Process Integration

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos


This section is devoted to important items that are not directly linked to the different coatings formation and applications, but without which coatings production could not exist. Thermal spray induces potential risks due to gases and powders used, vapors and dusts produced, noise, radiation, high temperatures of the different processes, electrical equipment, use of robots,… Such risks must be prevented not only by individual protections but also mainly by using especially designed enclosures (spray booth), with adapted exhaust and ventilation systems. The controlled atmosphere spraying equipments are also described. Moreover, in most cases coatings are not usable as-sprayed because the dimensions cannot be as precise as requested by specifications; they might be too porous, not enough impervious to gas liquids,…. Thus, they have to be machined, grinded, polished,…, to achieve the right dimensions, densified for a better wear resistance, sealed to improve their corrosion resistance. The fusing processes of self-fluxing alloys and the heat-treating or annealing of coated parts are thus described. At last examples of different posttreatments illustrate processes presented.


Thermal Spray Bond Coat Thermal Barrier Coating Cold Spray Spray Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Atmospheric plasma spraying


Continuous wave


Decibel A: weighting in noise measurements


Direct current


German aerospace research center


Electron beam-physical vapor deposition


Flame sprayed


High-efficiency particulate air class filters


Hot isostatic pressing


High-velocity oxy-fuel flame


Infra red




Local exhaust ventilation


Low-pressure plasma spraying


Laser-remelted coatings


Metal supported solid oxide fuel cells


National Institute of Occupational Safety and Health


Noise reduction rating


Filters for organic vapor, P oil-proof, 100 corresponds to 99.97 % efficiency


Programmable logic controllers


Personal respiratory protective equipment


Rolling contact fatigue


Spark plasma sintering


Ultra violet


Thermal barrier coating


Vacuum plasma spraying


Yttria partially stabilized zirconia


Yttria-stabilized zirconia


  1. 1.
    Montavon G, Gross K (2004) Safety issue in thermal spraying: the need for a collaborative effort within the community? J Therm Spray Technol 13(2):155–157Google Scholar
  2. 2.
    Russo L. Safety guidelines for performing risk assessments. ASM Thermal Spray Society, Safety Guidelines, 07/06/2010Google Scholar
  3. 3.
    Hériaud-Kraemer H, Montavon G, Hertert S, Robin H, Coddet C (2003) Harmful risks for workers in thermal spraying: a review completed by a survey in a French Company. J Therm Spray Technol 12(4):542–554Google Scholar
  4. 4.
    Petsas N, Kouzilos G, Papapanos G, Vardavoulias M, Moutsatsou A (2007) Worker exposure monitoring of suspended particles in a thermal spray industry. J Therm Spray Technol 16(2):214–219Google Scholar
  5. 5.
    Wuest G, Hall A, Crawmer D. Guidelines for the use of personal protective equipment (PPE) in thermal spraying. ASM Thermal Spray Society, 27 pages in Safety GuidelinesGoogle Scholar
  6. 6.
    Fadeel B, Garcia-Bennett AE (2010) Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 62:362–374Google Scholar
  7. 7.
    Schulte PA, Murashov V, Zumwalde R, Kuempel ED, Geraci CL (2010) Occupational exposure limits for nanomaterials: state of the art. J Nanoparticle Res 12(6):1971–1987Google Scholar
  8. 8.
    Chadwick JK, Wilson HK, White MA (1997) An investigation of occupational metal exposure in thermal spraying processes. Sci Total Environ 199:115–124Google Scholar
  9. 9.
    Dobler K, Gifford D (2003) Safety guidelines for the handling and use of gases in thermal spraying. Prepared by the ASM-TSS Safety Committee. TSS, ASM International, Materials Park, OH, 27 pagesGoogle Scholar
  10. 10.
    Linde catalogue, Acetylene… there is no better fuel gas for Oxy-fuel gas processes,
  11. 11.
    Creffield G, Cole M (1999) Safe working practices with thermal spray gases. In: Lugscheider E, Kammer PA (eds) United thermal spray conference, Düsseldorf. DVS, Düsseldorf, Germany, pp 397–401Google Scholar
  12. 12.
    Heinrich P, Penszior C, Meinass H (1999) Industrial gases for thermal spraying-from production to application, with the required purity. In: Lugscheider E, Kammer PA (eds) United thermal spray conference, Düsseldorf. DVS, Düsseldorf, Germany, pp 95–105Google Scholar
  13. 13.
    Howes CP (2001) Thermal spray safety and OSHA compliance, protecting operators from ultraviolet light, fumes, dust, compressed air, gases, Fabricator Magazine July 12Google Scholar
  14. 14.
    Dobler K, Gifford D. Safety guidelines for the handling and use of gases in thermal spraying. ASM Thermal Spray Society, 27 pages in Safety GuidelinesGoogle Scholar
  15. 15.
    Gross KA (2002) Noise emission in thermal spray operations. J Therm Spray Technol 11(3):350–358Google Scholar
  16. 16.
    Gifford DJ, Pollard L, Wuest G, Fletcher RC (2003) Thermal spray booth design guidelines. Prepared by the ASM-TSS safety committee. ASM International, Materials Park, OH, 47 pagesGoogle Scholar
  17. 17.
    Hale DH, Dobler K, Gifford D (2002) Safety hazards associated with the usage of compressed gases in thermal spraying. In: ITSC 2002. DVS, Düsseldorf, Germany, pp 242–246Google Scholar
  18. 18.
    Kroemmer W, Heinrich P (2006) Influence of industrial gases on the thermal spray process. In: Marple B et al (eds) ITSC 2006. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  19. 19.
    Davis JR (2004) Handbook of thermal spray technology. ASM International, Materials Park, OHGoogle Scholar
  20. 20.
    Crawmer DE, Bartoe RL, Kramer J (1987) Technical note: improved universal powder mass flow control for thermal spray applications. Surf Coat Technol 33:353–365Google Scholar
  21. 21.
    Saenz JA (1988) Technical note: automated powder mass flow monitoring and control system. Surf Coat Technol 34(1):89–99Google Scholar
  22. 22.
    Czernichowski A, Pawlowski L, Nitoumbi B (2000) Injection of hot particles in the plasma flame. J Therm Spray Technol 9(4):458–462Google Scholar
  23. 23.
    Filkova I, Cedik P (1984) Nozzle atomization in spray drying. In: Mujumdar AS (ed) Advances drying, vol 3. Hemisphere Publishing Corporation, New York, NY, pp 181–215Google Scholar
  24. 24.
    Marchand O, Girardot L, Planche MP, Bertrand P, Bailly Y, Bertrand G (2011) An insight into suspension plasma spray: injection of the suspension and its interaction with the plasma flow. J Therm Spray Technol 20(6):1310–1320Google Scholar
  25. 25.
    Cotler EM, Chen D, Molz RJ (2011) Pressure-based liquid feed system for suspension plasma spray coatings. J Therm Spray Technol 20(4):967–973Google Scholar
  26. 26.
    Oberste-Berghaus J, Marple B, Moreau C (2006) Suspension plasma spraying of nanostructured WC-12Co coatings. J Therm Spray Technol 15(4):676–681Google Scholar
  27. 27.
    Etchart-Salas R, Rat V, Coudert JF, Fauchais P, Caron N, Wittman K, Alexandre S (2007) Influence of plasma instabilities in ceramic suspension plasma spraying. J Therm Spray Technol 16(5–6):857–865Google Scholar
  28. 28.
    Kutay A, Weiss LE (1992) Economic analysis of robotic operations: a case study of a thermal spraying robot. Robot Comput Integr Manuf 9(3):279–287Google Scholar
  29. 29.
    Fasching MM, Prinz FB, Weiss LE (1993) Planning robotic trajectories for thermal spray shape deposition. J Therm Spray Technol 2(1):45–57Google Scholar
  30. 30.
    Nylen P, Franssen J, Wretland A, Martensson N (1996) Coating thickness prediction and robot trajectory generation of thermal sprayed coatings. In: Berndt CC (ed) Thermal spray: prediction and robot trajectory generation of thermal sprayed coatings. Thermal spray: practical solutions for engineering problems. ASM International, Materials Park, OH, pp 693–698Google Scholar
  31. 31.
    Eidelman S, Yang X (1997) Three dimensional simulation of HVOF spray deposition of nanoscale materials. Nanostruct Mater 9(1–8):79–84Google Scholar
  32. 32.
    Bonnet R, Bolot R, Coddet C (1999) Simulation of the thermal spray process and off-line programming. In: Lugscheider E, Kammer PA (eds) United thermal spray conference. DVS, Düsseldorf, Germany, pp 519–526Google Scholar
  33. 33.
    Nylen P, Wigren J, Pejryd L, Hansson M-O (1999) The modelling of coating thickness, heat transfer and fluid flow for a plasma sprayed gas turbine application. J Therm Spray Technol 8(3):393–398Google Scholar
  34. 34.
    Guessasma S, Trifa F-I, Montavon G, Coddet C (2004) Al2O3–13% weight TiO2 deposit profiles as a function of the atmospheric plasma spraying processing parameters. Mater Des 25(4):307–315Google Scholar
  35. 35.
    Trifa F-I, Montavon G, Coddet C, Nardin P, Abrudeanu M (2005) Geometrical features of plasma-sprayed deposits and their characterization methods. Mater Charact 54(2):157–175Google Scholar
  36. 36.
    Candel A, Gadow R (2009) Trajectory generation and coupled numerical simulation for thermal spraying applications on complex geometries. J Therm Spray Technol 18(5–6):981–987Google Scholar
  37. 37.
    Floristán M, Montesinos JA, García-Marín JA, Killinger A, Gadow R (2012) Robot trajectory planning for high quality thermal spray coating processes on complex shaped components. In: ITSC 2012. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  38. 38.
    Deng SiHao, ZhenHua Cai, DanDan Fang, HanLin Liao, Ghislain Montavon (2012) Application of robot offline programming in thermal spraying. Surf Coat Technol 206(19–20):3875–3882Google Scholar
  39. 39.
    Muehlberger E (1988) Industrial plasma processing technology. In: Proceedings of the 1st Plasma Technik symposium, vol 3. Plasma Technik, Wohlen, pp 105–118Google Scholar
  40. 40.
    Meyer PJ, Hawley D (1991) Electro Plasma Inc., LPPS production systems. In: Bernecki TF (ed) Thermal spray coatings: properties, processes and applications. ASM International, Materials Park, OH, pp 29–38Google Scholar
  41. 41.
    Henne R, Weber W (1982) Plasmaspritzen im Unterdruck. Ein Verfahren zur Herstellung von dichten Schutzschichten für hochschmelzende Metalle; Proc. 10. Plansee-Seminar, Reutte, A, June 1–5, (1981), which appeared also in High temperature – high pressure, vol 14, pp 237–244Google Scholar
  42. 42.
    Henne R, Schnurnberger W, Weber W (1983) Low pressure plasma spraying – an interesting method to produce electrodes for water electrolysis. In: ITSC 83, 10th international thermal spraying conference, Essen, 2–6 MayGoogle Scholar
  43. 43.
    Henne R, Bradke VM, Schnurnberger W, Weber W (1986) Development and manufacture of electrolyzer components – applying plasma spraying under reduced pressure. In: Proceedings of the 11th international thermal spraying conference, Montreal, Canada, 8–12 Sept 1986. Pergamon PressGoogle Scholar
  44. 44.
    Mayr W, Henne R (1988) Investigation of a VPS burner with laval nozzle using an automated laser doppler measuring system. In: 1st Plasma Technik symposium, Luzern, vol 1, pp 87–97Google Scholar
  45. 45.
    Henne R, Weber W (1990) Reinigung und Aktivierung von Oberflächen beim Vakuumplasmaspritzen durch “übertragenen Lichtbogen”. (Cleaning and activation of surfaces with VPS by means of transferred arc), Thermische Spritzkonferenz TS 90, 29–31 Aug 1990, Essen, Germany. DSV-Report, vol 130, pp 34–37Google Scholar
  46. 46.
    Ambühl P, Meyer P (1999) Thermal coating technology in controlled atmospheres (ChamProTM). In: Lugscheider E, Kammer PA (eds) Proceedings of the ITSC. DVS, Düsseldorf, Germany, pp 291–92Google Scholar
  47. 47.
    von Niessen K, Gindrat M (2010) Vapor phase deposition using a plasma spray process. In: Thermal spray: global solutions, ITSC 2010. DVS, Düsseldorf, Germany, e-proceedingsGoogle Scholar
  48. 48.
    Roumilhac Ph, Coudert JF, Fauchais P (1991) Influence of the arc chamber design and of the surrounding atmosphere on temperature distributions of Ar-H2 and Ar-He spraying plasma jets. In: Plasma processing and synthesis of materials III, MRS proceedings, vol 190, pp 227–238Google Scholar
  49. 49.
    Sodeoka S, Suzuki M, Ueno K (1996) Effects of high-pressure plasma spraying for yttria-stabilized zirconia coating. J Therm Spray Technol 5(3):277–282Google Scholar
  50. 50.
    Itoh A, Takeda K, Itoh M, Koga M (1991) Pretreatment of substrates by using reversed transferred arc in low pressure plasma spray. In: Berneki F (ed) Thermal spray research and application. ASM International, Materials Park, OH, pp 245–251Google Scholar
  51. 51.
    Fauchais P, Vardelle A (2011) Innovative and emerging processes in plasma spraying: from micro- to nano-structured coatings. J Phys D Appl Phys 44:194011Google Scholar
  52. 52.
    Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas turbine engine applications. Science 296:280–284Google Scholar
  53. 53.
    Doering T (2007) PVD and PACVD (DLC) coating technologies and applications. In: International SAMPE symposium and exhibition (Proceedings), vol 52, 8pGoogle Scholar
  54. 54.
    Freslon A (1995) Plasma spraying at controlled temperature and atmosphere. In: Berndt CC, Sampath S (eds) Thermal spray: science and technology. ASM International, Materials Park, OH, pp 57–63Google Scholar
  55. 55.
    Jäger DA, Stöver D, Schlump W (1992) High pressure plasma spraying in controlled atmosphere up to 2 bars. In: Berndt CC (ed) Thermal spray: international advances in coatings technology. ASM International, Materials Park, OH, pp 69–75Google Scholar
  56. 56.
    Pattison SC, Ho JS, Johnson AN, O’Neill W (2007) The economics of the cold spray process. In: Champagne VK (ed) The cold spray materials deposition process, fundamental and applications. Woodhead, Cambridge, pp 72–98Google Scholar
  57. 57.
    Jaynes S, Lauricella F (2003) Helium recovery: design considerations for cold spray systems. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science and applying the technology. ASM International, Materials Park, OH, pp 113–116Google Scholar
  58. 58.
    Champagne V (2007) The cold spray materials deposition process. Woodhead, CambridgeGoogle Scholar
  59. 59.
    AWS (1985) Thermal spraying: practice, theory and application. American Welding Society, Miami, FLGoogle Scholar
  60. 60.
    Malkin S, Guo C (2008) Grinding technology: theory and applications of machining with abrasives. Industrial Press, New York, NYGoogle Scholar
  61. 61.
    Gonzalez R, Cadenas M, Fernandez R, Cortizo JL, Rodrıguez E (2007) Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser. Wear 262:301–307Google Scholar
  62. 62.
    Akebono H, Komotori J, Shimizu M (2008) Effect of coating microstructure on the fatigue properties of steel thermally sprayed with Ni-based self-fluxing alloy. Int J Fatigue 30:814–821Google Scholar
  63. 63.
    Gomez-del Rio T, Garrido MA, Fernandez JE, Cadenas M, Rodrıgueza J (2008) Influence of the deposition techniques on the mechanical properties and microstructure of NiCrBSi coatings. J Mater Process Technol 204:304–312Google Scholar
  64. 64.
    Miguel JM, Guilemany JM, Vizcaino S (2003) Tribological study of NiCrBSi coating obtained by different processes. Tribology Int 36:181–187Google Scholar
  65. 65.
    Shrestha S, Hodgkiess T, Neville A (2005) Erosion–corrosion behaviour of high-velocity oxy-fuel Ni–Cr–Mo–Si–B coatings under high-velocity seawater jet impingement. Wear 259:208–218Google Scholar
  66. 66.
    Serres N, Hlawka F, Costil S, Langlade C, Machi F (2010) Microstructures and environmental assessment of metallic NiCrBSi coatings manufactured via hybrid plasma spray process. Surf Coat Technol 205(4):1039–1046Google Scholar
  67. 67.
    Gärtner F, Stoltenhoff T, Voyer J, Kreye H, Riekehr S, Kocak M (2006) Mechanical properties of cold sprayed and thermally sprayed copper coatings. Surf Coat Technol 200:6770–6782Google Scholar
  68. 68.
    Stoltenhoff T, Borchers C, Gärtner F, Kreye H (2006) Microstructures and key properties of cold sprayed and thermally sprayed copper coatings. Surf Coat Technol 200:4947–4960Google Scholar
  69. 69.
    Sudharshan Phani P, Srinivasa Rao D, Joshi SV, Sundararajan G (2007) Effect of process parameters and heat treatments on properties of cold sprayed copper coatings. J Therm Spray Technol 16(3):425–434Google Scholar
  70. 70.
    Calla E, McCartney DG, Shipway PH (2006) Effect of deposition conditions on the properties and annealing behavior of cold-sprayed copper. J Therm Spray Technol 15(2):255–262Google Scholar
  71. 71.
    Koivuluoto H, Lagerbom J, Vuoristo P (2007) Microstructural studies of cold sprayed copper, nickel, and nickel-30% copper coatings. J Therm Spray Technol 16(4):488–497Google Scholar
  72. 72.
    Hall AC, Cook DJ, Neiser RA, Roemer TJ, Hirschfeld DA (2006) The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum. J Therm Spray Technol 15(2):233–238Google Scholar
  73. 73.
    Zhang Q, Li C-J, Wang X-R, Ren Z-L, Li C-X, Yang G-J (2008) Formation of NiAl intermetallic compound by cold spraying of ball-milled Ni/Al alloy powder through postannealing treatment. J Therm Spray Technol 17(5–6):715–720Google Scholar
  74. 74.
    Wang H-T, Li C-J, Yang G-J, Li C-X (2008) Cold spraying of Fe/Al powder mixture: coating characteristics and influence of heat treatment on the phase structure. Appl Surf Sci 255:2538–2544Google Scholar
  75. 75.
    Li W-Y, Zhang C, Liao H, Coddet C (2009) Effect of heat treatment on microstructure and mechanical properties of cold sprayed Ti coatings with relatively large powder particles. J Coat Technol Res 6(3):401–406Google Scholar
  76. 76.
    Zahiri SH, Fraser D, Jahedi M (2009) Recrystallization of cold spray-fabricated CP titanium structures. J Therm Spray Technol 18(1):16–22Google Scholar
  77. 77.
    Yang G-J, Li C-J, Fan S-Q, Wang Y-Y, Li C-X (2007) Influence of annealing on photocatalytic performance and adhesion of vacuum cold-sprayed nanostructured TiO2 coating. J Therm Spray Technol 16(5–6):873–880Google Scholar
  78. 78.
    Prudenziati M, Gualtieri ML (2008) Electrical properties of thermally sprayed Ni- and Ni20Cr-based resistors. J Therm Spray Technol 17(3):385–394Google Scholar
  79. 79.
    Karthikeyan J, Sreekumar KP, Venkatramani N, Kurup MB, Patil DS, Rohatgi VK (1989) Effect of process parameters on the properties of plasma-sprayed superconducting Y1Ba2Cu3O7−x coatings. Appl Phys A Mater Sci Process 48(5):489–492Google Scholar
  80. 80.
    Damani RJ, Wanner A (2000) Microstructure and elastic properties of plasma-sprayed alumina. J Mater Sci 35(17):4307–431Google Scholar
  81. 81.
    Marrocco T, Driver LC, Harris SJ, McCartney DG (2006) Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications. J Therm Spray Technol 15(4):634–639Google Scholar
  82. 82.
    Yasuda K, Takeda H (2000) Phase transformation during alternating aging at 473 K and at 773 K in the plasma-sprayed yttria stabilized zirconia coating. J Mater Sci 35(17):4379–4383Google Scholar
  83. 83.
    Ilavsky J, Wallace J, Stalick JK (2001) Thermal spray yttria-stabilized zirconia phase changes during annealing. J Therm Spray Technol 10(3):497–501Google Scholar
  84. 84.
    Markocsan N, Nyle´n P, Wigren J, Li X-H, Tricoire A (2009) Effect of thermal aging on microstructure and functional properties of zirconia-base thermal barrier coatings. J Therm Spray Technol 18(2):201–208Google Scholar
  85. 85.
    Li Y, Li C-J, Zhang Q, Yang G-J, Li C-X (2010) Influence of TGO composition on the thermal shock lifetime of thermal barrier coatings with cold-sprayed MCrAlY bond coat. J Therm Spray Technol 19(1–2):168–177Google Scholar
  86. 86.
    Laribi M, Vannes AB, Mesrati N, Treheux D (2003) Metallurgical characterization and determination of residual stresses of coatings formed by thermal spraying. J Therm Spray Technol 12(2):234–239Google Scholar
  87. 87.
    Stewart S, Ahmed R (2003) Contact fatigue failure modes in hot isostatically pressed WC-12%Co coatings. Surf Coat Technol 172:204–216Google Scholar
  88. 88.
    Stoica V, Ahmed R, Golshan M, Tobe S (2004) Sliding wear evaluation of hot isostatically pressed thermal spray ceramet coatings. J Therm Spray Technol 13(1):93–107Google Scholar
  89. 89.
    Khor KA, Loh NL (1994) Hot isostatic pressing of plasma sprayed Ni-base alloys. J Therm Spray Technol 3(1):57–62Google Scholar
  90. 90.
    Abdel-Samad A, Lugscheider E, Bobzin K, Maes M (2006) The influence of hot isostatic pressing on plasma sprayed coatings properties. Surf Coat Technol 201:1224–1227Google Scholar
  91. 91.
    Lenling WJ, Smith MF, Henfling JA (1991) Beneficial effects of austempering post-treatment on tungsten carbide based wear coatings. In: Bernecki TF (ed) Thermal spray research and applications. ASM International, Materials Park, OH, pp 227–232Google Scholar
  92. 92.
    Garcia-Alonso D, Serres N, Demian C, Costil S, Langlade C, Coddet C (2011) Pre-/during-/post-laser processes to enhance the adhesion and mechanical properties of thermal-sprayed coatings with a reduced environmental impact. J Therm Spray Technol 20(4):719–735Google Scholar
  93. 93.
    Schelz S, Enguehard F, Caron N, Plessis D, Minot B, Guillet F, Longuet J-L, Teneze N, Bruneton E (2008) Recombination of silica and zirconia into zircon by means of laser treatment of plasma-sprayed coatings. J Mater Sci 43:1948–1957Google Scholar
  94. 94.
    Zhanga SH, Yoon JH, Li MX, Cho TY, Joo YK, Cho JY (2010) Influence of CO2 laser heat treatment on surface properties, electrochemical and tribological performance of HVOF sprayed WC–24%Cr3C2–6%Ni coating. Mater Chem Phys 119:458–464Google Scholar
  95. 95.
    Pokhmurska A, Ciach R (2000) Microstructure and properties of laser treated arc sprayed and plasma sprayed coatings. Surf Coat Technol 125:415–418Google Scholar
  96. 96.
    Wang Y, Li CG, Tian W, Yang Y (2009) Laser surface remelting of plasma sprayed nanostructured Al2O3–13wt%TiO2 coatings on titanium alloy. Appl Surf Sci 255:8603–8610Google Scholar
  97. 97.
    Song RG, He WZ, Huang WD (2000) Effects of laser surface remelting on hydrogen permeation resistance of thermally-sprayed pure aluminum coatings. Surf Coat Technol 130:20–23Google Scholar
  98. 98.
    Tsai HL, Tsai PC (1998) Laser glazing of plasma-sprayed zirconia coatings. J Mater Eng Performance 7(2):258–264Google Scholar
  99. 99.
    Dyshlovenko S, Pawlowski L, Smurov I, Veiko V (2006) Pulsed laser modification of plasma-sprayed coatings: experimental processing of hydroxyapatite and numerical simulation. Surf Coat Technol 201:2248–2255Google Scholar
  100. 100.
    Sidhu BS, Puri D, Prakash S (2005) Mechanical and metallurgical properties of plasma sprayed and laser remelted Ni–20Cr and Stellite-6 coatings. J Mater Process Technol 159:347–355Google Scholar
  101. 101.
    Razavy FG, Van Aken DC, Smith JD (2003) Effect of laser surface melting upon the devitrification of plasma sprayed cordierite. Mater Sci Eng A362:213–222Google Scholar
  102. 102.
    Dallaire S, Dubé D, Fiset M (1999) Laser melting of plasma-sprayed copper–ceramic coatings for improved erosion resistance. Wear 231:102–107Google Scholar
  103. 103.
    Ahmed N, Bakare MS, McCartney DG, Voisey KT (2010) The effects of microstructural features on the performance gap in corrosion resistance between bulk and HVOF sprayed Inconel 625. Surf Coat Technol 204:2294–2301Google Scholar
  104. 104.
    Antou G, Hlawka F, Cornet A, Montavon G, Coddet C, Machi F (2004) Processing of yttria partially stabilized zirconia thermal barrier coatings implementing a high-power laser diode. J Therm Spray Technol 13(3):381–389Google Scholar
  105. 105.
    Knuuttila J, Sorsa P, Mäntylä T (1999) Sealing of thermal spray coatings by impregnation. J Therm Spray Technol 8(2):251–257Google Scholar
  106. 106.
    Knuuttila J, Sorsa P, Mäntylä T, Knuuttila J, Sorsa P (1999) Sealing of thermal spray coatings by impregnation. J Therm Spray Technol 8(2):249–25Google Scholar
  107. 107.
    Shrestha S, Hodgkiess T, Neville A (2001) The effect of post-treatment of a high-velocity oxy-fuel Ni-Cr-Mo-Si-B coating part 2: erosion-corrosion behavior. J Therm Spray Technol 10(4):656–665Google Scholar
  108. 108.
    Kim H-J, Lee C-H, Kweon Y-G (2001) The effects of sealing on the mechanical properties of the plasma-sprayed alumina-titania coating. Surf Coat Technol 139:75–80Google Scholar
  109. 109.
    Ctibor P, Neufuss K, Zahalka F, Kolman B (2007) Plasma sprayed ceramic coatings without and with epoxy resin sealing treatment and their wear resistance. Wear 262:1274–1280Google Scholar
  110. 110.
    Leivo EM, Vippola MS, Sorsa PPA, Vuoristo PMJ, Mäntylä TA (1997) Wear and corrosion properties of plasma sprayed AI2O3 and Cr2O3 coatings sealed by aluminum phosphates. J Therm Spray Technol 6(2):205–210Google Scholar
  111. 111.
    Ahmaniemi S, Vippola M, Vuoristo P, Mäntylä T, Cernuschi F, Lutterotti L (2004) Modified thick thermal barrier coatings: microstructural characterization. J Eur Ceramic Soc 24:2247–2258Google Scholar
  112. 112.
    Ahmaniemi S, Tuominen J, Vuoristo P, Mäntylä T (2002) Sealing procedures for thick thermal barrier coatings. J Therm Spray Technol 11(3):320–332Google Scholar
  113. 113.
    Ahmaniemi S, Vuoristo P, Mäntylä T, Gualco C, Bonadei A, Di R (2005) Thermal cycling resistance of modified thick thermal barrier coatings. Surf Coat Technol 190:378–387Google Scholar
  114. 114.
    Ahmaniemi S, Vippola M, Vuoristo P, Mäntylä T, Buchmann M, Gadow R (2002) Residual stresses in aluminium phosphate sealed plasma sprayed oxide coatings and their effect on abrasive wear. Wear 252:614–623Google Scholar
  115. 115.
    Troczynski T, Yang Q, John G (1999) Post-deposition treatment of zirconia thermal barrier coatings using Sol-Gel alumina. J Therm Spray Technol 8(2):229–234Google Scholar
  116. 116.
    Westergård R, Hogmark S (2004) Sealing to improve the wear properties of plasma sprayed alumina by electro-deposited Ni. Wear 256:1153–1162Google Scholar
  117. 117.
    Niranatlumpong P, Koiprasert H (2006) Improved corrosion resistance of thermally sprayed coating via surface grinding and electroplating techniques. Surf Coat Technol 201:737–743Google Scholar
  118. 118.
    Xie D, Xiong Y, Wang F (2003) Effect of an enamel coating on the oxidation and hot corrosion behavior of an HVOF-sprayed Co–Ni–Cr–Al–Y coating. Oxidation Metals 59(5/6):503–516Google Scholar
  119. 119.
    Henne R, Zerfass HR, Arnold J. Sealing arrangement for a fuel cell stack and process for the production of such a sealing arrangement. Patent Application DEA 102005045053, 21.09.05Google Scholar
  120. 120.
    Henne R (2007) Solid oxide fuel cells: a challenge for plasma deposition processes. J Therm Spray Technol 16(3):381–403Google Scholar
  121. 121.
    Arnold J, Ansar SA, Maier U, Henne R. Insulating and sealing of SOFC devices by plasma spraying ceramic layers. In: International thermal spray conference & exposition, thermal spray 2008: crossing borders (DVS-ASM), Maastricht, The Netherlands, 2–4 June 2008, pp 83–87Google Scholar
  122. 122.
    Arnold J, Ansar SA, Ruckdäschel R, Henne R, Maier U, Grünling HW. Vacuum plasma sprayed insulating layers suitable for brazing in high temperature fuel cells. In: Abstract and manuscript of the ITSC-conference 2011 in Hamburg, no. 276, 27–29 Sept 2011, pp 143–148Google Scholar
  123. 123.
    Caron N, Bianchi L, Méthout S (2008) Development of a functional sealing layer for SOFC applications. J Therm Spray Technol 17(5–6):598–602Google Scholar
  124. 124.
    Khor KA, Yu L-G, Chan SH, Chen XJ (2003) Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS). J Eur Ceram Soc 23:1855–1863Google Scholar
  125. 125.
    Prawara B, Yara H, Miyagi Y, Fukushima T (2003) Spark plasma sintering as a post-spray treatment for thermally-sprayed coatings. Surf Coat Technol 162:234–241Google Scholar
  126. 126.
    Zhou Z-h, Gong S-k, Li H-f, Xu H-b, Zhang C-g, Wang L (2007) Effects of shot peening process on thermal cycling lifetime of TBCs prepared by EB-PVD. Chin J Aeronautics 20:145–147Google Scholar
  127. 127.
    Junior GS, Voorwald HJC, Vieira LFS, Cioffi MOH, Bonora RG (2010) Evaluation of WC-10Ni thermal spray coating with shot peening on the fatigue strength of AISI 4340 steel. Procedia Eng 2:649–656Google Scholar
  128. 128.
    Kubiak K, Fouvry S, Marechal AM, Vernet JM (2006) Behaviour of shot peening combined with WC–Co HVOF coating under complex fretting wear and fretting fatigue loading conditions. Surf Coat Technol 201:4323–4328Google Scholar
  129. 129.
    de Camargo JAM, Cornelis HJ, Cioffi VMOH, Costa MYP (2007) Coating residual stress effects on fatigue performance of 7050-T7451 aluminum alloy. Surf Coat Technol 201:9448–9455Google Scholar
  130. 130.
    Costa MYP, Venditti MLR, Voorwald HJC, Cioffi MOH, Cruz TG (2009) Effect of WC–10%Co–4%Cr coating on the Ti–6Al–4V alloy fatigue strength. Mater Sci Eng A 507:29–36Google Scholar
  131. 131.
    I’Anson K, Riggs WL, Irons G, Steeper TJ, Varacalle DJ Jr (1991) Use of shot peening process for surface modification of thermal spray coatings. In: Bernecki TF (ed) 4th NTSC proceedings. ASM International, Materials Park, OH, pp 139–145Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations