Advertisement

Coating Characterizations

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos
Chapter

Abstract

Coatings, as most industrial products, must be tested at the Research and Development stage, in production environment, but it should be kept in mind that coating properties depend strongly on both the spray conditions and powder used and both must be regularly tested. Tests at the research and development level use techniques more or less sophisticated such as metallography and image analysis. In production tests deal with the control of quality (adhesion–cohesion, mechanical properties, thermal properties, wear resistance, corrosion resistance…) and are more targeted towards the service conditions, without neglecting some simple tests from simple visual observation of the coated part to some specific characteristics required by the coating or component specifications. The aim of this chapter is not to describe in detail all the characterization and testing methods that could be used for thermal-spray coatings but to give the reader information about the most used techniques and which information can be drawn from them. It starts with the specificity of coating characterization methods and presents the nondestructive methods. They are successively described: the metallography and image analysis, materials characterization, void content and network architecture, adhesion–cohesion, mechanical properties, and testing of wear resistance and corrosion.

Keywords

Residual Stress Acoustic Emission Bond Coat Thermal Barrier Coating Strain Energy Release Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

a.c.

Alternative current

AE

Acoustic emission

AES

Auger electron spectroscopy

AFM

Atomic force microscopy

AP

Archimedean porosimetry

BSE

Back scattered electrons

CMAS

Calcium–magnesium–aluminosilicate

d.c.

Direct current

DB

Double bar method

DCB

Double cantilever beam test

DOF

Depth of field

DSC

Differential scanning calorimetry

DTA

Differential thermal analysis

EB-PVD

Electron beam physical vapor deposition

EDS

Energy-dispersive X-ray spectroscopy

EIS

Electrochemical impedance spectroscopy

EN

Electrochemical noise

EPMA

Electron probe microanalysis

ESCA

Electron spectroscopy for chemical analysis

EXAFS

Extended X-ray absorption fine structure

FBR

Fluidized bed reactor

FCT

Furnace cycle test

FESEM

Field emission scanning electron microscope

FFT

Fast Fourier transform

FGM

Functional gradient material

FIB

Focused ion beam

FTIR

Fourier transform infrared spectroscopy

FWHM

Full-width at half-maximum

GP

Gas permeation

HIP

Hot isostatic pressing

HRTEM

High resolution transmission electron microscopy

HU

Universal hardness

HV

Vickers hardness

HVOF

High-velocity oxy-fuel

i.d.

Internal diameter

IA

Image analysis

J.C.P.D.S.

Joint Committee Powder Diffraction Standard

JETS

Jet engine thermal shocks

LASAT

Laser adhesion test

LOM

Light optical microscope

MIP

Mercury intrusion porosimetry

MSANS

Multiple small angle neutron scattering

N

Number of loading cycles

NDT

Nondestructive technique

NEXAFS

Near edge X-ray absorption fine structure

OM

Optical microscopy also called LOM

OOF

Object-oriented finite element analysis of microstructures

P

Pycnometry

PT

Pulsed thermography

R&D

Research and Development

RC

Resistive/capacitive circuit

REV

Representative elementary volume

RFPPS

RF precursor plasma spray synthesis

RPM

Rotation per minute

RVE

Representative volume element

S

Cyclic stress

S.C.E.

Standard calomel electrode

SANS

Small-angle neutron scattering

SAW

Surface acoustic waves

SAXS

Small-angle X-ray scattering

SB

Single bar method

SEM

Scanning electron microscopy

SRV

Sliding, reciprocating, and vibrating friction

ST

Stereological protocols (coupled to image analysis)

STF

Strain to fracture

TAT

Tensile adhesion test

TBC

Thermal barrier coating

TEM

Transmission electron microscopy

TG

Thermo gravimeter

TG-DTA

Thermo gravimeter-differential thermal analysis

TGO

Thermally grown oxide

TSR

Thermal shock resistance

TSS

Thermal spray society

URCAS

Ultrasonic reflection coefficient amplitude spectrum

USAXS

Ultrasmall angle X-ray scattering

XANES

X-ray absorption near edge structure

XAS

X-ray absorption spectroscopy

XPS

X-ray photoelectron spectroscopy

XRD

X-ray diffraction

XRF

X-ray fluorescence

YAG

Yttrium aluminum garnet

YPSZ

Yttria partially stabilized zirconia

YSZ

Yttria-stabilized zirconia

References

  1. 1.
    Pawlowski L (1995) The science and engineering of thermal spray coatings. Wiley, NY (revised version Wiley, Apr 30, 2008, 656 p)Google Scholar
  2. 2.
    Riggs W (2004) Metallography and image analysis. In: Davis JR (ed) Handbook of thermal spray technology. ASM International, Metals Park, OH, pp 224–259, Reprinted with kind permission from ASM International and the Thermal Spray Society 2004Google Scholar
  3. 3.
    Wigren J, Täng K (2007) Quality considerations for the evaluation of thermal spray coatings. J Therm Spray Technol 16(4):533–540Google Scholar
  4. 4.
    Wigren J, Johansson J (2011) Improving reliability of thermal spray coatings in production environment. In: Presented at 3rd plasma round table, 31 Oct–4 Nov 2011, South AfricaGoogle Scholar
  5. 5.
    Li J, Ding C (2001) Determining microhardness and elastic modulus of plasma-sprayed Cr2C3-NiCr coatings using Knoop indentation testing. Surf Coat Technol 135:229–237Google Scholar
  6. 6.
    Factor M, Roman I (2000) Vickers micro-indentation of WC-12%Co thermal spray coating. Part 1: Statistical analysis of microhardness data. Surf Coat Technol 132:181–193Google Scholar
  7. 7.
    Factor M, Roman I (2000) Vickers micro-indentation of WC-12%Co thermal spray coating. Part 2: The between-operator reproducibility limits of microhardness measurement and alternative approaches to quantifying hardness of cemented-carbide thermal spray coatings. Surf Coat Technol 132:65–75Google Scholar
  8. 8.
    Walpole RE, Myers RH (1978) Probability and statistics for engineers and scientists, 2nd edn. Macmillan, New YorkGoogle Scholar
  9. 9.
    Lin CK, Berndt CC (1993) Microhardness variations in thermally sprayed coatings. In: Berndt CC, Bernicki TF (eds) Proceedings of the national thermal spray conference. ASM International, Materials Park, OH, pp 561–564Google Scholar
  10. 10.
    Brousse E (2010) Elaboration by thermal spraying of finely structured elements of a high temperature electrolyser for hydrogen production: processes, structures and characteristics. Ph.D. thesis, University of Limoges, France (in French)Google Scholar
  11. 11.
    ASM International (2007) ASM handbook: nondestructive evaluation and quality control, vol 17, 9th edn. ASM International, Materials Park, OHGoogle Scholar
  12. 12.
    Noone MJ, Mehan RL (1974) In: Bradt RC, Hasselman DPH, Lange FF (eds) Fracture mechanics of ceramics. Plenum, New York, pp 201–229Google Scholar
  13. 13.
    Berndt CC (1985) Acoustic emission evaluation of plasma·sprayed thermal barrier coatings. J Eng Gas Turbines Power Trans ASME 107:142–146Google Scholar
  14. 14.
    Voyer J, Gitzhofer F, Boulos MI (1998) Study of the performance of TBC under thermal cycling conditions using an acoustic emission rig. J Therm Spray Technol 7:181–190Google Scholar
  15. 15.
    Kucuk A, Berndt CC, Senturk U, Lima RS, Lima CRC (2000) Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. I: Four point bend test. Mater Sci Eng A 284:29–40Google Scholar
  16. 16.
    Lin CK, Berndt CC (1998) Acoustic emission studies on thermal spray materials. Surf Coat Technol 102:1–7Google Scholar
  17. 17.
    Lin CK, Berndt CC, Leigh SH, Murakami K (1997) Acoustic emission studies of alumina-13% titania free-standing forms during four-point bend tests. J Am Ceram Soc 80:2382–2394Google Scholar
  18. 18.
    Andrews DJ, Taylor JAT (2000) Quality control of thermal barrier coatings using acoustic emission. J Therm Spray Technol 9(2):181–190Google Scholar
  19. 19.
    Robin P, Gitzhofer F, Fauchais P, Boulos M (2010) Remaining fatigue life assessment of plasma sprayed thermal barrier coatings. J Therm Spray Technol 19(5):911–920Google Scholar
  20. 20.
    Kucuk A, Berndt CC, Senturk U, Lima RS, Lima CRC (2000) Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. II: Acoustic emission response. Mater Sci Eng A284:41–50Google Scholar
  21. 21.
    Zhao Y, Lin L, Li XM, Lei MK (2010) Simultaneous determination of the coating thickness and its longitudinal velocity by ultrasonic nondestructive method. NDT&E Int 43:579–585Google Scholar
  22. 22.
    Boccaccini DN, Boccaccini AR (1997) Dependence of ultrasonic velocity on porosity and pore shape in sintered materials. J Nondestruct Eval 16(4):187–192Google Scholar
  23. 23.
    Asmani M, Kermel C, Leriche A, Ourak M (2001) Influence of porosity on Young’s modulus and Poisson’s ratio in alumina ceramics. J Eur Ceram Soc 21:1081–1086Google Scholar
  24. 24.
    Ma XQ, Mizutani Y, Takemoto M (2001) Laser-induced surface acoustic waves for evaluation of elastic stiffness of plasma sprayed materials. J Mater Sci 36:5633–5641Google Scholar
  25. 25.
    Lima RS, Kruger SE, Lamouche G, Marple BR (2003) Elastic modulus measurements via laser-ultrasonic and Knoop indentation techniques. In: Moreau C, Marple B (eds) Thermal spray 2003: Advancing the science and applying the technique. ASM International, Materials Park, OH, pp 1369–1378Google Scholar
  26. 26.
    Rosa G, Psyllaki P, Oltra R, Costil S, Coddet C (2001) Simultaneous laser generation and laser ultrasonic detection of the mechanical breakdown of a coating-substrate interface. Ultrasonics 39:355–365Google Scholar
  27. 27.
    Hung YY, Chen YS, Ng SP, Liu L, Huang YH, Luk BL, Ip RWL, Wu CML, Chung PS (2009) Review and comparison of shearography and active thermography for non-destructive evaluation. Mater Sci Eng R 64:73–112Google Scholar
  28. 28.
    Maldague X, Marinetti S (1996) Pulse phase infrared thermography. J Appl Phys 79(5):2694–2698Google Scholar
  29. 29.
    Shepard SM (2001) Advances in pulsed thermography. In: Proceedings of SPIE, Thermo sense XXIII, Orlando, FL, USA, 16–19 Apr 2001, pp 511–515Google Scholar
  30. 30.
    Marinetti S, Robba D, Cernuschi F, Bison PG, Grinzato E (2007) Thermographic inspection of TBC coated gas turbine blades: discrimination between coating over-thicknesses and adhesion defects. Infrared Phys Technol 49:281–285Google Scholar
  31. 31.
    Van der Voort GF (1999) Metallography principles and practice, Material science and engineering series. ASM International, Materials Park, OHGoogle Scholar
  32. 32.
    George Vander Voort (ed) (2004) ASM handbook, vol 09, Metallography and microstructures. ASM International, Materials Park, OH, 1184 pGoogle Scholar
  33. 33.
    Geels K (2007) ASTM MNL46, Metallographic and materialographic specimen preparation, light microscopy, image analysis and hardness testing. ASTM International, West Conshohocken, PAGoogle Scholar
  34. 34.
    Antou G, Montavon G (2007) Quantifying thermal spray coating architecture by stereological protocols: Part II. Key points to be addressed. J Therm Spray Technol 16(2):168–176Google Scholar
  35. 35.
    Sauer JP (2005) Metallographic preparation and testing of thermal spray coatings: sectioning, TSS committee on accepted practices. J Therm Spray Technol 14(3):313–314Google Scholar
  36. 36.
    Puerta DG (2005) Metallographic preparation and evaluation of thermal spray coatings: mounting, TSS committee on accepted practices. J Therm Spray Technol 14(4):450–452Google Scholar
  37. 37.
    Puerta DG (2006) Metallographic preparation and testing of thermal spray coatings: grinding, TSS committee on accepted practices. J Therm Spray Technol 15(1):31–32Google Scholar
  38. 38.
    Sauer JP, Blann G (2006) Metallographic preparation and testing of thermal spray coatings: fine grinding and polishing, TSS committee on accepted practices. J Therm Spray Technol 15(2):174–176Google Scholar
  39. 39.
    Giannuzzi LA, Stevens FA (2004) Introduction to focused ion beams: instrumentation, theory, techniques and practice. Springer, BerlinGoogle Scholar
  40. 40.
    Puerta DG (2008) TSS accepted practices committees—metallography and mechanical testing. J Therm Spray Technol 17(4):435–436Google Scholar
  41. 41.
    Ingo GM, Kaciulis S, Mezzi A, Valente T, Casadei F, Gusmano G (2005) Characterization of composite titanium nitride coatings prepared by reactive plasma spraying. Electrochim Acta 50:4531–4537Google Scholar
  42. 42.
    Russ JC (2011) The image processing handbook, 6th edn. CRC, Taylor & Francis Group, Boca Raton, FLGoogle Scholar
  43. 43.
    Etchart-Salas R, Rat V, Coudert JF, Fauchais P, Caron N, Wittman K, Alexandre S (2007) Influence of plasma instabilities in ceramic suspension plasma spraying. J Therm Spray Technol 16(5–6):857–865Google Scholar
  44. 44.
    Eaton P, West P (2010) Atomic force microscopy. Oxford University Press, OxfordGoogle Scholar
  45. 45.
    Cedelle J, Vardelle M, Fauchais P (2006) Influence of stainless steel substrate preheating on surface topography and on millimeter- and micrometer-sized splat formation. Surf Coat Technol 201:1373–1382Google Scholar
  46. 46.
    Williams DB, Carter CB (2009) Transmission electron microscopy, 2nd edn. Springer, New YorkGoogle Scholar
  47. 47.
    Chraska T, King AH (2001) Transmission electron microscopy study of rapid solidification of plasma sprayed zirconia — Part I. First splat solidification. Thin Solid Films 397:30–39Google Scholar
  48. 48.
    Tjitra Salim N, Yamada M, Nakano H, Shima K, Isago H, Fukumoto M (2011) The effect of post-treatments on the powder morphology of titanium dioxide (TiO2) powders synthesized for cold spray. Surf Coat Technol 206:366–371Google Scholar
  49. 49.
    Chen H, Hao Y, Wang H, Tang W (2010) Analysis of the microstructure and thermal shock resistance of laser glazed nanostructured zirconia TBCs. J Therm Spray Technol 19(3):558–565Google Scholar
  50. 50.
    Yan D, Dong Y, Yang Y, Wang L, Chen X, He J, Zhang J (2011) Microstructure characterization of the FeAl2O4-based nanostructured composite coating synthesized by plasma spraying Fe2O3/Al powders. J Therm Spray Technol 20(6):1269–1277Google Scholar
  51. 51.
    Ma XQ, Gandy DW, Frederick GJ (2008) Innovation of ultrafine structured alloy coatings having superior mechanical properties and high temperature corrosion resistance. J Therm Spray Technol 17(5–6):933–941Google Scholar
  52. 52.
    Chraska T (1999) TEM studies of microstructures and interfaces of zirconia produced by plasma spraying. Ph.D. thesis, State University of New York at Stony Brook, New YorkGoogle Scholar
  53. 53.
    ASM International (2008) ASM handbook, vol 10, 8th edn, Materials characterization. ASM International, Materials Park, OHGoogle Scholar
  54. 54.
    Chandra S, Fauchais P (2009) Formation of solid splats during thermal spray deposition. J Therm Spray Technol 18(2):148–180Google Scholar
  55. 55.
    Volenık K, Hanousek F, Chraska P, Ilavsky J, Neufuss K (1999) In-flight oxidation of high-alloy steels during plasma spraying. Mater Sci Eng A272:199–206Google Scholar
  56. 56.
    Lima RS, Kucuk A, Berndt CC (2001) Integrity of nanostructured partially stabilized zirconia after plasma spray processing. Mater Sci Eng A313:75–82Google Scholar
  57. 57.
    Liu XQ, Zheng YG, Chang XC, Hou WL, Wang JQ, Tang Z, Burgess A (2009) Microstructure and properties of Fe-based amorphous metallic coating produced by high velocity axial plasma spraying. J Alloys Compd 484:300–307Google Scholar
  58. 58.
    Kishitake K, Era H, Otsubo F (1996) Characterization of plasma sprayed Fe-17Cr-38Mo-4C amorphous coatings crystallizing at extremely high temperature. J Therm Spray Technol 5(3):283–288Google Scholar
  59. 59.
    Zhao XB, Ye ZH (2012) Microstructure and wear resistance of molybdenum based amorphous nanocrystalline alloy coating fabricated by atmospheric plasma spraying. Surf Coat Technol 228:S226–S270Google Scholar
  60. 60.
    Guinier A, Fournet G (1955) Small-angle scattering of X-rays. Wiley, New York, NYGoogle Scholar
  61. 61.
    Ilavsky J, Jemian PR, Allen AJ, Zhang F, Levine LE, Long GG (2009) Ultra-small-angle X-ray scattering at the advanced photon source. J Appl Crystallogr 42:1–11Google Scholar
  62. 62.
    Flores A, Renteria, Saruhan B, Ilavsky J, Allenc AJ (2007) Application of USAXS analysis and non-interacting approximation to determine the influence of process parameters and ageing on the thermal conductivity of electron-beam physical vapor deposited thermal barrier coatings. Surf Coat Technol 201:4781–4788Google Scholar
  63. 63.
    Bacciochini A, Ilavsky J, Montavon G, Denoirjean A, Ben-ettouil F, Valette S, Fauchais P, Wittmann-Teneze K (2010) Quantification of void network architectures of suspension plasma-sprayed (SPS) yttria-stabilized zirconia (YSZ) coatings using Ultra-small-angle X-ray scattering (USAXS). Mater Sci Eng A528:91–102Google Scholar
  64. 64.
    Ilavsky J, Jemian PR, Allen AJ, Zhang F, Levine LE, Long GG (2009) Ultra-small-angle X-ray scattering at the advanced photon source. J Appl Crystallogr 42(3):469–479Google Scholar
  65. 65.
    Allen AJ, Long GG, Boukari H, Ilavsky J, Kulkarni A, Sampath S, Herman H, Goland AN (2001) Microstructural characterization studies to relate the properties of thermal spray coatings to feedstock and spray conditions. Surf Coat Technol 146–147:544–552Google Scholar
  66. 66.
    Ilavsky J, Herman H, Berndt CC, Goland AN, Long GG, Krueger S, Allen AJ (1994) In: Berndt CC, Sampath S (eds) Thermal spray industrial applications. ASM International, Materials Park, OH, pp 709–715Google Scholar
  67. 67.
    Allen AJ, Ilavsky J, Long GG, Wallace JS, Berndt CC, Herman H (2001) Micro structural characterization of yttria-stabilized zirconia plasma-sprayed deposits using multiple small-angle neutron scattering. Acta Mater 49:1661–1675Google Scholar
  68. 68.
    Ilavsky J, Long GG, Allen AJ, Leblanc L, Prystay M, Moreau C (1999) Anisotropic microstructure of plasma-sprayed deposits. J Therm Spray Technol 8(3):414–420Google Scholar
  69. 69.
    Kulkarni A, Wang Z, Nakamura T, Sampath S, Goland A, Herman H, Allen J, Ilavsky J, Long GG, Frahm J, Steinbrech RW (2003) Comprehensive microstructural characterization and predictive property modeling of plasma-sprayed zirconia coatings. Acta Mater 51:2457–2475Google Scholar
  70. 70.
    Kulkarni AA, Goland A, Herman H, Allen AJ, Ilavsky J, Long GG, De Carlo F (2005) Advanced microstructural characterization of plasma-sprayed zirconia coatings over extended length scales. J Therm Spray Technol 14(2):239–250Google Scholar
  71. 71.
    Petorak C, Ilavsky J, Wang H, Porter W, Trice R (2010) Microstructural evolution of 7 wt.% Y2O3–ZrO2 thermal barrier coatings due to stress relaxation at elevated temperatures and the concomitant changes in thermal conductivity. Surf Coat Technol 205:57–65Google Scholar
  72. 72.
    Bunker G (2010) Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy. Cambridge University Press, CambridgeGoogle Scholar
  73. 73.
    Rice RW (1996) Porosity dependence of physical properties of materials: a summary review. Key Eng Mater 115:1–19Google Scholar
  74. 74.
    Ilavsky J (2010) Characterization of complex thermal barrier deposits pore microstructures by a combination of imaging, scattering and intrusion techniques. J Therm Spray Technol 19(1–2):178–189Google Scholar
  75. 75.
    Andreola F, Leonelli C, Romagnoli M, Miselli P (2000) Techniques used to determine porosity. Am Ceram Soc Bull 79(7):49–52Google Scholar
  76. 76.
    Fauchais P, Montavon G, Lima RS, Marple BR (2011) Engineering a new class of thermal spray nano-based microstructures from agglomerated nanostructured particles. Suspensions and solutions: an invited review. J Phys D 44:093001Google Scholar
  77. 77.
    Mancini CE, Berndt CC, Sun L, Kucuk A (2001) Porosity determinations in thermally sprayed hydroxyapatite coatings. J Mater Sci 36:3891–3896Google Scholar
  78. 78.
    Matějíček J, Kolman B, Dubský J, Neufuss K, Hopkins N, Zwick J (2006) Alternative methods for determination of composition and porosity in abradable materials. Mater Charact 57:17–29Google Scholar
  79. 79.
    Washburn EW (1921) The dynamics of capillary flows. Phys Rev 17:273–283Google Scholar
  80. 80.
    Ilavsky J, Berndt CC, Karthikeyan J (1997) Mercury intrusion porosimetry of plasma-sprayed ceramic. J Mater Sci 32:3925–3932Google Scholar
  81. 81.
    Van Brakel J, Modrý S, Svatá M (1981) Mercury porosimetry: state of the art. Powder Technol 29(1):1–12Google Scholar
  82. 82.
    Siebert B, Funke C, Vaßen R, Stöver D (1999) Changes in porosity and Young’s modulus due to sintering of plasma sprayed thermal barrier coatings. J Mater Process Technol 92–93:217–223Google Scholar
  83. 83.
    Mauer G, Vaßen R, Stöver D (2009) Atmospheric plasma spraying of yttria-stabilized zirconia coatings with specific porosity. Surf Coat Technol 204:172–179Google Scholar
  84. 84.
    Zhu S, Pelton RH, Collver K (1995) Mechanistic modelling of fluid permeation through compressible fiber beds. Chem Eng Sci 50(22):3557–3572Google Scholar
  85. 85.
    Wittmann-Ténèze K, Caron N, Alexandre S (2008) Gas permeability of porous plasma-sprayed coatings. J Therm Spray Technol 17(5–6):902–907Google Scholar
  86. 86.
    Li C-J, Ning X-J, Li C-X (2005) Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells. Surf Coat Technol 190:60–64Google Scholar
  87. 87.
    Fox AC, Clyne TW (2004) Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings. Surf Coat Technol 184:311–321Google Scholar
  88. 88.
    Golosnoy IO, Paul S, Clyne TW (2008) Modelling of gas permeation through ceramic coatings produced by thermal spraying. Acta Mater 56:874–883Google Scholar
  89. 89.
    Reed JS (1995) Principles of ceramics processing. Wiley, New YorkGoogle Scholar
  90. 90.
    Curran JA, Clyne TW (2006) Porosity in plasma electrolytic oxide coatings. Acta Mater 54(7):1985–1993Google Scholar
  91. 91.
    Bacciochini A, Montavon G, Ilavsky J, Denoirjean A, Fauchais P (2010) Porous architecture of SPS thick YSZ coatings structured at the nanometer scale (50 nm). J Therm Spray Technol 19(1–2):198–206Google Scholar
  92. 92.
    Ilavsky J, Long GG, Allen AJ, Berndt CC (1999) Evolution of the void structure in plasma-sprayed YSZ deposits during heating. Mater Sci Eng A272:215–221Google Scholar
  93. 93.
    Strunz P, Schumacher G, Vaßen R, Wiedenmann A (2004) In situ SANS study of pore microstructure in YSZ thermal barrier coatings. Acta Mater 52:3305–3312Google Scholar
  94. 94.
    Kulkarni A, Goland A, Herman H, Allen AJ, Dobbins T, DeCarlo F, Ilavsky J, Long GG, Fang S, Lawton P (2006) Advanced neutron and X-ray techniques for insights into the microstructure of EB-PVD thermal barrier coatings. Mater Sci Eng A 426:43–52Google Scholar
  95. 95.
    Flores Renteria A, Saruhan B, Ilavsky J, Allen AJ (2007) Application of USAXS analysis and non-interacting approximation to determine the influence of process parameters and ageing on the thermal conductivity of electron-beam physical vapor-deposited thermal barrier coatings. Surf Coat Technol 201:4781–4788Google Scholar
  96. 96.
    Deshpande S, Kulkarni A, Sampath S, Herman H (2004) Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering. Surf Coat Technol 187:6–16Google Scholar
  97. 97.
    Antou G, Montavon G, Hlawka F, Cornet A, Coddet C, Machi F (2004) Evaluation of modifications induced on pore network and structure of partially stabilized zirconia manufactured by hybrid plasma spray process. Surf Coat Technol 180–181:627–632Google Scholar
  98. 98.
    Montavon G, Antou G (2007) Quantifying thermal spray coating architecture by stereological protocols: Part I. A historical perspective. J Therm Spray Technol 16(1):6–14Google Scholar
  99. 99.
    Hanson TC, Settlese GS (2003) Particle temperature and velocity effects on the porosity and oxidation of an HVOF corrosion-control coating. J Therm Spray Technol 12(3):403–415Google Scholar
  100. 100.
    Russ JC (1995) The image processing handbook, 2nd edn. CRC, Boca Raton, FLGoogle Scholar
  101. 101.
    Zhang XC, Xu BS, Xuan FZ, Wang HD, Wu YX, Tu ST (2009) Statistical analyses of porosity variations in plasma-sprayed Ni-based coatings. J Alloys Compd 467:501–508Google Scholar
  102. 102.
    Zhang XC, Xu BS, Xuan FZ, Wang HD, Wu YX (2009) Microstructural and porosity variations in the plasma-sprayed Ni-alloy coatings prepared at different spraying powers. J Alloys Compd 473:145–151Google Scholar
  103. 103.
    Venkataraman R, Das G, Singh SR, Pathak LC, Ghosh RN, Venkataraman B, Krishnamurthy R (2007) Study on influence of porosity, pore size, spatial and topological distribution of pores on microhardness of as plasma sprayed ceramic coatings. Mater Sci Eng A 445–446:269–274Google Scholar
  104. 104.
    Elsebaei A, Heberlein J, Elshaer M, Farouk A (2010) Comparison of in-flight particle properties, splat formation, and coating microstructure for regular and nano-YSZ powders. J Therm Spray Technol 19(1–2):2–10Google Scholar
  105. 105.
    Nolan DJ, Samandi M (1997) Revealing true porosity in WC-Co thermal spray coatings. J Therm Spray Technol 6(4):422–424Google Scholar
  106. 106.
    Kang H-K, Bong Kange S (2004) Behavior of porosity and copper oxidation in W/Cu composite produced by plasma spray. J Therm Spray Technol 13(2):223–228Google Scholar
  107. 107.
    Saravanan P, Selvarajan V, Srivastava MP, Rao DS, Joshi SV, Sundararajan G (2000) Study of plasma- and detonation gun-sprayed alumina coatings using Taguchi experimental design. J Therm Spray Technol 9(4):505–512Google Scholar
  108. 108.
    Yang G, Zu-kun H, Xiaolei X, Gang X (2001) Formation of molybdenum boride cermet coating by the detonation spray process. J Therm Spray Technol 10(3):456–460Google Scholar
  109. 109.
    Scrivani A, Rizzi G, Berndt CC (2008) Enhanced thick thermal barrier coatings that exhibit varying porosity. Mater Sci Eng A 476:1–7Google Scholar
  110. 110.
    Tillmann W, Vogli E, Krebs B (2008) Influence of the spray angle on the characteristics of atmospheric plasma sprayed hard material based coatings. J Therm Spray Technol 17(5–6):948–955Google Scholar
  111. 111.
    Underwood EE (1970) Quantitative stereology. Addison-Wesley, Reading, MAGoogle Scholar
  112. 112.
    Russ JC, DeHoff RT (1999) Practical stereology, 2nd edn. Plenum, New York, NYGoogle Scholar
  113. 113.
    Fowler DB, Riggs W, Russ JC (1990) Inspecting thermal sprayed coatings. Adv Mater Process 11:41–52Google Scholar
  114. 114.
    Montavon G, Coddet C, Berndt CC, Leigh S-H (1998) Microstructural index to quantify thermal spray deposit microstructures using image analysis. J Therm Spray Technol 7(2):229–241Google Scholar
  115. 115.
    Leigh S-H, Berndt CC (1999) Modelling of elastic constants of plasma spray deposits with ellipsoid-shaped voids. Acta Mater 47(5):1575–1586Google Scholar
  116. 116.
    Antou G, Montavon G, Hlawka F, Cornet A, Coddet C (2006) Exploring thermal spray gray alumina coating pore network architecture by combining stereological protocols and impedance electrochemical spectroscopy. J Therm Spray Technol 15(4):765–772Google Scholar
  117. 117.
    Wang Z, Kulkarni A, Deshpande S, Nakamura T, Herman H (2003) Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings. Acta Mater 51:5319–5334Google Scholar
  118. 118.
    Michlik P, Berndt CC (2006) Image-based extended finite element modeling of thermal barrier coatings. Surf Coat Technol 201:2369–2380Google Scholar
  119. 119.
    Jadhav AD, Padture NP, Jordan EH, Gell M, Miranzo P, Fuller ER Jr (2006) Low-thermal-conductivity plasma-sprayed thermal barrier coatings with engineered microstructures. Acta Mater 54:3343–3349Google Scholar
  120. 120.
    Tillmann W, Klusemann B, Nebel J, Svendsen B (2011) Analysis of the mechanical properties of an arc-sprayed WC-FeCSiMn coating: nanoindentation and simulation. J Therm Spray Technol 20(1–2):328–335Google Scholar
  121. 121.
    Bolot R, Antou G, Montavon G, Coddet C (2005) A two-dimensional heat transfer model for thermal barrier coating average thermal conductivity computation. Numer Heat Transf A 47(9):875–898Google Scholar
  122. 122.
    Costil S, Verdy C, Bolot R, Coddet C (2007) On the role of spraying process on microstructural, mechanical, and thermal response of alumina coatings. J Therm Spray Technol 16(5–6):839–843Google Scholar
  123. 123.
    Bolot R, Seichepine J-L, Hao Qiao J, Coddet C (2011) Predicting the thermal conductivity of AlSi/Polyester abradable coatings: effects of the numerical method. J Therm Spray Technol 20(1–2):39–47Google Scholar
  124. 124.
    Bobzin K, Kopp N, Warda T, Öte M (2012) Determination of the effective properties of thermal spray coatings using 2D and 3D models. J Therm Spray Technol. doi: 10.1007/s11666-012-9809-3 Google Scholar
  125. 125.
    Zhang J, Desai V (2005) Evaluation of thickness, porosity and pore shape of plasma sprayed TBC by electrochemical impedance spectroscopy. Surf Coat Technol 190:98–109Google Scholar
  126. 126.
    Jayaraj B, Desai VH, Lee CK, Sohn YH (2004) Electrochemical impedance spectroscopy of porous ZrO2–8 wt.% Y2O3 and thermally grown oxide on nickel aluminide. Mater Sci Eng A 372(1–2):278–286Google Scholar
  127. 127.
    Antou G, Montavon G, Hlawka F, Cornet A, Coddet C (2004) Characterizations of the pore-crack network architecture of thermal-sprayed coatings. Mater Charact 53:361–372Google Scholar
  128. 128.
    Anderson PS, Wang X, Xiao P (2004) Impedance spectroscopy study of plasma sprayed and EB-PVD thermal barrier coatings. Surf Coat Technol 185:106–119Google Scholar
  129. 129.
    Bolelli G, Rauch J, Cannillo V, Killinger A, Lusvarghi L, Gadow R (2009) Microstructural and tribological investigation of high-velocity suspension flame sprayed (HVSFS) Al2O3 coatings. J Therm Spray Technol 18(1):35–49Google Scholar
  130. 130.
    Kawakita J, Kuroda S, Kodama T (2003) Evaluation of through-porosity of HVOF sprayed coating. Surf Coat Technol 166:17–23Google Scholar
  131. 131.
    Koivuluoto H, Lagerbom J, Kylmälahti M, Vuoristo P (2008) Microstructure and mechanical properties of low-pressure cold-sprayed (LPCS) coatings. J Therm Spray Technol 17(5–6):721–727Google Scholar
  132. 132.
    Lin CK, Berndt CC (1994) Measurement and analysis of adhesion strength for thermally sprayed coatings. J Therm Spray Technol 3(1):75–104Google Scholar
  133. 133.
    Berndt CC, McPherson R (1981) A fracture mechanics approach to the adhesion of flame and plasma sprayed coatings. Trans Int Eng 6(4):53–58Google Scholar
  134. 134.
    Heintze GN, McPherson R (1988) Fracture toughness of plasma sprayed zirconia coatings. Surf Coat Technol 134:15–23Google Scholar
  135. 135.
    Lima CRC, Guilemany JM (2007) Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surf Coat Technol 201:4694–4701Google Scholar
  136. 136.
    Han W, Rybicki EE, Shadley JR (1993) An improved specimen geometry for ASTM C633-79 to estimate bond strengths of thermal spray coatings. J Therm Spray Technol 2(2):145–150Google Scholar
  137. 137.
    Białucki P, Kozerski S (2006) Study of adhesion of different plasma-sprayed coatings to aluminium. Surf Coat Technol 201:2061–2064Google Scholar
  138. 138.
    Amada S, Hirose T (1998) Influence of grit blasting pre-treatment on the adhesion strength of plasma sprayed coatings: fractal analysis of roughness. Surf Coat Technol 102:132–137Google Scholar
  139. 139.
    Staia MH, Ramos E, Carrasquero A, Roman A, Lesage J, Chicot D, Mesmacque G (2000) Effect of substrate roughness induced by grit blasting upon adhesion of WC-17% Co thermal sprayed coatings. Thin Solid Films 377–378:657–664Google Scholar
  140. 140.
    Pershin V, Lufitha M, Chandra S, Mostaghimi J (2003) Effect of substrate temperature on adhesion strength of plasma-sprayed nickel coatings. J Therm Spray Technol 12(3):370–376Google Scholar
  141. 141.
    Krishnamurthy N, Sharma SC, Murali MS, Mukunda PG (2009) Adhesion behavior of plasma sprayed thermal barrier coatings on Al-6061 and cast iron substrates. Front Mater Sci China 3(3):333–338Google Scholar
  142. 142.
    Bahbou MF, Nylén P, Wigren J (2004) Effect of grit blasting and spraying angle on the adhesion strength of a plasma-sprayed coating. J Therm Spray Technol 13(4):508–514Google Scholar
  143. 143.
    Li C-J, Wang Y-Y (2002) Effect of particle state on the adhesive strength of HVOF sprayed metallic coating. J Therm Spray Technol 11(4):523–529Google Scholar
  144. 144.
    Leigh SH, Berndt CC (1994) A test for coating adhesion on flat substrates–a technical note. J Therm Spray Technol 3(2):184–190Google Scholar
  145. 145.
    Rickerby DS (1988) A review of the methods for the measurement of coating-substrate adhesion. Surf Coat Technol 36(1–2):541–557Google Scholar
  146. 146.
    Du H, Hua W, Liu J, Gong J, Sun C, Wen L (2005) Influence of process variables on the qualities of detonation gun sprayed WC–Co coatings. Mater Sci Eng A 408:202–210Google Scholar
  147. 147.
    Era H, Otsubo F, Uchida T, Fukuda S, Kishitake K (1998) A modified shear test for adhesion evaluation of thermal sprayed coating. Mater Sci Eng A251:166–172Google Scholar
  148. 148.
    Han W, Rybicki EF, Shadley JR (1993) Application of fracture mechanics to the interpretation of bond strength data from ASTM Standard C633-79. J Therm Spray Technol 2(3):235–241Google Scholar
  149. 149.
    Watanabe M, Kuroda S, Yokoyama K, Inoue T, Gotoh Y (2008) Modified tensile adhesion test for evaluation of interfacial toughness of HVOF sprayed coatings. Surf Coat Technol 202:1746–1752Google Scholar
  150. 150.
    Clyne TW, Gill SC (1996) Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol 5(4):401–418Google Scholar
  151. 151.
    Rammo NN, Al-Amery HR, Abdul-Jabbar T, Jaffer HI (2009) Adhesion, hardness and structure of thermal sprayed Al/SiC composite, coat on graphite. Surf Coat Technol 203:2891–2895Google Scholar
  152. 152.
    Théry P-Y, Poulain M, Dupeux M, Braccini M (2007) Adhesion energy of a YPSZ EB-PVD layer in two thermal barrier coating systems. Surf Coat Technol 202:648–652Google Scholar
  153. 153.
    Ma XQ, Cho S, Takemoto M (2001) Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests. Surf Coat Technol 139:55–62Google Scholar
  154. 154.
    Bradai MA, Braccini M, Ati A, Bounar N, Benabbas A (2008) Microstructure and adhesion of 100Cr6 steel coatings thermally sprayed on a 35CrMo4 steel substrate. Surf Coat Technol 202:4538–4543Google Scholar
  155. 155.
    Li H, Khor KA, Cheanga P (2002) Young’s modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coatings. Surf Coat Technol 155:21–32Google Scholar
  156. 156.
    Choi SR, Zhu D, Miller RA (2005) Fracture behavior under mixed-mode loading of ceramic plasma-sprayed thermal barrier coatings at ambient and elevated temperatures. Eng Fract Mech 72:2144–2158Google Scholar
  157. 157.
    Westergård R, Axén N, Wiklund U, Hogmark S (2000) An evaluation of plasma sprayed ceramic coatings by erosion, abrasion and bend testing. Wear 246:12–19Google Scholar
  158. 158.
    Heping L, Nie P, Yan Y, Wang J, Sun B (2010) Characterization and adhesion strength study of detonation-sprayed MoB–CoCr alloy coatings on 2Cr13 stainless steel substrate. J Coat Technol Res 7(6):801–807Google Scholar
  159. 159.
    Montavon G (2004) Quality control of thermal sprayed coatings, course thermal spraying. Aliderte, LimogesGoogle Scholar
  160. 160.
    Lesage J, Staiab MH, Chicot D, Godoy C, De Mirandad PEV (2000) Effect of thermal treatments on adhesive properties of a NiCr thermal sprayed coating. Thin Solid Films 377–378:681–686Google Scholar
  161. 161.
    Hivart P, Crampon J (2007) Interfacial indentation test and adhesive fracture characteristics of plasma sprayed cermet Cr3C2/Ni–Cr coatings. Mech Mater 39:998–1005Google Scholar
  162. 162.
    Marcano Z, Lesage J, Chicot D, Mesmacque G, Puchi-Cabrera ES, Staiaa MH (2008) Microstructure and adhesion of Cr3C2–NiCr vacuum plasma sprayed coatings. Surf Coat Technol 202:4406–4410Google Scholar
  163. 163.
    Marot G, Démarécaux P, Lesage J, Hadad M, St. Siegmann, Staia MH (2008) The interfacial indentation test to determine adhesion and residual stresses in NiCr VPS coatings. Surf Coat Technol 202:4411–4416Google Scholar
  164. 164.
    Erickson LC, Westergard R, Wiklund U, Axén N, Hawthorne HM, Hogmark LS (1998) Cohesion in plasma-sprayed coatings–a comparison between evaluation methods. Wear 214:30–37Google Scholar
  165. 165.
    Xie Y, Hawthorne HM (2001) A model for compressive coating stresses in the scratch adhesion test. Surf Coat Technol 141:15–25Google Scholar
  166. 166.
    Ma XQ, Gandy DW, Frederick GJ (2008) Innovation of ultrafine structured alloy coatings having superior mechanical properties and high temperature corrosion resistance. J Therm Spray Technol 17(5–6):933–941Google Scholar
  167. 167.
    Sundararajan G, Chavan NM, Sivakumar G, Sudharshan Phani P (2010) Evaluation of parameters for assessment of inter-splat bond strength in cold-sprayed coatings. J Therm Spray Technol 19(6):1255–1266Google Scholar
  168. 168.
    Bolis C et al (2002) Developments in laser shock adhesion test (LASAT). In: Lugscheider E et al (eds) International thermal spray conference (ITSC 2002). ASM International, Materials Park, OH, pp 587–593Google Scholar
  169. 169.
    Barradas S, Molins R, Jeandin M, Arrigoni M, Boustie M, Bolis C, Berthe L, Ducos M (2005) Application of laser shock adhesion testing to the study of the interlamellar strength and coating–substrate adhesion in cold-sprayed copper coating of aluminum. Surf Coat Technol 197:18–27Google Scholar
  170. 170.
    Barradas S, Borit F, Guipont V, Jeandin M, Bolis C, Boustie M, Berthe L (2002) Laser shock flier impact simulation of particle-substrate interactions in cold spray. In: Lugscheider E, Berndt CC (eds) International thermal spray conference. DVS Deutscher Verband fûr Schweißen, Düsseldorf, pp 592–597Google Scholar
  171. 171.
    Rolland G, Sallamand P, Guipont V, Jeandin M, Boller E, Bourda C (2011) Laser-induced damage in cold-sprayed composite coatings. Surf Coat Technol 205:4915–4927Google Scholar
  172. 172.
    Jeandin M, Christoulis DK, Borit F, Berger MH, Guetta S, Rolland G, Guipont V, Irissou E, Legoux JG, Moreau C, Nivard M, Berthe L, Boustie M, Sakaguchi K, Ichikawa Y, Ogawa K, Costil S (2010) Lasers and thermal spray. Mater Sci Forum 174:638–642Google Scholar
  173. 173.
    Giraud D, Borit F, Guipont V, Jeandin M (2012) Metallization of a polymer using cold spray: application to aluminum coating of polyamide 66. In: Lima RS et al (eds) Thermal spray 2012: proceedings from the international thermal spray conference and exposition. ASM International, Materials Park, OH (e-proc)Google Scholar
  174. 174.
    Guipont V (2013) Microstructures and interfaces ceramic/metal obtained by physical processes. State Thesis, University of Limoges, LimogesGoogle Scholar
  175. 175.
    Guetta S, Berger MH, Borit F, Guipont V, Jeandin M, Boustie M, Ichikawa Y, Sakaguchi K, Ogawa K (2009) Influence of particle velocity on adhesion of cold-sprayed splats. J Therm Spray Technol 18(3):331–342Google Scholar
  176. 176.
    Christoulis DK, Guetta S, Irissou E, Guipont V, Berger MH, Jeandin M, Legoux J-G, Moreau C, Costil S, Boustie M, Ichikawa Y, Ogawa K (2010) Cold-spraying coupled to nano-pulsed Nd-YaG laser surface pre-treatment. J Therm Spray Technol 19(5):1062–1073Google Scholar
  177. 177.
    Chandler H (ed) (2004) Hardness testing, 2nd edn. ASM, Materials Park, OHGoogle Scholar
  178. 178.
    Dey A, Mukhopadhyay AK, Gangadharan S, Sinha MK, Basu D (2009) Weibull modulus of nano-hardness and elastic modulus of hydroxyapatite coating. J Mater Sci 44:4911–4918Google Scholar
  179. 179.
    Lima RS, Marple BR (2003) High Weibull modulus HVOF titania coatings. J Therm Spray Technol 12(2):240–249Google Scholar
  180. 180.
    Lima RS, Kucuk A, Berndt CC (2001) Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings. Surf Coat Technol 135:166–172Google Scholar
  181. 181.
    Lima RS, Kucuk A, Berndt CC (2002) Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia. Mater Sci Eng A327:224–232Google Scholar
  182. 182.
    Marshall DB, Noma T, Evans AG (1982) A simple method for determining elastic-modulus-to-hardness ratios using Knoop indentation measurements. Commun Am Ceram Soc 65:C175–C176Google Scholar
  183. 183.
    CSM Instruments (2010) Advanced mechanical surface testing: characterization of thermal spray coatings by instrumented indentation and scratch testing. Part II: Indentation of plasma sprayed coatings. CSM instruments application bulletin, vol 32. CSM Instruments, PeseuxGoogle Scholar
  184. 184.
    Bucaille JL, Felder E, Hochstetter G (2002) Identification of the viscoplastic behavior of a polycarbonate based on experiments and numerical modeling of the nano-indentation test. J Mater Sci 37:3999–4011Google Scholar
  185. 185.
    Musil J, Kunc F, Zeman H, Polakova H (2002) Relationships between hardness, Young’s modulus and elastic recovery in hard nanocomposite coatings. Surf Coat Technol 154:304–313Google Scholar
  186. 186.
    Landa M, Kroupa F, Neufuss K, Urbanek P (2003) Effect of uniaxial pressure on ultrasound velocities and elastic moduli in plasma-sprayed ceramics. J Therm Spray Technol 12(2):226–233Google Scholar
  187. 187.
    Roy M, Pauschitz A, Bernardi J, Koch T, Franek F (2006) Microstructure and mechanical properties of HVOF sprayed nanocrystalline Cr3C2-25(Ni20Cr) coating. J Therm Spray Technol 15(3):372–381Google Scholar
  188. 188.
    Ma D, Ong CW, Zhang T (2009) An instrumented indentation method for Young’s modulus measurement with accuracy estimation. Exp Mech 49:719–729Google Scholar
  189. 189.
    Feng C, Kang BS (2006) A transparent indenter measurement method for mechanical property evaluation. Exp Mech 46(1):91–103Google Scholar
  190. 190.
    Feng C, Kang BS (2008) Young’s modulus measurement using a simplified transparent indenter measurement technique. Exp Mech 48:9–15Google Scholar
  191. 191.
    Wallace JS, Ilavsky J (1998) Elastic modulus measurements in plasma sprayed deposits. J Therm Spray Technol 7(4):521–526Google Scholar
  192. 192.
    Kucuk A, Berndt CC, Senturk U, Lima RS (2000) Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. I: Four point bend test. Mater Sci Eng A284:29–40Google Scholar
  193. 193.
    Beghini M, Bertini L, Frendo E (2001) Measurement of coatings’ elastic properties by mechanical methods: Part 1. Consideration on experimental errors. Exp Mech 41(4):293–304Google Scholar
  194. 194.
    Beghini M, Benamati G, Bertini L, Frendo F (2001) Measurement of coatings’ elastic properties by mechanical methods: Part 2. Application to thermal barrier coatings. Exp Mech 41(4):305–311Google Scholar
  195. 195.
    Podrezov YN, Mil’man YV, Lotsko DV, Lugovoi NL, Verbilo DG, Efimov NA (1999) A method of determining the mechanical properties of a two-layer composite consisting of a steel matrix and a plasma spray coating based on amorphizing powders. Powder Metallurgy Metal Ceram 38(5–6):224–227Google Scholar
  196. 196.
    Musalek R, Matejicek J, Vilemova M, Kovarik O (2010) Non-linear mechanical behavior of plasma sprayed alumina under mechanical and thermal spray loading. J Therm Spray Technol 19(1–2):422–428Google Scholar
  197. 197.
    Harok V, Neufuss K (2001) Elastic and inelastic effects in compression in plasma-sprayed ceramic coatings. J Therm Spray Technol 10(1):126–132Google Scholar
  198. 198.
    Meacham BE, Marshall MC, Branagan DJ (2006) Palmqvist fracture toughness of a new wear-resistant weld alloy. Metall Mater Trans A 37A:3617–3627Google Scholar
  199. 199.
    Emiliani ML (1993) Debond coating requirements for brittle matrix composites. J Mater Sci 28:5280–5296Google Scholar
  200. 200.
    Faisal NH, Steel JA, Ahmed R, Reuben RL (2009) The use of acoustic emission to characterize fracture behavior during Vickers indentation of HVOF thermally sprayed WC-Co coatings. J Therm Spray Technol 18(4):525–535Google Scholar
  201. 201.
    Xie XY, Guo HB, Gong SK (2010) Mechanical properties of LaTi2Al9O19 and thermal cycling behaviors of plasma-sprayed LaTi2Al9O19/YSZ thermal barrier coatings. J Therm Spray Technol 19(6):1179–1185Google Scholar
  202. 202.
    Richard CS, Lu J, Béranger G, Decomps F (1995) Study of Cr2O3 coatings. Part II: Adhesion to a cast-iron substrate. J Therm Spray Technol 4(4):347–352Google Scholar
  203. 203.
    Berka L, Murafa N (2004) On the estimation of the toughness of surface microcracks. Int J Fracture 128:115–120Google Scholar
  204. 204.
    Lima MM, Godoy C, Avelar-Batista JC, Modenesi PJ (2003) Toughness evaluation of HVOF WC-Co coatings using non-linear regression analysis. Mater Sci Eng A357:337–345Google Scholar
  205. 205.
    Lima MM, Godoy C, Modenesi PJ, Avelar-Batista JC, Davison A, Matthews A (2004) Coating fracture toughness determined by Vickers indentation: an important parameter in cavitation erosion resistance of WC-Co thermally sprayed coatings. Surf Coat Technol 177–178:489–496Google Scholar
  206. 206.
    Chivavibul P, Watanabe M, Kuroda S, Kawakita J, Komatsu M, Sato K, Kitamura J (2010) Effect of powder characteristics on properties of warm-sprayed WC-Co coatings. J Therm Spray Technol 19(1–2):81–88Google Scholar
  207. 207.
    Prudenziati M, Gazzadi GC, Medici M, Dalbagni G, Caliari M (2010) Cr3C2-NiCr HVOF-sprayed coatings: microstructure and properties versus powder characteristics and process parameters. J Therm Spray Technol 19(3):541–550Google Scholar
  208. 208.
    Santana YY, Renault PO, Sebastiani M, La Barbera JG, Lesage J, Bemporad E, Le Bourhis E, Puchi-Cabrera ES, Staia MH (2008) Characterization and residual stresses of WC–Co thermally sprayed coatings. Surf Coat Technol 202:4560–4565Google Scholar
  209. 209.
    Taha-al ZY, Hashmi MS, Yilbas BS (2009) Effect of WC on the residual stress in the laser treated HVOF coating. J Mater Process Technol 209:3172–3181Google Scholar
  210. 210.
    Lyphout C, Nylén P, Manescu A, Pirling T (2008) Residual stresses distribution through thick HVOF sprayed Inconel 718 coatings. J Therm Spray Technol 17(5–6):915–923Google Scholar
  211. 211.
    Sampath S, Jiang XY, Matejicek J, Prchlik L, Kulkarni A, Vaidya A (2004) Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni–5 wt.%Al bond coats. Mater Sci Eng A364:216–231Google Scholar
  212. 212.
    Greving DJ, Rybicki EF, Shadley JR (1994) Through-thickness residual stress evaluations for several industrial thermal spray coatings using a modified layer-removal method. J Therm Spray Technol 3(4):379–388Google Scholar
  213. 213.
    Pejryd L, Wigren J, Greving DJ, Shadley JR, Rybicki EE (1995) Residual stresses as a factor in the selection of tungsten carbide coatings for a jet engine application. J Therm Spray Technol 4(3):268–274Google Scholar
  214. 214.
    Greving DJ, Shadley JR, Rybicki EF (1994) Effects of coating thickness and residual stresses on the bond strength of ASTM C633-79 thermal spray coating test specimens. J Therm Spray Technol 3(4):371–378Google Scholar
  215. 215.
    Lima CRC, Nin J, Guilemany JM (2006) Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the modified layer removal method (MLRM). Surf Coat Technol 200:5963–5972Google Scholar
  216. 216.
    Rendler NJ, Vigness I (1966) Hole drilling method of measuring residual stresses. Exp Mech 6(12):577–586Google Scholar
  217. 217.
    Richard CS, Béranger G, Lu J, Flavenot JF, Grégoire T (1996) Four-point bending tests of thermally produced WC-Co coatings. Surf Coat Technol 78(284):294Google Scholar
  218. 218.
    Schajer GS (1988) Measurement of non uniform residual stress using the hole drilling method. Part 1. J Eng Mater Technol 110(4):338–343, Part 2. 110(4):345–349Google Scholar
  219. 219.
    Valente T, Bartuli C, Sebastiani M, Loreto A (2005) Implementation and development of the incremental hole drilling method for the measurement of residual stress in thermal spray coatings. J Therm Spray Technol 14(4):462–470Google Scholar
  220. 220.
    Schajer GS, Altus E (1996) Stress calculation error analysis for incremental hole drilling residual stress measurement. J Eng Mater Technol 118(1):120–126Google Scholar
  221. 221.
    Wang H-P (1979) The alignment error of the hole-drilling method. Exp Mech 19:23–27Google Scholar
  222. 222.
    Balykov AV (2006) Main conditions for efficient drilling of holes in brittle nonmetallic materials using diamonds drills. Mater Process 63(5–6):161–165Google Scholar
  223. 223.
    Kuroda S, Kukushima T, Kitahara S (1988) Simultaneous measurement of coating thickness and deposition stress during thermal spraying. Thin Solid Films 164:157–163Google Scholar
  224. 224.
    Kuroda S, Tashiro Y, Yumoto H, Taira S, Fukanuma H, Tobe S (2001) Peening action and residual stresses in high-velocity oxygen fuel thermal spraying of 316L stainless steel. J Therm Spray Technol 10(2):367–374Google Scholar
  225. 225.
    Gill SC, Clyne TW (1994) Investigation of residual stress generation during thermal spraying by continuous curvature measurement. Thin Solid Films 250:172–180Google Scholar
  226. 226.
    Bolelli G, Lusvarghi L, Varis T, Turunen E, Leoni M, Scardi P, Azanza-Ricardo CL, Barletta M (2008) Residual stresses in HVOF-sprayed ceramic coatings. Surf Coat Technol 202:4810–4819Google Scholar
  227. 227.
    Hugot F, Patru J, Fauchais P, Bianchi L (2007) Modelling of a substrate thermomechanical behavior during plasma spraying. J Mater Process Technol 190(1–3):317–323Google Scholar
  228. 228.
    Stokes J, Looney L (2008) Predicting quenching and cooling stresses within HVOF deposits. J Therm Spray Technol 17(5–6):908–914Google Scholar
  229. 229.
    James JD, Spittle JA, Brown SGR, Evans RW (2001) A review of measurement techniques for the thermal expansion coefficient of metals and alloys at elevated temperatures. Meas Sci Technol 12:R1–R15Google Scholar
  230. 230.
    Ilavsky J, Berndt CC (1998) Thermal expansion properties of metallic and cermet coatings. Surf Coat Technol 102:19–24Google Scholar
  231. 231.
    Wang H, Dinwiddie RB (2004) Development of a lab view based portable thermal diffusivity system. In: Wang H (ed) Thermal conductivity 27, Thermal expansion 15. DESTech, Lancaster, PA, pp 484–492Google Scholar
  232. 232.
    Cernuschi F, Lorenzoni L, Ahmaniemi S, Vuoristo P, Mäntylä T (2005) Studies of the sintering kinetics of thick thermal barrier coatings by thermal diffusivity measurements. J Eur Ceram Soc 25:393–400Google Scholar
  233. 233.
    Gitzhofer F, Lombard D, Vardelle A, Vardelle M, Martin C, Fauchais P (1986) Thermophysical properties of zirconia coatings stabilized with calcia or yttria: influence of spraying parameters and heat treatment. In: Advances in thermal spraying. Pergamon, Oxford, pp 269–275Google Scholar
  234. 234.
    Chi W, Sampath S, Wange H (2006) Ambient and high-temperature thermal conductivity of thermal sprayed coatings. J Therm Spray Technol 15(4):773–778Google Scholar
  235. 235.
    Tan Y, Longtin JP, Sampath S (2006) Modeling thermal conductivity of thermal spray coatings: comparing predictions to experiments. J Therm Spray Technol 15(4):545–552Google Scholar
  236. 236.
    Baba T, Ono A (2001) Improvement of the laser flash method to reduce uncertainty in thermal diffusivity measurements. Meas Sci Technol 12:2046–2057Google Scholar
  237. 237.
    Wang H, Dinwiddie RB (2000) Reliability of laser flash thermal diffusivity measurements of the thermal barrier coatings. J Therm Spray Technol 9(2):210–214Google Scholar
  238. 238.
    He GH, Guo JD, Zhang YY, Wang BQ, Zhou BL (2000) Measurement of thermal diffusivity of thermal control coatings by the flash method using two-layer composite sample. Int J Thermophys 21(2):535–542Google Scholar
  239. 239.
    Rätzer-Scheibe H-J, Schulz U, Krell T (2006) The effect of coating thickness on the thermal conductivity of EB-PVD PYSZ thermal barrier coatings. Surf Coat Technol 200:5636–5644Google Scholar
  240. 240.
    Jennifer SY, Wang H, Porter WD, de Arellano Lopez AR, Faber KT (2001) Thermal conductivity and phase evolution of plasma-sprayed multilayer coatings. J Mater Sci 36:3511–3518Google Scholar
  241. 241.
    Slifka AJ, Filla BJ, Phelps JM, Bancke G, Berndt CC (1998) Thermal conductivity of a zirconia thermal barrier coating. J Therm Spray Technol 7(1):43–46Google Scholar
  242. 242.
    Aksel C, Warren PD (2003) Thermal shock parameters [R, R″′ and R″″] of magnesia–spinel composites. J Eur Ceram Soc 23:301–308Google Scholar
  243. 243.
    Hasselman DPH (1970) Thermal stress resistance parameters for brittle refractory ceramics: a compendium. Am Ceram Soc Bull 49(12):1033–1037Google Scholar
  244. 244.
    Bolcavage A, Feuerstein A, Foster J, Moore P (2004) Thermal shock testing of thermal barrier coating/bondcoat systems. J Mater Eng Perform 13(4):389–397Google Scholar
  245. 245.
    Qi ZM, Amada S, Akiyama S, Takahashi C (1988) Evaluation of thermal shock strength of thermal-sprayed coatings by the laser irradiation technique. Surf Coat Technol 110:73–80Google Scholar
  246. 246.
    Irisawa T, Matsumoto H (2006) Thermal shock resistance and adhesion strength of plasma-sprayed alumina coating on cast iron. Thin Solid Films 509:141–144Google Scholar
  247. 247.
    Nusair Khan A, Lu J (2003) Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling. Surf Coat Technol 166:37–43Google Scholar
  248. 248.
    Ma XQ, Takemoto M (2001) Quantitative acoustic emission analysis of plasma, sprayed thermal barrier coatings subjected to thermal shock tests. Mater Sci Eng A308:101–110Google Scholar
  249. 249.
    Sorai M, Gakkai NN (2004) Comprehensive handbook of calorimetry and thermal analysis. Wiley, New York, 534 pGoogle Scholar
  250. 250.
    Speyer R (1993) Thermal analysis of materials (Materials engineering). Amazon, Seattle, WAGoogle Scholar
  251. 251.
    Salimijazi H, Hosseini M, Mostaghimi J, Pershin L, Coyle TW, Samadi H, Shafyei A (2012) Plasma sprayed coating using mullite and mixed alumina/silica powders. J Therm Spray Technol 21(5):825–830Google Scholar
  252. 252.
    Garcia E, Mesquita-Guimaraes J, Miranzo P, Osendi MI, Cojocaru CV, Wang Y, Moreau C, Lima RS (2011) Phase composition and microstructural responses of graded mullite/YSZ coatings under water vapor environments. J Therm Spray Technol 20(1–2):83–91Google Scholar
  253. 253.
    Liu X, Ding C (2002) Thermal properties and microstructure of a plasma sprayed wollastonite coating. J Therm Spray Technol 11(3):375–379Google Scholar
  254. 254.
    Ozdemir I, Hamanaka I, Tsunekawa Y, Okumiya M (2005) In-process exothermic reaction in high-velocity oxyfuel and plasma spraying with SiO2/Ni/Al-Si-Mg composite powder. J Therm Spray Technol 14(3):321–329Google Scholar
  255. 255.
    Deevi SC, Sikka VK, Swindeman CJ, Seals RD (1997) Reactive spraying of nickel-aluminide coatings. J Therm Spray Technol 6(3):335–344Google Scholar
  256. 256.
    Wang J, Jordan EH, Gell M (2010) Plasma sprayed dense MgO-Y2O3 nanocomposite coatings using sol-gel combustion synthesized powder. J Therm Spray Technol 19(5):873–878Google Scholar
  257. 257.
    Ravi BG, Gandhi AS, Guo XZ, Margolies J, Sampath S (2008) Liquid precursor plasma spraying of functional materials: a case study for yttrium aluminum garnet (YAG). J Therm Spray Technol 17(1):82–90Google Scholar
  258. 258.
    Guilemany JM, Cinca N, Dosta S, Cano IG (2009) FeAl and NbAl3 intermetallic-HVOF coatings: structure and properties. J Therm Spray Technol 18(4):536–545Google Scholar
  259. 259.
    Fan X, Ishigaki T (2001) Mo5Si3-B and MoSi2 deposits fabricated by radio frequency induction plasma spraying. J Therm Spray Technol 10(4):611–617Google Scholar
  260. 260.
    Craig BD (2005) Material failure modes, Part II: A brief tutorial on impact, spalling, wear, brinelling, thermal shock, and radiation damage. J Fail Anal Prev 5(6):7–12Google Scholar
  261. 261.
    Chattopadhyay R (2001) Surface wear: analysis, treatment, and prevention. ASM International, Materials Park, OH, 307 pGoogle Scholar
  262. 262.
    Kennedy DM, Hashmi MSJ (1998) Methods of wear testing for advanced surface coatings and bulk materials. J Mater Process Technol 77:246–253Google Scholar
  263. 263.
    Bolelli G, Cannillo V, Lusvarghi L, Manfredini T (2006) Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 261:1298–1315Google Scholar
  264. 264.
    Cockeram BV, Wilson WL (2001) The hardness, adhesion and wear resistance of coatings developed for cobalt-base alloys. Surf Coat Technol 139:161–182Google Scholar
  265. 265.
    Wielage B, Steinhäuser S, Schnick T, Nickelmann D (1999) Characterization of the wear behavior of thermal sprayed coatings. J Therm Spray Technol 8(4):553–558Google Scholar
  266. 266.
    Schmidt G, Steinhäuser S (1996) Characterization of wear protective coatings. Tribol Int 29(3):207–214Google Scholar
  267. 267.
    Gawne DT, Qiu Z, Bao Y, Zhang T, Zhang K (2001) Abrasive wear resistance of plasma-sprayed glass-composite coatings. J Therm Spray Technol 10(4):599–603Google Scholar
  268. 268.
    Li C-J, Wang H-T, Yang G-J, Bao C-G (2011) Characterization of high-temperature abrasive wear of cold-sprayed FeAl intermetallic compound coating. J Therm Spray Technol 20:227–233Google Scholar
  269. 269.
    Rainforth WM (2004) The wear behaviour of oxide ceramics—a review. J Mater Sci 39:6705–6721Google Scholar
  270. 270.
    Kim HJ, Kweon YG, Chang RW (1994) Wear and erosion behavior of plasma-sprayed WC-Co coatings. J Therm Spray Technol 3(2):169–178Google Scholar
  271. 271.
    Tillmann W, Vogli E, Baumann I, Matthaeus G, Ostrowski T (2008) Influence of the HVOF gas composition on the thermal spraying of WC-Co submicron powders (28 + 1 μm) to produce superfine structured cermet coatings. J Therm Spray Technol 17(5–6):924–932Google Scholar
  272. 272.
    He D-Y, Fu B-Y, Jiang J-M, Li X-Y (2008) Microstructure and wear performance of arc sprayed Fe-FeB-WC coatings. J Therm Spray Technol 17(5–6):757–761Google Scholar
  273. 273.
    Magnani M, Suegama PH, Espallargas N, Fugivara CS, Dosta S, Guilemany JM, Benedettir AV (2009) Corrosion and wear studies of Cr3C2-NiCr-HVOF coatings sprayed on AA7050 T7 under cooling. J Therm Spray Technol 18(3):354–363Google Scholar
  274. 274.
    Yin B, Liu G, Zhou H, Chen J, Yan F (2010) Sliding wear behavior of HVOF-sprayed Cr3C2–NiCr/CeO2 composite coatings at elevated temperature up to 800 °C. Tribol Lett 37:463–475Google Scholar
  275. 275.
    Fernandez JE, Rodriguez R, Wang Y, Vijande R, Rincon A (1995) Sliding wear of a plasma-sprayed A2O3 coating. Wear 181–183:417–425Google Scholar
  276. 276.
    Liu Y, Wang HM (2010) Microstructure and wear property of laser-clad Co3Mo2Si/Coss wear resistant coatings. Surf Coat Technol 205:377–382Google Scholar
  277. 277.
    Tiana W, Wang Y, Zhang T, Yang Y (2009) Sliding wear and electrochemical corrosion behavior of plasma sprayed nanocomposite Al2O3–13%TiO2 coatings. Mater Chem Phys 118:37–45Google Scholar
  278. 278.
    Lin JF, Liu MH, Wu JD (1996) Analysis of the friction and wear mechanisms of structural ceramic coatings. Part 1: The effect of processing conditions. Wear 194:1–11Google Scholar
  279. 279.
    Yanga Q, Senda T, Hirose A (2006) Sliding wear behavior of WC–12% Co coatings at elevated temperatures. Surf Coat Technol 200:4208–4212Google Scholar
  280. 280.
    Guilemany JM, Miguel JM, Armada S, Vizcaino S, Climent F (2001) Use of scanning white light interferometry in the characterization of wear mechanisms in thermal-sprayed coatings. Mater Charact 47:307–314Google Scholar
  281. 281.
    Kulu P, Pihl T (2002) Selection criteria for wear resistant powder coatings under extreme erosive wear conditions. J Therm Spray Technol 11(4):517–522Google Scholar
  282. 282.
    Clark HMI, Hawthorne HM, Xie Y (1999) Wear rates and specific energies of some ceramic, cermet and metallic coatings determined in the Coriolis erosion tester. Wear 233–235:319–327Google Scholar
  283. 283.
    Ji G-C, Li C-J, Wang Y-Y, Li W-Y (2007) Erosion performance of HVOF-sprayed Cr3C2-NiCr coatings. J Therm Spray Technol 16(4):557–565Google Scholar
  284. 284.
    Dallaire S (2001) Hard arc-sprayed coating with enhanced erosion and abrasion wear resistance. J Therm Spray Technol 10(3):511–519Google Scholar
  285. 285.
    Shivamurthy RC, Kamaraj M, Nagarajan R, Shariff SM, Padmanabham G (2010) Slurry erosion characteristics and erosive wear mechanisms of Co-based and Ni-based coatings formed by laser surface alloying. Metall Mater Trans A 41A:470–486Google Scholar
  286. 286.
    Hejwowski T, Szewczyk S, Weronski A (2000) An investigation of the abrasive and erosive wear of flame-sprayed coatings. J Mater Process Technol 106:54–57Google Scholar
  287. 287.
    Hejwowski T (2009) Erosive and abrasive wear resistance of overlay coatings. Vacuum 83:166–170Google Scholar
  288. 288.
    Mann BS, Arya V (2001) Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: their application in hydro turbines. Wear 249:354–360Google Scholar
  289. 289.
    Prasad Sahu S, Satapathy A, Patnaik A, Sreekumar KP, Ananthapadmanabhan PV (2010) Development, characterization and erosion wear response of plasma sprayed fly ash–aluminum coatings. Mater Des 31:1165–1173Google Scholar
  290. 290.
    Stewart S, Ahmed R, Itsukaichi T (2005) Rolling contact fatigue of post-treated WC – NiCrBSi thermal spray coatings. Surf Coat Technol 190(1–2):171–189Google Scholar
  291. 291.
    Ahmed R, Hadfield M (2002) Mechanisms of fatigue failure in thermal spray coatings. J Therm Spray Technol 11(3):334–349Google Scholar
  292. 292.
    Zhang XC, Xu BS, Tu ST, Xuan FZ, Wang HD, Wu YX (2009) Fatigue resistance and failure mechanisms of plasma-sprayed CrC–NiCr cermet coatings in rolling contact. Int J Fatigue 31:906–915Google Scholar
  293. 293.
    Kovarik O, Siegl J, Nohava J, Chraska P (2005) Young’s modulus and fatigue behavior of plasma-sprayed alumina coatings. J Therm Spray Technol 14(2):231–238Google Scholar
  294. 294.
    Kovarik O, Siegl J, Prochazka Z (2008) Fatigue behavior of bodies with thermally sprayed metallic and ceramic deposits. J Therm Spray Technol 17(4):525–532Google Scholar
  295. 295.
    McGrann RTR, Greving DJ, Shadley JR, Rybicki EF, Bodger BE, Somerville DA (1998) The effect of residual stress in HVOF tungsten carbide coatings on the fatigue life in bending of thermal spray coated aluminum. J Therm Spray Technol 7(4):546–552Google Scholar
  296. 296.
    Sansoucy E, Kim GE, Moran AL, Jodoin B (2007) Mechanical characteristics of Al-Co-Ce coatings produced by the cold spray process. J Therm Spray Technol 16(5–6):651–660Google Scholar
  297. 297.
    Ibrahim A, Lima RS, Berndt CC, Marple BR (2007) Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings. Surf Coat Technol 201:7589–7596Google Scholar
  298. 298.
    Ibrahim A, Berndt CC (2007) Fatigue and deformation of HVOF sprayed WC–Co coatings and hard chrome plating. Mater Sci Eng A 456:114–119Google Scholar
  299. 299.
    Yan L, Leng Y, Chen J (2003) Torsional fatigue resistance of plasma sprayed HA coating on Ti-6Al-4V. J Mater Sci Mater Med 14:291–295Google Scholar
  300. 300.
    Agüero A, Camón F, García de Blas J, del Hoyo JC, Muelas R, Santaballa A, Ulargui S, Vallés P (2011) HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators. J Therm Spray Technol 20(6):1292–1309Google Scholar
  301. 301.
    Scrivani A, Rizzi G, Bardi U, Giolli C, Muniz Miranda M, Ciattini S, Fossati A, Borgioli F (2007) Thermal fatigue behavior of thick and porous thermal barrier coatings systems. J Therm Spray Technol 16(5–6):816–821Google Scholar
  302. 302.
    Giolli C, Scrivani A, Rizzi G, Borgioli F, Bolelli G, Lusvarghi L (2009) Failure mechanism for thermal fatigue of thermal barrier coating systems. J Therm Spray Technol 18(2):223–230Google Scholar
  303. 303.
    Zhu D, Choi SR, Miller RA (2004) Development and thermal fatigue testing of ceramic thermal barrier coatings. Surf Coat Technol 188–189:146–152Google Scholar
  304. 304.
    Zhou YC, Hashida T (2002) Thermal fatigue failure induced by delamination in thermal barrier coating. Int J Fatigue 24:407–417Google Scholar
  305. 305.
    Zhang T, Li DY (2001) Improvement in the resistance of aluminum with yttria particles to sliding wear in air and in a corrosive medium. Wear 251:1250–1256Google Scholar
  306. 306.
    Liu R, Li DY (1999) Protective effect of yttrium additive in lubricants on corrosive wear. Wear 225–229:968–974Google Scholar
  307. 307.
    Basak AK, Matteazzi P, Vardavoulias M, Celis J-P (2006) Corrosion–wear behaviour of thermal sprayed nanostructured FeCu/WC–Co coatings. Wear 261:1042–1050Google Scholar
  308. 308.
    Prasad BK (2000) Effects of alumina particle dispersion on the erosive–corrosive wear response of a zinc-based alloy under changing slurry conditions and distance. Wear 238:151–159Google Scholar
  309. 309.
    Zhang D-W, Lei TC (2003) The microstructure and erosive–corrosive wear performance of laser-clad Ni–Cr3C2 composite coating. Wear 255:129–133Google Scholar
  310. 310.
    Stack MM, Stott FH, Wood GC (1993) Review of mechanisms of erosion-corrosion of alloys at elevated temperatures. Part 2. Wear 162–164:706–712Google Scholar
  311. 311.
    Higuera Hidalgo V, Belzunce Varela J, Carriles Menéndez A, Poveda Martınez S (2001) High temperature erosion wear of flame and plasma-sprayed nickel–chromium coatings under simulated coal-fired boiler atmospheres. Wear 247:214–222Google Scholar
  312. 312.
    Garcıa JR, Cuetos JM, Fernandez E, Higuera V (2007) Laser surface melting Cr–Ni coatings, in the erosive-corrosive atmosphere of boilers. Tribol Lett 28:99–108Google Scholar
  313. 313.
    Drexler JM, Aygun A, Li D, Vaßen R, Steinke T, Padture NP (2010) Thermal-gradient testing of thermal barrier coatings under simultaneous attack by molten glassy deposits and its mitigation. Surf Coat Technol 204:2683–2688Google Scholar
  314. 314.
    Lee H, Mall S, Sanders JH, Sharma SK (2005) Wear analysis of Cu–Al coating on Ti–6Al–4V substrate under fretting condition. Tribol Lett 19(3):239–248Google Scholar
  315. 315.
    Lee H, Mall S, Murray KN (2007) Fretting wear behavior of Cu–Al coating on Ti-6Al-4V substrate under dry and wet (lubricated) contact condition. Tribol Lett 28:19–25Google Scholar
  316. 316.
    Fridrici V, Fouvry S, Kapsa P (2003) Fretting wear behavior of a Cu–Ni–In plasma coating. Surf Coat Technol 163–164:429–434Google Scholar
  317. 317.
    Gean MC, Farris TN (2009) Elevated temperature fretting fatigue of Ti-17 with surface treatments. Tribol Int 42:1340–1345Google Scholar
  318. 318.
    Xu G-Z, Liu J-J, Zhou Z-R (2002) The effect of the third body on the fretting wear behavior of coatings. J Mater Eng Perform 11(3):288–293Google Scholar
  319. 319.
    Koiprasert H, Dumrongrattana S, Niranatlumpong P (2004) Thermally sprayed coatings for protection of fretting wear in land-based gas-turbine engine. Wear 257:1–7Google Scholar
  320. 320.
    Majzoobi GH, Hojjati R, Nematian M, Zalnejad E, Ahmadkhani AR, Hanifepoor E (2010) A new device for fretting fatigue testing. Trans Indian Inst Met 63(2–3):493–497Google Scholar
  321. 321.
    Atlas Steel Technical Note No. 7 “Galvanic corrosion,” revised Aug 2010Google Scholar
  322. 322.
    ASM International (2003) Corrosion: fundamentals, testing, and protection. In: ASM handbook, vol 13A. ASM International, Materials Park, OH, pp 509–513Google Scholar
  323. 323.
    Souza VAD, Neville A (2006) Mechanisms and kinetics of WC-Co-Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments. J Therm Spray Technol 15(1):106–117Google Scholar
  324. 324.
    Guilemany JM, Espallargas N, Suegama PH, Benedetti AV, Fernández J (2005) High-velocity oxyfuel Cr3C2-NiCr replacing hard chromium coatings. J Therm Spray Technol 14(3):336–341Google Scholar
  325. 325.
    Shrestha S, Neville A, Hodgkiess T (2001) The effect of post-treatment of a high-velocity oxy-fuel Ni-Cr-Mo-Si-B coating. Part I: Microstructure/corrosion behavior relationships. J Therm Spray Technol 10(3):470–479Google Scholar
  326. 326.
    Ishikawa Y, Kawakita J, Osawa S, Itsukaichi T, Sakamoto Y, Takaya M, Kuroda S (2005) Evaluation of corrosion and wear resistance of hard cermet coatings sprayed by using an improved HVOF process. J Therm Spray Technol 14(3):384–390Google Scholar
  327. 327.
    Gobinda CS, Khan TI (2010) The corrosion and wear performance of microcrystalline WC-10Co-4Cr and near-nanocrystalline WC-17Co high velocity oxy-fuel sprayed coatings on steel substrate. Metall Mater Trans A 41A:3000–3009Google Scholar
  328. 328.
    Paul S, Yadav K (2010) Corrosion behavior of surface-treated implant Ti-6Al-4V by electrochemical polarization and impedance studies. J Mater Eng Perform 20(3):422–435Google Scholar
  329. 329.
    Barletta M, Bolelli G, Bonferroni B, Lusvarghi L (2010) Wear and corrosion behavior of HVOF-sprayed WC-CoCr coatings on Al alloys. J Therm Spray Technol 19(1–2):358–367Google Scholar
  330. 330.
    Luiz de Assis S, Wolynec S, Costa I (2006) Corrosion characterization of titanium alloys by electrochemical techniques. Electrochim Acta 51:1815–1819Google Scholar
  331. 331.
    Wang H-R, Hou B-R, Wang J, Wang Q, Li W-Y (2008) Effect of process conditions on microstructure and corrosion resistance of cold-sprayed Ti coatings. J Therm Spray Technol 17(5–6):736–741Google Scholar
  332. 332.
    He D, Dong N, Jiang J (2007) Corrosion behavior of arc sprayed nickel-base coatings. J Therm Spray Technol 16(5–6):850–856Google Scholar
  333. 333.
    Sidhu TS, Prakash S, Agrawal RD (2006) Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. J Therm Spray Technol 15(3):387–399Google Scholar
  334. 334.
    Sidhu TS, Prakash S, Agrawal RD (2007) Study of molten salt corrosion of high velocity oxy-fuel sprayed cermet and nickel-based coatings at 900 °C. Metall Mater Trans A 38A:77–85Google Scholar
  335. 335.
    Sidhu TS, Prakash S, Agrawal RD (2006) Characterizations and hot corrosion resistance of Cr3C2-NiCr coating on Ni-base superalloys in an aggressive environment. J Therm Spray Technol 15(4):811–816Google Scholar
  336. 336.
    Singh H, Puri D, Prakash S (2005) Corrosion behavior of plasma-sprayed coatings on a Ni-base superalloy in Na2SO4-60 Pct V2O3 environment at 900 °C. Metall Mater Trans A 36A:1008–1015Google Scholar
  337. 337.
    Guilemany JM, Torrell M, Miguel JR (2008) Study of the HVOF Ni-based coatings corrosion resistance applied on municipal solid-waste incinerators. J Therm Spray Technol 17(2):254–262Google Scholar
  338. 338.
    Li L, Hitchman N, Knapp J (2010) Failure of thermal barrier coatings subjected to CMAS attack. J Therm Spray Technol 19(1–2):148–155Google Scholar
  339. 339.
    Matthews S, James B, Hyland M (2010) The effect of heat treatment on the oxidation mechanism of blended powder Cr3C2-NiCr coatings. J Therm Spray Technol 19(1–2):119–127Google Scholar
  340. 340.
    Ye F-X, Wu S-H, Ohmori A (2008) Microstructure and oxidation behavior of Cr39Ni7C cermet coatings deposited by diamond jet spray process. J Therm Spray Technol 17(5–6):942–947Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations