceGoogle Scholar
  17. 17.
    Fauchais P, Etchart-Salas R, Rat V, Coudert J-F, Caron N, Wittmann-Ténèze K (2008) Parameters controlling liquid plasma spraying: solutions, sols or suspensions. J Therm Spray Technol 17(1):31–59CrossRefGoogle Scholar
  18. 18.
    Scrivani A, Bardi U, Carrafiello L, Lavacchi A, Niccolai F, Rizzi G (2003) A comparative study of high velocity oxygen fuel, vacuum plasma spray, and axial plasma spray for the deposition of CoNiCrAlY bond coat alloy. J Therm Spray Technol 12(4):504–507CrossRefGoogle Scholar
  19. 19.
    Yankee SJ, Salsbury RL, Pletka BJ (1991) Quality control of hydroxylapatite coating: properties, processes and applications. In: Bernecki T (ed) Thermal spray 1991. ASM International, Materials Park, OH, pp 475–483Google Scholar
  20. 20.
    Fauchais P, Fukumoto M, Vardelle A, Vardelle M (2004) Knowledge concerning splat formation: an invited review. J Therm Spray Technol 13(3):337–360CrossRefGoogle Scholar
  21. 21.
    Gärtner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Therm Spray Technol 15(2):223–232CrossRefGoogle Scholar
  22. 22.
    Champagne VK (ed) (2007) The cold spray materials deposition process. Woodhead Publishing Limited, EnglandGoogle Scholar
  23. 23.
    Alkhimov AP, Papyrin AN, Kosarev VF, Nesterovich NI, Shushpanov MM. Gas-dynamic spraying method of applying a coating. US Patent 5, 302,414, April 12.Google Scholar
  24. 24.
    Stoltenhoff T, Kreye H, Richter HJ (1994) An analysis of the cold spray process and its coatings. J Therm Spray Technol 11(4):542–550CrossRefGoogle Scholar
  25. 25.
    Kashirin AI, Klynev OF, Buzdygar TV (2002) Apparatus dynamic coating. US patent 6, 402, 050, June 11Google Scholar
  26. 26.
    Shkodkin A, Kashirin A, Klynev O, Buzdygar T (2006) Metal particle deposition simulation by surface abrasive treatment in gas dynamic spraying. J Therm Spray Technol 15(3):382–386CrossRefGoogle Scholar
  27. 27.
    Kashirin A, Klynev O, Buzdygar T, Shkodin A (2007) DYMET technology evolution and application. In: Marple BR et al (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  28. 28.
    Hermanek FJ (2001) Thermal spray terminology and company origins. ASM International, Materials Park, OHGoogle Scholar
  29. 29.
    Glassmann I (1977) Combustion. Academic, New York, NYGoogle Scholar
  30. 30.
    Ducos M (2006) Evaluation des coûts de projection thermique (Costs evaluation in thermal spraying). Cours, ALIDERTE, LimogesGoogle Scholar
  31. 31.
    Thorpe ML, Richter HJ (1992) A pragmatic analysis and comparison of HVOF processes. J Therm Spray Technol 1(2):161–170CrossRefGoogle Scholar
  32. 32.
    Smith MF, Dykhuisen RC, Neiser RA (1997) Oxidation in HVOF sprayed steels. In: Berndt CC (ed) Thermal spray: a united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 885–892Google Scholar
  33. 33.
    Kadyrov E, Kadyrov V (1995) Gas dynamical parameters of detonation powder spraying. J Therm Spray Technol 4(3):280–286CrossRefGoogle Scholar
  34. 34.
    Fauchais P (2004) Understanding plasma spraying, an invited review. J Phys D Appl Phys 37:2232–2246CrossRefGoogle Scholar
  35. 35.
    Morishita T (1991) In: Blum–Sandmeier S et al. Plasma Technik 2nd symposium, vol. 1. Plasma Technik, Wohlen, pp 137–145Google Scholar
  36. 36.
    Boulos M (1992) RF induction plasma spraying: state-of-the-art review. J Therm Spray Technol 1:33–40CrossRefGoogle Scholar
  37. 37.
    Bolot R, Planche M-P, Liao H, Coddet C (2008) A three-dimensional model of the wire-arc spray process and its experimental validation. J Mater Process Technol 200:94–105CrossRefGoogle Scholar
  38. 38.
    Wilden J, Bergmann JP, Frank H (2006) Plasma transferred arc welding-modeling and experimental optimization. J Therm Spray Technol 15(4):779–784CrossRefGoogle Scholar
  39. 39.
    Vardelle M, Vardelle A, Fauchais P, Li K-I, Dussoubs B, Themelis NJ (2001) Controlling particle injection in plasma spraying. J Therm Spray Technol 10:267–286CrossRefGoogle Scholar
  40. 40.
    Dolatabadi A, Pershin V, Mostaghimi J (2005) New attachment for controlling gas flow in the HVOF process. J Therm Spray Technol 14(1):91–99CrossRefGoogle Scholar
  41. 41.
    Hussary NA, Heberlein JVR (2001) Atomization and particle jet interactions in the wire-arc spraying process. J Therm Spray Technol 10(4):604–610CrossRefGoogle Scholar
  42. 42.
    Filkova I, Cedik P (1984) Nozzle atomization in spray drying, vol 3. In: Mujumdar AS (ed) Advances drying. Hemisphere Publishing Corporation, pp 181–215Google Scholar
  43. 43.
    Savkar FD, Siemers PA (1989) Some recent developments in rapid solidification plasma deposition technology. In: Boulos M (ed) Workshop applications, pp 80–89Google Scholar
  44. 44.
    Neiser RA, Smith MF, Dykhuisen RC (1998) Oxidation in wire HVOF-sprayed steel. J Therm Spray Technol 7(4):537–545CrossRefGoogle Scholar
  45. 45.
    Pasandideh-Fard M, Pershin V, Chandra S, Mostaghimi J (2002) Splat shapes in a thermal spray coating process: simulations and experiments. J Therm Spray Technol 11(2):206–217CrossRefGoogle Scholar
  46. 46.
    Fukumoto M, Haang Y (1999) Flattening mechanism in thermal sprayed Ni particles impinging on flat substrate. J Therm Spray Technol 8(2):427–432CrossRefGoogle Scholar
  47. 47.
    Chandra S, Fauchais P (2009) Formation of solid splats during thermal spray deposition. J Therm Spray Technol 18(2):148–180CrossRefGoogle Scholar
  48. 48.
    Klinkov SV, Kosarev VF (2006) Measurements of cold spray deposition efficiency. J Therm Spray Technol 15(3):364–371CrossRefGoogle Scholar
  49. 49.
    Kadyrov V (1992) Detonation coating technology. J Jpn Therm Spray Soc 29(4):14–25Google Scholar
  50. 50.
    Raletz F, Vardelle M, Ezoo G (2006) Critical particle velocity under cold spray conditions. Surf Coat Technol 201(5):1942–1947CrossRefGoogle Scholar
  51. 51.
    Papyrin AN, Klinkov SV, Kosarev VF (2005) Effect of the substrate surface activation on the process of cold spray coating formation. In: Lugscheider E (ed) Thermal spray 2005. DVS, Dusseldorf, Germany, e-proceedingsGoogle Scholar
  52. 52.
    Bacciochini A (2010) Quantification of porous architecture of finely structured deposits of yttria stabilized zirconia manufactured by suspension plasma spraying. PhD Thesis, University of Limoges, France, 24 NovGoogle Scholar
  53. 53.
    Gell M, Jordan E, Teicholz M, Cetegem BM, Padture NP, Xie L, Chen D, Ma X, Roth J (2008) Thermal barrier coatings made by the solution precursor plasma spray process. J Therm Spray Technol 17(1):124–135CrossRefGoogle Scholar
  54. 54.
    Clyne TW, Gill SC (1996) Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol 5(4):401–418CrossRefGoogle Scholar
  55. 55.
    Smith MF, Neiser RA, Dykhuizen RL (1994) An investigation of the effects of droplet impact angle in thermal spray deposition. In: Berndt CC, Sampath S (eds) Thermal spray: industrial applications. ASM International, Materials Park, OH, pp 603–608Google Scholar
  56. 56.
    Kanaouff MP, Neiser RA, Roemer TJ (1998) Surface roughness of thermal spray coatings made with off-normal spray angle. J Therm Spray Technol 7(2):219–231CrossRefGoogle Scholar
  57. 57.
    Montillet D, Dombre E, Valentin FD, Goubot JM (1999) Modeling, simulating and optimizing the robotized plasma deposition: an expression approach. In: Lugsheider E, Kammer PA (eds) Thermal spray. DVS, Düsseldorf, Germany, pp 507–512Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations