Skip to main content

Conventional Coating Formation

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

Thermal spray processes are relatively mature technologies widely used in industry. They mostly involve the introduction of either, particles (in the tens of micrometers size range) into the high-energy gas stream where they are, except for cold spray, accelerated and heated over or below their meting point, or wires, cored wires, rods, cords, which have their tip melted and atomized. The thermal and kinetic energy content of the ductile particles or droplets impinging on the substrate can widely vary with the process used. Moreover, for metals or alloys or composites sprayed in air, high process temperatures tend to increase the in-flight particle oxidation, increasing the oxide content embedded into the coating. At last the coating is formed by ductile particles or droplets flattening to form splats, which layering forms the coating. Thus the coating formation depends also strongly on substrate surface composition, microstructure, roughness and pollution. This chapter starts with the physical and chemical description of substrates with the drastic influence of the oxide layer and the mean to get rid of adsorbates and condensates. Then the impact of a single ductile particle (metal, alloy, cermet, ceramic, polymer) or a droplet is considered first on a smooth surface and then on a rough one. The way parameters characterizing flattening (Reynolds, Weber, Sommerfeld numbers), must be calculated to fit with experiments is discussed, as well as the impact direction. Coating formation is discussed from splats layering with the formation of beads and passes and the importance and means, such as robots and cooling devices, to control the coating temperature during its formation. As pointed out in previous chapters the influence of powder or wire…manufacturing process on coating properties is discussed. The different residual stresses formed during spraying are presented with their influence on coating adhesion-cohesion. Chapters ends-up with coatings finishing and the different post-treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ghafouri-Azar R, Mostaghimi J, Chandra S, Charmchi M (2003) A stochastic model to simulate the formation of a thermal spray coating. J Therm Spray Technol 12(1):53–69

    Google Scholar 

  2. Alkhimov AP, Kosarev VF, Nesterovich NI, Papyrin AN (1986) Method of applying coatings. Russian Patent 1618778, 8 Sept 1990, priority of the invention June 6

    Google Scholar 

  3. Alkhimov AP, Papyrin AN, Kosarev VF, Nesterovich NI, Shushpanov MM (1994) Gas-dynamic spray method for applying a coating. U.S. Patent 5,302,414, April 12

    Google Scholar 

  4. Gärtner F, Stoltenhoff T, Schmidt T, Kreye H (2006) The cold spray process and its potential for industrial applications. J Therm Spray Technol 15(2):223–232

    Google Scholar 

  5. Fauchais P, Vardelle A, Dussoubs B (2001) Quo vadis thermal spraying – invited paper. J Therm Spray Technol 10:44–66

    Google Scholar 

  6. Fauchais P (2004) Understanding plasma spraying. J Phys D 37:86–108

    Google Scholar 

  7. Hearley JA, Little JA, Sturgeon AJ (2000) The effect of spray parameters on the properties of high velocity oxy-fuel NiAl intermetallic coatings. Surf Coat Technol 123:210–218

    Google Scholar 

  8. Sampath S, Herman H (1996) Rapid solidification and microstructure development during plasma spraying deposition. J Therm Spray Deposit 5(4):445–456

    Google Scholar 

  9. Sampath S, Jiang X, Kulkarni A, Matejicek J, Gilmore DL, Neiser RA (2003) Development of process maps for plasma spray: case study for molybdenum. Mater Sci Eng A 348:54–66

    Google Scholar 

  10. Davis JR (2004) Handbook of thermal spray technology. ASM International, Materials Park, OH

    Google Scholar 

  11. Azarmi F, Coyle TW, Mostaghimi J (2008) Optimization of atmospheric plasma spray process parameters using a design of experiment for alloy 625 COATINGS. J Therm Spray Technol 17(1):144–155

    Google Scholar 

  12. Schmidt T, Gärtner F, Assadi H, Kreye H (2006) Development of a generalized parameter window for cold spray deposition. Acta Mater 54:729–742

    Google Scholar 

  13. Fauchais P, Vardelle M (2010) Sensors in spray processes – an invited review. J Therm Spray Technol 19(4):668–694

    Google Scholar 

  14. Fauchais P, Montavon G, Bertrand G (2010) From powders to thermally sprayed coatings. J Therm Spray Technol 19(1–2):56–80

    Google Scholar 

  15. Vardelle M, Vardelle A, Fauchais P, Li K-I, Dussoubs B, Themelis NJ (2001) Controlling particle injection in plasma spraying. J Therm Spray Technol 10:267–286

    Google Scholar 

  16. Ben Ettouil F, Mazhorova O, Pateyron B, Hélène Ageorges, El Ganaoui M, Fauchais P (2008) Predicting dynamic and thermal histories of agglomerated particles injected within a d.c. plasma jet. Surf Coat Technol 202(18):4491–4495

    Google Scholar 

  17. Chandra S, Fauchais P (2009) Formation of solid splats during thermal spray deposition. J Therm Spray Technol 18(2):148–180

    Google Scholar 

  18. Fukumoto M, Ohgitani I, Nagai H, Yasni T. Effect of substrate surface change by heating on flattening behavior of thermal sprayed particles. In: Lugscheider E (ed) ITSC 2005. DVS, Düsseldorf, Germany, e-proceedings

    Google Scholar 

  19. Cedelle J, Vardelle M, Fauchais P (2006) Influence of stainless steel substrate preheating on surface topography and on millimeter- and micrometer-sized splat formation. Surf Coat Technol 201:1373–1382

    Google Scholar 

  20. McDonald A, Moreau C, Chandra S (2007) Effect of substrate oxidation on spreading of plasma-sprayed nickel on stainless steel. Surf Coat Technol 202:23–33

    Google Scholar 

  21. Fukumoto M, Nagui H, Yasui T (2006) Influence of surface character change of substrate due to heating on flattening behavior of thermal sprayed particles. In: Marple B et al (eds) ITSC 2006. ASM International, Materials Park, OH

    Google Scholar 

  22. Li C-J, Li J-L, Wang WB (1998) The effect of substrate preheating and surface organic covering on splat formation. In: Coddet C (ed) Thermal spray: meeting the challenges of the 21st century. ASM International, Materials Park, OH, pp 473–480

    Google Scholar 

  23. Li C-J, Li J-L, Wang WB, Fu A-J, Ohmori A (1999) A mechanism of the splashing during droplet splatting. In: Lugscheider E, Kammer PA (eds) Thermal spraying, in united spray conference proceedings, Düsseldorf. DVS, Düsseldorf, Germany, pp 530–535

    Google Scholar 

  24. Li H, Danlos Y, Costil S, Coddet C (2007) Influence of laser induced surface topography on the surface static wettability in Protal®. In: Marple B et al (eds) Thermal spray (2007) global coating solutions. ASM International, Materials Park, OH, pp 1070–1074, e-proceedings

    Google Scholar 

  25. Li C-J, Li J-L (2004) Evaporated-gas-induced splashing model for splat formation during plasma spraying. Surf Coat Technol 184:13–23

    Google Scholar 

  26. Henrich VE, Cox PA (1994) The surface science of metal oxides. Cambridge University Press, Cambridge

    Google Scholar 

  27. Fukumoto M, Nagai H, Yasui T (2006) Influence of surface character change of substrate due to heating on flattening behavior of thermal sprayed particles. J Therm Spray Technol 15(4):759–764

    Google Scholar 

  28. Fukumoto M, Yamaguchi T, Yamada M, Yasui T (2007) Splash splat to disk splat transition behavior in plasma-sprayed metallic materials. J Therm Spray Technol 16(5–6):905–912

    Google Scholar 

  29. Coddet C, Montavon G, Ayrault-Costil S, Freneaux O, Rigolet F, Barbezat G, Foliot F, Diard A, Wazen P (1999) Surface preparation and thermal spray in a single step: the PROTAL process – example of application for an aluminium-base substrate. J Therm Spray Technol 8(2):235–242

    Google Scholar 

  30. Costil S, Liao H, Gammondi A, Coddet C (2005) Influence of surface laser cleaning combined with substrate preheating on splat morphology. J Therm Spray Technol 14(1):31–38

    Google Scholar 

  31. Dong S, Song B, Hansz B, Liao H, Coddet C. Improvement in the microstructure and property of plasma sprayed metallic, alloy and ceramic coatings by using dry ice blasting. In: 5th RIPT conference, CEC, Limoges, Dec 2011, e-proceedings

    Google Scholar 

  32. Haure T. Multifunctional layers obtained by a multi-technique process, Ph.D. University of Limoges, France, Nov 2003

    Google Scholar 

  33. Syed AA, Denoirjean A, Hannoyer B, Fauchais P, Denoirjean P, Khan AA, Labbe JC (2005) Influence of substrate surface conditions on the plasma sprayed ceramic and metallic particles flattening. Surf Coat Technol 200:2317–2331

    Google Scholar 

  34. Pech J (1999) Preoxidation generated by blown arc d.c. plasma jets. Relationship between surface, oxidation and adhesion of plasma sprayed coatings. Ph.D., University of Rouen, France

    Google Scholar 

  35. Pech J, Hannoyer B (2000) Influence of the oxide layer by d.c. plasma preheating on the adhesion coating and role of the initial surface pretreatment. Surf Interface Anal 30:585–588

    Google Scholar 

  36. Li H, Costil S, Liao H-L, Li C-J, Planche MP, Coddet C (2006) Effect of surface conditions on the flattening behavior of plasma sprayed Cu splats. Surf Coat Technol 200:5435–5446

    Google Scholar 

  37. Li H, Costil S, Deng S-H, Liao H-L, Coddet C, Ji V, Huang W-J (2006) Benefit of surface oxide removal on thermal spray coating adhesion using the PROTAL process. In: Marple B et al (eds) ITSC 2006. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  38. Valette S (2004) Influence of the preoxidation of a steel substrate on the adhesion of an alumina coating plasma sprayed. Ph.D. Thesis, University of Limoges, France, Nov

    Google Scholar 

  39. Pech J, Hannoyer B, Lagnoux O, Denoirjean A, Fauchais P (1999) Influence of the preheating parameters on the plasma jet oxidation of a low carbon steel. In: Fauchais P, Amouroux J (eds) Progress in plasma processing of materials. Begell House, New York, pp 543–551

    Google Scholar 

  40. Trompetter W, Hyland M, McGrouther D, Munroe P, Markwitz A (2006) Effect of substrate hardness on splat morphology in high-velocity thermal spray coatings. J Therm Spray Technol 15(4):663–669

    Google Scholar 

  41. Kawakita J, Kuroda S, Fukushima T, Katanoda H, Matsuo K, Fukanuma H (2006) Dense titanium coatings by modified HVOF spraying. Surf Coat Technol 201:1250–1255

    Google Scholar 

  42. Hanson TC, Hackett CM, Settles GS (2002) Independent control of HVOF particle velocity and temperature. J Therm Spray Technol 11(1):75–85

    Google Scholar 

  43. Assadi H, Gartner F, Stoltenhoff T, Kreye H (2003) Bonding mechanism in cold gas spraying. Acta Mater 51:4379–4394

    Google Scholar 

  44. Grujicic M, Saylor JR, Beasley DE, DeRosset WS, Helfritch D (2003) Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process. Appl Surf Sci 219:211–227

    Google Scholar 

  45. Grujicic M (2007) Particle/substrate interaction in the cold-spray bonding process. In: Champagne VK (ed) The cold spray materials deposition process. Woodhead Publishing Ltd, Cambridge, pp 148–177

    Google Scholar 

  46. Itoh A, Takeda K, Itoh M, Koga M (1990) Pretreatements of substrates by using reversed transferred arc in low pressure plasma spray. In: Bernicki F (ed) Thermal spray: research and applications. ASM International, Materials Park, OH, pp 245–252

    Google Scholar 

  47. Chraska T, King AH (2002) Effect of different substrate conditions upon interface with plasma sprayed zirconia—a TEM study. Surf Coat Technol 157:238–246

    Google Scholar 

  48. Brossard S, Munroe PR, Tran AT, Hyland MM (2010) Study of the splat microstructure and the effects of substrate heating on the splat formation for Ni-Cr particles plasma sprayed onto stainless steel substrates. J Therm Spray Technol 19(5):1100–1114

    Google Scholar 

  49. Yang E-J, Yang G-J, Luo X-T, Li C-J, Takahashi M (2012) Epitaxial grain growth during splat cooling of alumina droplets produced by atmospheric plasma spraying. In: ITSC 2012. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  50. Denoirjean A, Grimaud A, Fauchais P, Tristant P, Tixier C, Desmaison J (1998) Splat formation, first step for multitechnique deposition of plasma spraying and microwave plasma enhanced CVD. In: Coddet C (ed) Thermal spray: meeting in challenges of the 21st century, vol 2. ASM International, Materials Park, OH, pp 1369–74

    Google Scholar 

  51. Maitre A, Denoirjean A, Fauchais P, Lefort P (2002) Plasma-jet coating of pre-oxidized XC38 steel: influence of the nature of the oxide layer. Phys Chem Chem Phys 4(15):3887–3893

    Google Scholar 

  52. Valette S, Denoirjean A, Danoix R, Hannoyer B, Lefez B, Lopitaux J, Lefort P, Fauchais P. Interaction between a thin non continuous d.c. plasma sprayed alumina layer and pre-oxidized low carbon substrate. In: Lugsheider E et al (eds) ITSC 2005. DVS, Düsseldorf, Germany, e-proceedings

    Google Scholar 

  53. Guetta S, Berger MH, Borit F, Guipont V, Jeandin M, Boustie M, Ichikawa Y, Sakaguchi K, Ogawa K (2009) Influence of particle velocity on adhesion of cold-sprayed splats. J Therm Spray Technol 18(3):331–342

    Google Scholar 

  54. Fukumoto M, Mashiko M, Yamada M, Yamaguchi E (2010) Deposition behavior of copper fine particles onto flat substrate surface in cold spraying. J Therm Spray Technol 19(1–2):89–94

    Google Scholar 

  55. Zhang D, Shipway PH, McCartney DG (2005) Cold gas dynamic spraying of aluminum: the role of substrate characteristics in deposit formation. J Therm Spray Technol 14(1):109–116

    Google Scholar 

  56. Hussain T, McCartney DG, Shipway PH, Zhang D (2009) Bonding mechanisms in cold spraying: the contributions of metallurgical and mechanical components. J Therm Spray Technol 18(3):364–379

    Google Scholar 

  57. Huang R, Fukanuma H (2012) Study of the influence of particle velocity on adhesive strength of cold spray deposits. J Therm Spray Technol, 21(3–4):541–549

    Google Scholar 

  58. Li C-J, Li C-X, Yang G-J, Wang Y-Y (2006) Examination of substrate surface melting-induced splashing during splat formation in plasma spraying. J Therm Spray Technol 15(4):717–724

    Google Scholar 

  59. Morks MF, Tsunekawa Y, Okumiya M, Shoeib MA (2002) Splat morphology and microstructure of plasma sprayed cast iron with different preheat substrate temperatures. J Therm Spray Technol 11(2):226–232

    Google Scholar 

  60. Trompetter WJ, Hyland M, Munroe P, Markwitz A (2005) Evidence of mechanical interlocking of NiCr particles thermally sprayed onto Al substrates. J Therm Spray Technol 14(4):524–529

    Google Scholar 

  61. Bahbou F, Nylen P (2005) Relationship between surface topography parameters and adhesion strength for plasma spraying. In: Lugscheider E (ed) ITSC 2005. DVS, Düsseldorf, Germany, e-proceedings

    Google Scholar 

  62. Bahbou MF, Nylén P (2007) On-line measurement of plasma-sprayed Ni-particles during impact on a Ti-surface: influence of surface oxidation. J Therm Spray Technol 16(4):506–511

    Google Scholar 

  63. Fauchais P, Vardelle M, Vardelle A, Bianchi L, Léger AC (1996) Parameters controlling the generation and properties of plasma sprayed zirconia coatings. Plasma Chem Plasma Proc 16(1):99S–125S

    Google Scholar 

  64. Maruyama T, Akagi K, Kobayashi T (2006) Effects of blasting parameters on removability of residual grit. J Therm Spray Technol 15(4):817–821

    Google Scholar 

  65. Klinkov SV, Kosarev VF (2006) Measurements of cold spray deposition efficiency. J Therm Spray Technol 15(3):364–371

    Google Scholar 

  66. Fukumoto M, Wada H, Tanabe K, Yamada M, Yamaguchi E, Niwa A, Sugimoto M, Izawa M (2007) Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process. J Therm Spray Technol 16(5–6):643–650

    Google Scholar 

  67. Papyrin AN, Klinkov SV, Kosarev VF (2003) Modeling of particle-substrate adhesive interaction under the cold spray process. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park, OH, pp 27–35

    Google Scholar 

  68. Trompetter W, Hyland M, McGrouther D, Munroe P, Markwitz A (2010) The effect of substrate surface oxides on the bonding of NiCr alloy particles HVAF thermally sprayed onto aluminum substrates. J Therm Spray Technol 19(5):1024–1031

    Google Scholar 

  69. Klinkov SV, Kosarev VF. Cold spraying activation using an abrasive admixture. J Therm Spray Technol. Published on line 29 Mar 2012

    Google Scholar 

  70. Koivuluoto H, Vuoristo P (2010) Effect of powder type and composition on structure and mechanical properties of Cu + Al2O3 coatings prepared by using low-pressure cold spray process. J Therm Spray Technol 19(5):1081–1092

    Google Scholar 

  71. Fauchais P, Fukumoto M, Vardelle A, Vardelle M (2004) Knowledge concerning splat formation: an invited review. J Therm Spray Technol 13(3):337–360

    Google Scholar 

  72. Kudinov VV et al. (1981) In high temp. Dust laden jets. VSL, NL, pp 381–392

    Google Scholar 

  73. Dhiman R, McDonald AG, Chandra S (2007) Predicting splat morphology in a thermal spray process. Surf Coat Technol 201:7789–7801

    Google Scholar 

  74. Goutier S, Vardelle M, Labbe JC, Fauchais P (2011) Flattening and cooling of millimeter- and micrometer-sized alumina drops. J Therm Spray Technol 20(1–2):59–67

    Google Scholar 

  75. Fukumoto M, Yang K, Tanaka K, Usami T, Yasui T, Yamada M (2011) Effect of substrate temperature and ambient pressure on heat transfer at interface between molten droplet and substrate surface. J Therm Spray Technol 20(1–2):48–58

    Google Scholar 

  76. Sabiruddina K, Bandyopadhyay PP, Bolelli G, Lusvarghi L (2011) Variation of splat shape with processing conditions in plasma sprayed alumina coatings. J Mater Process Technol 211:450–462

    Google Scholar 

  77. Armster SQ, Delplanque J-P, Rein M, Lavernia EJ (2002) Thermo-fluid mechanisms controlling droplet based materials processes. Int Mater Rev 7(6):265–301

    Google Scholar 

  78. Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8:650–659

    Google Scholar 

  79. Bussmann M, Chandra S, Mostaghimi J (2000) Modeling the splashing of a droplet impacting a solid surface. Phys Fluids 12:3121–3132

    Google Scholar 

  80. Pasandideh-Fard M, Pershin V, Chandra S, Mostaghimi J (2002) Splat shapes in a thermal spray coating process: simulations and experiments. J Therm Spray Technol 11:206–217

    Google Scholar 

  81. Xue M, Heichal Y, Chandra S, Mostaghimi J (2007) Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermal contact resistance. J Mater Sci 42:9–18

    Google Scholar 

  82. Escure C, Vardelle M, Fauchais P (2003) Experimental and theoretical study of the impact of alumina droplet on cold and hot substrates. Plasma Chem Plasma Process 3:291–309

    Google Scholar 

  83. Chang-Jiu L, Li J-L (2004) Transient contact pressure during flattening of thermal spray droplet and its effect on splat formation. J Therm Spray Technol 13(2):229–238

    Google Scholar 

  84. Elsebaei A, Heberlein J, Elshaer M, Farouk A (2010) Comparison of in-flight particle properties, splat formation, and coating microstructure for regular and nano-YSZ powders. J Therm Spray Technol 19(1–2):2–10

    Google Scholar 

  85. Streibl T, Vaidya A, Friis M, Srinivasan V, Sampath S (2006) A critical assessment of particle temperature distributions during plasma spraying: experimental results for YSZ. Plasma Chem Plasma Proc 26(1):73–102

    Google Scholar 

  86. Withy B, Hyland M, James B (2006) Pretreatment effects on the surface chemistry and morphology of aluminium. Int J Modern Phys B 20(25–27):3611–3616

    Google Scholar 

  87. Tran ATT, Hyland MM, Qiu T, Withy B, James BJ (2008) Effects of surface chemistry on splat formation during plasma spraying. J Therm Spray Technol 17(5–6):637–645

    Google Scholar 

  88. Birks N, Meier GH, Pettit FS (2006) Introduction to the high-temperature oxidations of metals. Cambridge University Press, Cambridge

    Google Scholar 

  89. Fukumoto M (2004) Particle flattening behavior in thermal spray process. In: ITSC course, Osaka, Japan, 7–8 May

    Google Scholar 

  90. Yang K, Fukumoto M, Yasui T, Yamada M (2010) Study of substrate preheating on flattening behavior of thermal-sprayed copper particles. J Therm Spray Technol 19(6):1195–1205

    Google Scholar 

  91. Wu J, Munroe PR, Withy B, Hyland MM (2010) Study of the splat-substrate interface for a PEEK coating plasma-sprayed onto aluminum substrates. J Therm Spray Technol 19(1–2):42–48

    Google Scholar 

  92. Bianchi L, Denoirjean A, Blein F, Fauchais P (1977) Microstructural investigation of plasma sprayed ceramic splats. Thin Solid Films 299:125–135

    Google Scholar 

  93. Yang K, Tomita K, Fukumoto M, Yamada M, Yasui T (2009) Effect of ambient pressure on flattening behavior of thermal sprayed particles. J Therm Spray Technol 18(4):510–518

    Google Scholar 

  94. Madejski J (1976) Solidification of droplets on a cold surface. Int J Heat Mass Transfer 19:1009–1013

    Google Scholar 

  95. Williams CA, Jones H (1975) The effect of melt superheat and impact velocity on splat thickness. Mater Sci Eng 19:293–297

    Google Scholar 

  96. Yoshida T, Okada T, Hamatani H, Kumaoka H (1992) Integrated fabrication process for solid oxide fuel cells using novel plasma spraying. Plasma Sources Sci Technol 1:195–201

    Google Scholar 

  97. Fantassi S, Vardelle M, Vardelle A, Fauchais P (1993) Influence of the velocity of plasma-sprayed particles on splat formation. J Therm Spray Technol 2(4):379–384

    Google Scholar 

  98. Tanaka Y, Fukumoto M (1999) Investigation of dominating factors on flattening behavior of plasma sprayed ceramic particles. Surf Coat Technol 120–121:124–130

    Google Scholar 

  99. Goutier S (2010) Etude expérimentale de l’impact et de la solidification de gouttes céramiques et métalliques de tailles micrométrique et millimétrique sur différents types de substrats: compréhension du mécanisme de formation des dépôts par projection thermique. Ph.D. thesis, University of Limoges, France, 7 Dec

    Google Scholar 

  100. Xue M, Chandra S, Mostaghimi J (2006) Investigation of splat curling up in thermal spray coatings. J Therm Spray Technol 15(4):531–536

    Google Scholar 

  101. Vardelle M, Vardelle A, Leger AC, Fauchais P, Gobin D (1994) Influence of particle parameters at impact on splat formation and solidification in plasma spraying processes. J Therm Spray Technol 4(1):50–58

    Google Scholar 

  102. Lahmar-Mebdoua Y, Vardelle A, Fauchais P, Gobin D (2009) Splat heat transfer and crystal growth under thermal spray conditions. High Temp Mater Process 13(1):77–91

    Google Scholar 

  103. McDonald A, Moreau C, Chandra S (2007) Thermal contact resistance between plasma-sprayed particles and flat surfaces. Int J Heat Mass Transfer 50:1737–1749

    Google Scholar 

  104. McDonald A, Lamontagne M, Moreau C, Chandra S (2006) Impact of plasma-sprayed metal particles on hot and cold glass surfaces. Thin Solid Films 514:212–222

    Google Scholar 

  105. Sidhu TS, Prakash S, Agrawal RD (2005) Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Mater Sci 41(6):805–823

    Google Scholar 

  106. Ulianitsky V, Shtertser A, Zlobin S, Smurov I (2011) Computer-controlled detonation spraying: from process fundamentals toward advanced applications. J Therm Spray Technol 20(4):791–801

    Google Scholar 

  107. McDonald A, Xue M, Chandra S, Mostaghimi J, Moreau C (2007) Modeling fragmentation of plasma-sprayed particles impacting on a solid surface at room temperature. C R Mecanique 335:351–356

    Google Scholar 

  108. Watanabe M, Owada A, Kuroda S, Gotoh Y (2006) Effect of WC size on interface fracture toughness of WC–Co HVOF sprayed coatings. Surf Coat Technol 201:619–627

    Google Scholar 

  109. Che-Ming Wu T, Bussmann M, Mostaghimi J (2009) The impact of a partially molten YSZ particle. J Therm Spray Technol 18(5–6):957–964

    Google Scholar 

  110. Ivosevic M (2006) Splat Formation during thermal spraying of polymer particles: mathematical modeling and experimental analysis. Ph.D. Thesis, Faculty of Drexel University

    Google Scholar 

  111. Ivosevic M, Cairncross RA, Knight R (2006) 3D predictions of thermally sprayed polymer splats: modeling particle acceleration, heating and deformation on impact with a flat substrate. Int J Heat Mass Transfer 49:3285–3297

    Google Scholar 

  112. Alamara K, Saber-Samandari S, Berndt CC (2010) Splat formation of polypropylene flame sprayed onto a flat surface. Surf Coat Technol 205:2518–2524

    Google Scholar 

  113. Withy BP, Hyland MM, James BJ (2008) The effect of surface chemistry and morphology on the properties of HVAF PEEK single splats. J Therm Spray Technol 17(5–6):631–636

    Google Scholar 

  114. Patel K, Doyle CS, James BJ, Hyland MM (2010) Valence band XPS and FT-IR evaluation of thermal degradation of HVAF thermally sprayed PEEK coatings. Polym Degrad Stab 95:792–797

    Google Scholar 

  115. Alamara K, Saber-Samandari S, Berndt CC (2011) Splat taxonomy of polymeric thermal spray coating. Surf Coat Technol 205:5028–5034

    Google Scholar 

  116. Kang CW, Ng HW (2006) Splat morphology and spreading behavior due to oblique impact of droplets onto substrates in plasma spray coating process. Surf Coat Technol 200:5462–5477

    Google Scholar 

  117. Salimijazi HR, Pershin L, Coyle TW, Mostaghimi J, Chandra S, Lau YC, Rosenzweig L, Moran E (2007) Effect of droplet characteristics and substrate surface topography on the final morphology of plasma-sprayed zirconia single splats. J Therm Spray Technol 16(2):291–299

    Google Scholar 

  118. Kang CW, Ng HW, Yu SCM (2006) Imaging diagnostics study on obliquely impacting plasma-sprayed particles near to the substrate. J Therm Spray Technol 15(1):118–130

    Google Scholar 

  119. Koivuluoto H, Näkki J, Vuoristo P (2009) Corrosion properties of cold-sprayed tantalum coatings. J Therm Spray Technol 18(1):75–82

    Google Scholar 

  120. Shinoda K, Yamada A, Kambara M, Kojima Y, Yoshida T (2007) Deformation of alumina droplets on micro-patterned substrates under plasma spraying conditions. J Therm Spray Technol 16(2):300–305

    Google Scholar 

  121. Parizi HB, Rosenzweig L, Mostaghimi J, Chandra S, Coyle T, Salimi H, Pershin L, McDonald A, Moreau C (2008) Numerical simulation of droplet impact on patterned surfaces. J Therm Spray Technol 16(5–6):713–721

    Google Scholar 

  122. Mehdizadeh NZ, Chandra S, Mostaghimi J (2002) Effect of substrate temperature and roughness on coating formation. In: Lugscheider E (ed) Proceedings of the ITSC 2002. DVS, Düsseldorf, Germany, pp 830–37

    Google Scholar 

  123. Raessi M, Mostaghimi J, Bussmann M (2006) Effect of surface roughness on splat shapes in the plasma spray coating process. Thin Solid Films 506–507:133–135

    Google Scholar 

  124. Ivosevic M, Gupta V, Baldoni JA, Cairncross RA, Twardowski TE, Knight R (2006) Effect of substrate roughness on splatting behavior of HVOF sprayed polymer particles: modeling and experiments. J Therm Spray Technol 15(4):725–730

    Google Scholar 

  125. Vardelle A, Moreau C, Fauchais P (2000) The dynamics of deposit formation in thermal spray processes. MRS Bull 25:32–37

    Google Scholar 

  126. Renouard-Vallet G, Bianchi L, Fauchais P, Vardelle M, Boulos M, Gitzhofer F (2005) Influence of spray technology on ionic conductivity of yttria stabilized zirconia. J High Temp Mater Process 9(2):195–210

    Google Scholar 

  127. Gawne DT, Griffiths BJ, Dong G (1995) Splat morphology and adhesion of thermally sprayed coatings. In: Ohmori A (ed) Thermal spraying: current status and future trends, Kobe, Japan. High Temperature Society of Japan, Osaka, pp 779–784

    Google Scholar 

  128. Newbery AP, Grant PS (2000) Droplet splashing during arc spraying of steel and the effect on deposit microstructure. J Therm Spray Technol 9(2):250–258

    Google Scholar 

  129. Trice RW, Faber KT (2000) Role of lamellae morphology on the microstructural development and mechanical properties of small-particle plasma-sprayed alumina. J Am Ceram Soc 83(4):889–896

    Google Scholar 

  130. Racek O (2010) The effect of HVOF particle-substrate interactions on local variations in the coating microstructure and the corrosion resistance. J Therm Spray Technol 19(5):841–851

    Google Scholar 

  131. Ctibor P, Lechnerová R, Beneš V (2006) Quantitative analysis of pores of two types in a plasma-sprayed coating. Mater Charact 56:297–304

    Google Scholar 

  132. Saaedi J, Coyle TW, Arabi H, Mirdamadi S, Mostaghimi J (2010) Effects of HVOF process parameters on the properties of Ni-Cr coatings. J Therm Spray Technol 19(3):521–530

    Google Scholar 

  133. Zeng Z, Kuroda S, Kawakita J, Komatsu M, Era H (2010) Effects of some light alloying elements on the oxidation behavior of Fe and Ni-Cr based alloys during air plasma spraying. J Therm Spray Technol 19(1–2):128–136

    Google Scholar 

  134. Shinoda K, Murakami H, Kuroda S, Takehara K, Oki S (2008) In situ visualization of impacting phenomena of plasma-sprayed zirconia: from single splat to coating formation. J Therm Spray Technol 17(5–6):623–630

    Google Scholar 

  135. Kanouff MP, Neiser RA, Roemer TJ (1998) Surface roughness of thermal spray coatings made with off-normal spray angle. J Therm Spray Technol 7(2):219–228

    Google Scholar 

  136. Tillmann W, Vogli E, Krebs B (2008) Influence of the spray angle on the characteristics of atmospheric plasma sprayed hard material based coatings. J Therm Spray Technol 17(5–6):948–955

    Google Scholar 

  137. Candel A, Gadow R (2006) Optimized multiaxis robot kinematic for HVOF spray coatings on complex shaped substrates. Surf Coat Technol 201:2065–2071

    Google Scholar 

  138. Montillet D, Dombre E, Valentin FD, Goubot JM (1999) Modeling, simulating and optimizing the robotized plasma deposition: an expression approach. In: Lugsheider E, Kammer PA (eds) Thermal spray. DVS, Düsseldorf, Germany, pp 507–512

    Google Scholar 

  139. Fasching MM, Weiss LE, Prinz FB (1992) Optimization of robotic trajectories for thermal spray shape deposition. In: Berndt CC (ed) Thermal spray: advances in coatings technology. ASM International, Materials Park, OH, pp 221–226

    Google Scholar 

  140. Leigh SH, Berndt CC (1997) Evaluation of off-angle thermal spray. Surf Coat Technol 89:213–224

    Google Scholar 

  141. Bao Y, Zhang T, Gawne DT (2005) Influence of composition and process parameters on the thermal spray deposition of UHMWPE coatings. J Mater Sci 40:77–85

    Google Scholar 

  142. Feng Z, Xu H, Yan F (2008) Preparation of flame sprayed poly(tetrafluoroethylene-co-hexafluoropropylene) coatings and their tribological properties under water lubrication. Appl Surf Sci 255:2408–2413

    Google Scholar 

  143. Patel K, Doyle CS, Yonekura D, James BJ (2010) Effect of surface roughness parameters on thermally sprayed PEEK coatings. Surf Coat Technol 204:3567–3572

    Google Scholar 

  144. Normanda B, Takenouti H, Keddama M, Liao H, Monteil G, Coddet C (2004) Electrochemical impedance spectroscopy and dielectric properties of polymer: application to PEEK thermally sprayed coating. Electrochim Acta 49:2981–2986

    Google Scholar 

  145. Li J, Liao H, Coddet C (2002) Friction and wear behavior of flame-sprayed PEEK coatings. Wear 252:824–831

    Google Scholar 

  146. Zhang G, Liao H, Yu H, Ji V, Huang W, Mhaisalkar SG, Coddet C (2006) Correlation of crystallization behavior and mechanical properties of thermal sprayed PEEK coating. Surf Coat Technol 200:6690–6695

    Google Scholar 

  147. Branco JRT, Campos SV (1999) Wear behavior of thermally sprayed PET. Surf Coat Technol 120–121:476–481

    Google Scholar 

  148. Soveja A, Costil S, Liao H, Sallamand P, Coddet C (2010) Remelting of flame spraying PEEK coating using lasers. J Therm Spray Technol 19(1–2):439–447

    Google Scholar 

  149. Zhanga C, Zhang G, Ji V, Liao H, Costil S, Coddet C (2009) Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process. Prog Organic Coat 66:248–253

    Google Scholar 

  150. Ivosevic M, Knight R, Kalidindi SR, Palmese GR, Sutter JK (2005) Adhesive/cohesive properties of thermally sprayed functionally graded coatings for polymer matrix composites. J Therm Spray Technol 14(1):45–51

    Google Scholar 

  151. Berndt CC, Brogan JA, Montavon G, Claudon A, Coddet C (1998) Mechanical properties of metal- and ceramic-polymer composites formed via thermal spray consolidation. J Therm Spray Technol 7(3):337–339

    Google Scholar 

  152. Jackson L, Ivosevic M, Knight R, Cairncross RA (2007) Sliding wear properties of HV thermally sprayed nylon-11 and nylon-11/ceramic composites on steel. J Therm Spray Technol 16(5–6):927–932

    Google Scholar 

  153. Mateus C, Costil S, Bolot R, Coddet C (2005) Ceramic/fluoropolymer composite coatings by thermal spraying-a modification of surface properties. Surf Coat Technol 191:108–118

    Google Scholar 

  154. Schadler LS, Laul KO, Smith RW, Petrovicova E (1997) Microstructure and mechanical properties of thermally sprayed silica/nylon nanocomposites. J Therm Spray Technol 6(4):475–485

    Google Scholar 

  155. Stravato A, Knight R, Mochalin V, Picardi SC (2008) HVOF-sprayed nylon-11 + nanodiamond composite coatings: production & characterization. J Therm Spray Technol 17(5–6):812–817

    Google Scholar 

  156. Van Steenkiste TH, Smith JR, Teets RE (2002) Aluminum coatings via kinetic spray with relatively large powder particles. Surf Coat Technol 154(2–3):237–252

    Google Scholar 

  157. Gärtner F, Borchers C, Stoltenhoff T, Kreye H (2003) Numerical and microstructural investigations of the bonding mechanisms in cold spraying. In: Moreau C, Marple B (eds) Thermal spray 2003: advancing the science & applying the technology. ASM International, Materials Park, OH, pp 1–8

    Google Scholar 

  158. Li C-J, Li W-Y, Liao H (2006) Examination of the critical velocity for deposition of particles in cold spraying. J Therm Spray Technol 15(2):212–222

    Google Scholar 

  159. Li C-J, Li W-Y, Wang Y-Y, Yang G-J, Fukanuma H (2005) A theoretical model for prediction of deposition efficiency in cold spraying. Thin Solid Films 485:79–85

    Google Scholar 

  160. Stoltenhoff T, Kreye H, Richter HJ (2002) An analysis of the cold spray process and its coatings. J Therm Spray Technol 11(4):542–550

    Google Scholar 

  161. Koivuluoto H, Lagerbom J, Vuoristo P (2007) Microstructural studies of cold sprayed copper, nickel, and nickel-30% copper coatings. J Therm Spray Technol 16(4):488–497

    Google Scholar 

  162. Zahiri SH, Fraser D, Gulizia S, Jahedi M (2006) Effect of processing conditions on porosity formation in cold gas dynamic spraying of copper. J Therm Spray Technol 15(3):422–430

    Google Scholar 

  163. Ducos M (1985) Industrial applications of arc and RF inductive plasmas of low power. In: Plasmas in industry. Dopee diffusion, 77210 Avon, France (in French), pp 251–263

    Google Scholar 

  164. Wilden J, Bergmann JP, Frank H (2006) Plasma transferred arc welding—modeling and experimental optimization. J Therm Spray Technol 15(4):779–784

    Google Scholar 

  165. Gatto A, Bassoli E, Fornari M (2004) Plasma transferred arc deposition of powdered high performances alloys: process parameters optimization as a function of alloy and geometrical configuration. Surf Coat Technol 187:265–271

    Google Scholar 

  166. Mauer G, Vaßen R, Stöver D (2010) Thin and dense ceramic coatings by plasma spraying at very low pressure. J Therm Spray Technol 19(1–2):495–501

    Google Scholar 

  167. Gindrat M, Dorier J-L, Hollenstein C, Loch M, Refke A, Salito A, Barbezat G (2002) Effect of specific operating conditions on the properties of LPPS plasma jets expanding at low pressure. In: Lugscheider E, Berndt CC (eds) International thermal spray conference. Verlag für Schweißen und verwandte Verfahren DVS-Verlag, Dusseldorf, Germany, pp 459–464

    Google Scholar 

  168. Zotov N, Hospach A, Mauer G, Sebold D, Vaßen R (2012) Deposition of La1-xSrxFe1-yCoyO3-δ Coatings with different phase compositions and microstructures by low-pressure plasma spraying-thin film (LPPS-TF) processes. J Therm Spray Technol 21(3–4):441–447

    Google Scholar 

  169. Hafiz J, Mukherjee R, Wang X, McMurry PH, Heberlein JVR, Girshick SL (2006) Hypersonic plasma particle deposition-a hybrid between plasma spraying and vapor deposition. J Therm Spray Technol 15(4):822–826

    Google Scholar 

  170. Doering T (2007) PVD and PACVD (DLC) coating technologies and applications. In: International SAMPE symposium and exhibition, proceedings, vol 52, 8pp

    Google Scholar 

  171. von Niessen K, Gindrat M, Refke A (2010) Vapor phase deposition using plasma spray-PVD. J Therm Spray Technol 19(1–2):502–509

    Google Scholar 

  172. von Niessen K, Gindrat M (2011) Plasma spray-PVD: a new thermal spray process to deposit out of the vapor phase. J Therm Spray Technol 20(4):736–743

    Google Scholar 

  173. Hospach A, Mauer G, Vaßen R, Stöver D (2011) Columnar-structured thermal barrier coatings (TBCs) by thin film low-pressure plasma spraying (LPPS-TF). J Therm Spray Technol 20(1–2):116–120

    Google Scholar 

  174. Hospach A, Mauer G, Vaßen R, Stöver D (2012) Characteristics of ceramic coatings made by thin film low pressure plasma spraying (LPPS-TF). J Therm Spray Technol 21(3–4):435–440

    Google Scholar 

  175. Mauer G, Hospach A, Zotov N, Vaßen R (2012) Process conditions and microstructures of ceramic coatings by gas phase deposition based on plasma spraying. In: Lima RS et al (eds) Thermal spray 2012 proceedings. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  176. Thornton JA (1975) Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings. J Vac Sci Technol 12(4):830–835

    Google Scholar 

  177. Fang D, Deng S, Liao H, Coddet C (2010) The effect of robot kinematics on the coating thickness uniformity. J Therm Spray Technol 19(4):796–804

    Google Scholar 

  178. Hansbo A, Nylén P (1999) Models for the simulation of spray deposition and robot motion optimization in thermal spraying of rotating objects. Surf Coat Technol 122:191–201

    Google Scholar 

  179. Fasching M, Prinz F, Weiss L (1993) Planning robotic trajectories for thermal spray shape deposition. J Therm Spray Technol 2:45–50

    Google Scholar 

  180. Candel A, Gadow R (2009) Trajectory generation and coupled numerical simulation for thermal spraying applications on complex geometries. J Therm Spray Technol 18(5–6):981–987

    Google Scholar 

  181. Gadow R, Candel A, Floristan M (2010) Optimized robot trajectory generation for thermal spraying operations and high quality coatings on free-form surfaces. Surf Coat Technol 205:1074–1079

    Google Scholar 

  182. Floristán M, Montesinos JA, García-Marín JA, Killinger A, Gadow R (2012) Robot trajectory planning for high quality thermal spray coating processes on complex shaped components. In: ITSC 2012. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  183. Harding JH, Mulheran PA, Cirolini S, Marchese M, Jacucci G (1995) Modeling the deposition of thermal barrier coatings. J Therm Spray Technol 4(1):34–40

    Google Scholar 

  184. Bobzin K, Bagcivan N, Parkot D, Scha¨fer M, Petkovic´ I (2009) Modeling and simulation of microstructure formation for porosity prediction in thermal barrier coatings under air plasma spraying condition. J Therm Spray Technol 18(5–6):975–980

    Google Scholar 

  185. Bobzin K, Bagcivan N, Parkot D, Kashko T, Laschet G, Scheele J (2009) Influence of the definition of the representative volume element on effective thermoelastic properties of thermal barrier coatings with random microstructure. J Therm Spray Technol 18(5–6):988–995

    Google Scholar 

  186. Sevostianov I, Kachanov M (2009) Elastic and conductive properties of plasma-sprayed ceramic coatings in relation to their microstructure: an overview. J Therm Spray Technol 18(5–6):822–834

    Google Scholar 

  187. Kuroda S, Dento T, Kitahara S (1995) Quenching stress in plasma sprayed coatings and its correlation with the deposit microstructure. J Therm Spray Technol 4:75–87

    Google Scholar 

  188. Monnerie-Moulin F, Gitzhofer F, Fauchais P, Boulos M, Vardelle A (1992) Flux transmitted to a cold substrate by a d.c. Ar-H2 spraying plasma jet. J High Temp Mater Process 1(3):249–257

    Google Scholar 

  189. Haddadi A, Nardou F, Fauchais P, Grimaud A, Leger AC (1997) Influence of substrate and coating temperature on columnar growth within plasma sprayed zirconia and alumina coatings. In: Berndt CC (ed) Thermal spray. A united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 671–680

    Google Scholar 

  190. Fauchais P, Vardelle A, Vardelle M, Denoirjean A, Pateyron B, El Ganaoui M (2001) Formation and layering of alumina splats: thermal history of coating formation, resulting residual stresses and coating microstructure. In: Berndt CC, Khor KA, Lugsheider E (eds) Thermal spray 2001: new surfaces for a new millenium. ASM International, Materials Park, OH, pp 865–873

    Google Scholar 

  191. Leger AC, Haddadi A, Pateyron B, Delluc G, Grimaud A, Nardou F, Fauchais P (1998) Residual stresses during coating generation: plasma sprayed alumina coating on XC38, measurements and calculations. In: Coddet C (ed) Thermal spray: meeting the challenge of the 21st century. ASM International, Materials Park, OH, pp 895–903

    Google Scholar 

  192. Monerie-Moulin F, Gitzhofer F, Fauchais P, Boulos M, Vardelle A (1992) Heat flux transmitted to a cold substrate by a d.c. Ar-H2 plasma jet. J High Temp Chem Process 1:249–258

    Google Scholar 

  193. Honner M, Cerveny P, Franta V, Cejka F (1998) Heat transfer during HVOF deposition. Surf Coat Technol 106:94–99

    Google Scholar 

  194. Hackett CM, Settles GS (1994) Turbulent mixing of the HVOF thermal spray and coating oxidation. In: Berndt CC, Sampath S (eds) Proceedings of the 7th national spray conference. ASM International, Materials Park, OH, pp 307–312

    Google Scholar 

  195. Li M, Shi D, Christofides PD (2005) Modeling and control of HVOF thermal spray processing of WC–Co coatings. Powder Technol 156:177–194

    Google Scholar 

  196. Coudert JF, Planche MP, Fauchais P (1995) Velocity measurements of dc plasma jets based on arc root fluctuations. Plasma Chem Plasma Process 15(1):47–69

    Google Scholar 

  197. Fauchais P, Coudert JF (1996) Mesures de température dans les plasmas thermiques. Revue Générale de Thermique 35(413):324–337

    Google Scholar 

  198. Lapierre D, Kearney RJ, Vardelle M, Vardelle A, Fauchais P (1994) Effects of a substrate on the temperature distribution in argon-hydrogen thermal plasma jet. Plasma Chem Plasma Process 14(4):407–423

    Google Scholar 

  199. Brousse E. Elaboration by thermal spraying of finely structured elements of high temperature electrolyser for hydrogen production: processes, structures and characteristics. Ph.D. Thesis, University of Limoges, France, Sept 2010 (in French)

    Google Scholar 

  200. Fauchais P, Etchart-Salas R, Rat V, Coudert J-F, Caron N, Wittmann-Ténèze K (2008) Parameters controlling liquid plasma spraying: solutions, sols or suspensions. J Therm Spray Technol 17(1):31–59

    Google Scholar 

  201. LINSPRAY CO2 cooling for thermal spraying, pdf document. http://www.linde.com

  202. Gosh R (2007) Cryogenic nitrogen gas cooling for thermal spray coatings. Spray Time 14(4):1–4

    Google Scholar 

  203. Leger AC, Grimaud A, Fauchais P, Delluc G (1997) Influence of the torch to substrate velocity and resulting temperature on the residual stresses in alumina plasma sprayed coatings. In: Berndt CC (ed) Proceedings of the 1st unified thermal spray conference. ASM International, Materials Park, OH, pp 823–829

    Google Scholar 

  204. Haddadi A (1998) Zirconia and alumina coatings plasma sprayed: columnar growth, residual stress and modeling. Ph.D. Thesis, University of Limoges, France, 22 Jul (in French)

    Google Scholar 

  205. Renouard-Vallet G (2004) Elaboration by plasma spraying of dense and thin (a few tens of micro meters) yttria stabilized zirconia electrolytes for SOFCs. Ph.D. Thesis, University of Limoges, France, 8 Feb

    Google Scholar 

  206. PROTAL process, worldwide patented, original patent: FR9209277

    Google Scholar 

  207. Li H, Costil S, Liao H-L, Coddet C (2006) Role of the laser surface preparation on the adhesion of Ni-5wt% Al coatings deposited using the PROTAL® process. J Therm Spray Technol 15(2):191–197

    Google Scholar 

  208. Robertson DGC, Jenkins AE (1970) The reaction of liquid iron and its alloys in pure oxygen, heterogeneous kinetics at elevated temperatures. In: Belton GR, Workel WL (ed) Plenum Press, New York, NY, pp 369–385

    Google Scholar 

  209. Neiser RA, Smith MF, Dykhuisen RC (1998) Oxidation in wire HVOF-sprayed steel. J Therm Spray Technol 7(4):537–545

    Google Scholar 

  210. Dallaire S (1992) Thermal spraying of reactive materials to form wear-resistant composite coatings. J Therm Spray Technol 1(1):41–47

    Google Scholar 

  211. Borisova AL, Borisov YS (2008) Self-propagating high-temperature synthesis for the deposition of thermal-sprayed coatings. Powder Metall Metal Ceram 47(1–2):80–94

    Google Scholar 

  212. Jacobs L, Hyland MM, De Bonte M (1998) Comparative study of WC-cermet coatings sprayed via the HVOF and the HVAF process. J Therm Spray Technol 7(2):213–218

    Google Scholar 

  213. de Villiers Lovelock HL, Richter PW, Benson JM, Young PM (1998) Parameter study of HP/HVOF deposited WC-Co coatings. J Therm Spray Technol 7(1):97–107

    Google Scholar 

  214. de Villiers Lovelock HL (1998) Powder/processing-structure relationships in WC-Co thermal spray coatings: a review of the published literature. J Therm Spray Technol 7(3):357–373

    Google Scholar 

  215. Luyckx S, Machio CN (2007) Characterization of WC-VC-Co thermal spray powders and coatings. Int J Refract Met Hard Mater 25:11–15

    Google Scholar 

  216. Sherman AJ, Engleman PG (2009) Metal clad cermet powders: processing and properties. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: expanding thermal spray performance to new markets and applications. ASM International, Materials Park, OH, pp 36–840

    Google Scholar 

  217. Smith RW, Mutasin ZZ (1992) Reactive plasma spraying of wear-resistant coatings. J Therm Spray Technol 1(1):57–63

    Google Scholar 

  218. Eckardt T, Malleaer W, Stove D (1994) Reactive plasma spraying of silicon in controlled nitrogen atmosphere. In: Berndt CC, Sampath S (eds) Thermal spray: industrial applications. ASM International, Materials Park, OH, pp 515–520

    Google Scholar 

  219. Fauchais P, Vardelle A, Denoirjean A (1997) Reactive thermal plasmas: ultrafine particle synthesis and coating deposition. Surf Coat Technol 979:66–78

    Google Scholar 

  220. Denoirjean A, Lefort P, Fauchais P (2003) Nitridition process and mechanism of Ti-6Al-4V particles by plasma spraying. Phys Chem Phys 5:5133–5138

    Google Scholar 

  221. Zou D, Yan D, Xiao L, Dong Y (2008) Characterization of nanostructured TiN coatings fabricated by reactive plasma spraying. Surf Coat Technol 202:1928–1934

    Google Scholar 

  222. Kobayashi A (2000) Formation of TiN coatings by gas tunnel type plasma reactive spraying. Surf Coat Technol 132:152–157

    Google Scholar 

  223. Inagaki M, Yokogawa Y, Kameyama T (2003) Bond strength improvement of hydroxyapatite titanium composite coating by partial nitriding during R.F.-thermal plasma spraying. Surf Coat Technol 173:1–8

    Google Scholar 

  224. Yamada M, Kouzaki Y, Yasui T, Fukumoto M (2006) Fabrication of iron nitride coatings by reactive R.F. plasma spraying. Surf Coat Technol 201:1745–1751

    Google Scholar 

  225. Allen AJ, Long GG, Boukari H, Ilavsky J, Kulkarni A, Sampath S, Herman H, Goland AN (2001) Microstructural characterization studies to relate the properties of thermal spray coatings to feedstock and spray conditions. Surf Coat Technol 146–147:544–552

    Google Scholar 

  226. Chi W, Sampath S, Wang H (2006) Ambient and high-temperature thermal conductivity of thermal sprayed coatings. J Therm Spray Technol 15(4):773–778

    Google Scholar 

  227. Bertrand G, Bertrand P, Roy P, Rio C, Mevrel R (2008) Low conductivity plasma sprayed thermal barrier coating using hollow PSZ spheres: correlation between thermophysical properties and microstructure. Surf Coat Technol 202:1994–2001

    Google Scholar 

  228. Wang M, Shaw LL (2007) Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina-titania coatings. Surf Coat Technol 202:34–44

    Google Scholar 

  229. Ageorges H, Fauchais P (2000) Plasma spraying of stainless-steel particles coated with an alumina shell. Thin Solid Films 370:213–222

    Google Scholar 

  230. Cuenca Alvarez R, Ageorges H, Fauchais P, Fournier P, Smith A (2003) The effect of the mechanofusion process and planetary milling on composite powder preparation: agglomeration and fragmentation. Mater Sci Forum 442:67–72

    Google Scholar 

  231. Cuenca-Alvarez R (2003) Contribution to the elaboration of composites coatings by mechanofused powders direct current plasma sprayed. Ph.D. Thesis, University of Limoges, France (in French)

    Google Scholar 

  232. Li C-J, Li W-Y, Wang Y-Y, Yang G-J, Fukanuma H (2005) A theoretical model for prediction of deposition efficiency in cold spraying. Thin Solid Films 489:79–85

    Google Scholar 

  233. Alkhimov AP, Klinkov SV, Kosarev VF (2000) Study of heat exchange of supersonic plane jet with obstacle at gas-dynamic spraying. Thermophys Aeromech 7(3):375–382

    Google Scholar 

  234. Lee JH, Kim JS, Shin SM, Lee CH, Kim HJ (2006) Effect of particle temperature on the critical velocity for particle deposition by kinetic spraying. In: Marple BR, Hyland MM, Lau Y-C, Lima RS, Voyer J (eds) Building on 100 years of success: proceedings of the international thermal spray conference 2006. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  235. Katanoda H, Fukuhara M, Iino N (2007) Numerical study of combination parameters for particle impact velocity and temperature in cold spray. J Therm Spray Technol 15(5–6):627–633

    Google Scholar 

  236. Katanoda H, Fukuhara M, Iino N (2007) Numerical study of combination parameters for particle impact velocity and temperature in cold spray. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 72–77

    Google Scholar 

  237. Mäkinen H, Lagerbom J, Vuoristo P (2007) Adhesion of cold sprayed coatings: effect of powder, substrate, and heat treatment. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 31–36

    Google Scholar 

  238. Helfritch D, Champagne V (2006) Optimal particle size for the cold spray process. In: Marple BR, Hyland MM, Lau Y-C, Lima RS, Voyer J (eds) Building on 100 years of success: proceedings of the international thermal spray conference 2006. ASM International, Materials Park, OH, e-proceedings

    Google Scholar 

  239. Dykhuizen RC, Smith MF, Gilmore DL, Neiser RA, Jiang X, Sampath S (1999) Impact of high velocity cold spray particles. J Therm Spray Technol 8(4):559–564

    Google Scholar 

  240. Kang KC, Yoon SH, Ji YG, Lee C (2007) Oxidation effects on the critical velocity of pure Al feedstock deposition in the kinetic spraying process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 66–71

    Google Scholar 

  241. Seo D, Ogawa K, Sakaguchi K, Miyamoto N, Tsuzuki Y (2012) Parameter study influencing thermal conductivity of annealed pure copper coatings deposited by selective cold spray processes. Surf Coat Technol 206:2316–2324

    Google Scholar 

  242. Ning X-J, Jang J-H, Kim H-J (2007) The effects of powder properties on in-flight particle velocity and deposition process during low pressure cold spray process. Appl Surf Sci 253:7449–7455

    Google Scholar 

  243. Marple BR, Lima RS (2005) Process temperature/velocity-hardness-wear relationships for high-velocity oxyfuel sprayed nanostructured and conventional cermet coatings. J Therm Spray Technol 14(1):67–76

    Google Scholar 

  244. Bartuli C, Valente T, Cipri F, Bemporad E, Tului M (2005) Parametric study of an HVOF process for the deposition of nanostructured WC-Co coatings. J Therm Spray Technol 14(2):187–195

    Google Scholar 

  245. Guilemany JM, Dosta S, Miguel JR (2006) The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders. Surf Coat Technol 201:1180–1190

    Google Scholar 

  246. Siegmann S, Brandt O, Dvorak M (2004) Thermally sprayed wear resistant coatings with nanostructured hard phases. J Therm Spray Technol 13(1):37–43

    Google Scholar 

  247. Ajdelsztajn L, Tang F, Kim GE, Provenzano V, Schoenung JM (2005) Synthesis and oxidation behavior of nano-crystalline MCrAlY bond coatings. J Therm Spray Technol 14(1):23–30

    Google Scholar 

  248. Voyer J, Schulz P, Schreiber M (2008) Electrically conductive flame sprayed aluminum coatings on textile substrates. J Therm Spray Technol 17(5–6):818–823

    Google Scholar 

  249. Pombo Rodriguez RMH, Paredes RSC, Wido SH, Calixto A (2007) Comparison of aluminum coatings deposited by flame spray and by electric arc spray. Surf Coat Technol 202:172–179

    Google Scholar 

  250. Babu VM, Krishna Kumar R, Prabhakar O, Gowri Shankar N (1996) Simultaneous optimization of flame spraying process parameters for high quality molybdenum coatings using Taguchi methods. Surf Coat Technol 79:276–288

    Google Scholar 

  251. Singh Sidhu H, Singh Sidhu B, Prakash S (2006) Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity oxyfuel spray processes. J Mater Eng Performance 15(6):699–704

    Google Scholar 

  252. Gorlach IA (2009) A new method for thermal spraying of Zn–Al coatings. Thin Solid Films 517:5270–5273

    Google Scholar 

  253. Costil S, Verdy C, Bolot R, Coddet C (2007) On the role of spraying process on microstructural, mechanical, and thermal response of alumina coatings. J Therm Spray Technol 16(5–6):839–843

    Google Scholar 

  254. Post Guillen D, Williams BG (2006) In-flight oxidation of aluminum in the twin-wire electric arc process. J Therm Spray Technol 15(1):63–71

    Google Scholar 

  255. He D, Dong N, Jiang J (2007) Corrosion behavior of arc sprayed nickel-base coatings. J Therm Spray Technol 16(5–6):850–856

    Google Scholar 

  256. Skoblo TS, Vlasovets VM, Moroz VV (2001) Structure and distributions of components in the working layer upon reconditioning by electric-arc metallization. Metal Sci Heat Treatment 43(11–12):497–500

    Google Scholar 

  257. Student M, Dzioba Yu, Hvozdets’kyi V, Pokhmurs’ka H, Wielage B, Grund T (2008) High-temperature corrosion of electric-arc coatings sprayed from core wires based on the Fe-Cr-B-Al system. Mater Sci 44(5):693–699

    Google Scholar 

  258. Xua B, Zhua Z, Maa S, Zhang W, Liu W (2004) Sliding wear behavior of Fe–Al and Fe–Al/WC coatings prepared by high velocity arc spraying. Wear 257:1089–1095

    Google Scholar 

  259. Zhao L, Fu B, He D, Kutschmann P (2009) Development of a new wear resistant coating by arc spraying of a steel-based cored wire. Front Mech Eng China 4(1):1–4

    Google Scholar 

  260. Liu S-G, Wu J-M, Zhang S-C, Rong S-J, Li Z-Z (2007) High temperature erosion properties of arc-sprayed coatings using various cored wires containing Ti–Al intermetallics. Wear 262:555–561

    Google Scholar 

  261. Lyphout C, Nylén P, Manescu A, Pirling T (2008) Residual stresses distribution through thick HVOF sprayed Inconel 718 coatings. J Therm Spray Technol 17(5–6):915–923

    Google Scholar 

  262. Clyne TW, Gill SC (1996) Residual stresses in thermal spray coatings and their effect on interfacial adhesion: a review of recent work. J Therm Spray Technol 5(4):401–418

    Google Scholar 

  263. Stokes J, Looney L (2008) Predicting quenching and cooling stresses within HVOF deposits. J Therm Spray Technol 17(5–6):908–914

    Google Scholar 

  264. Gill C. Residual stresses in plasma sprayed deposits. Ph.D. Thesis, Apr 1991, Gonville and Caius College, Cambridge

    Google Scholar 

  265. S. Kuroda, T. Fukushima, S. Kitakara. Generation mechanisms of residual stress in plasma sprayed coatings. In: Proceedings of the 11th international vacuum congress, 17th conference on solid surfaces, Sept 1989, Köln, F.R.G

    Google Scholar 

  266. Kuroda S, Clyne TW (1991) The origin and quantification of the quenching stress associated with splat cooling during spray deposition. In: Eschnauer H, Hüber P, Nicoll A, Sandmeier SB (eds) Proceedings of the 2nd Plasma-Technik Syrup, vol 1. Plasma-Technik, Wohlen, Switzerland, pp 273–284

    Google Scholar 

  267. Kuroda S, Clyne TW (1991) The quenching stresses in thermally sprayed coatings. Thin Solid Films 200:49–66

    Google Scholar 

  268. Kuroda S, Tashiro Y, Yumoto H, Taira S, Fukanuma H (1997) Measurement of stress development during HVOF thermal spray. In: Berndt CC (ed) Thermal spray: a united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 805–811

    Google Scholar 

  269. Kuroda S, Tashiro Y, Yumoto H, Taira S, Fukanuma H, Tobe S (2001) Peening action and residual stresses in high-velocity oxygen fuel thermal spraying of 316L stainless steel. J Therm Spray Technol 10(2):367–374

    Google Scholar 

  270. Sampath S, Jiang XY, Matejicek J, Prchlik L, Kulkarni A, Vaidya A (2004) Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni–5 wt.%Al bond coats. Mater Sci Eng A364:216–231

    Google Scholar 

  271. Bansal P, Shipway PH, Leen SB (2006) Effect of particle impact on residual stress development in HVOF sprayed coatings. J Therm Spray Technol 15(4):570–575

    Google Scholar 

  272. Bansal P, Shipway PH, Leen SB (2007) Residual stresses in high-velocity oxy-fuel thermally sprayed coatings – modelling the effect of particle velocity and temperature during the spraying process. Acta Materialia 55:5089–5101

    Google Scholar 

  273. He J, Dulin B, Wolfe T (2008) Peening effect of thermal spray coating process. J Therm Spray Technol 17(2):214–220

    Google Scholar 

  274. Bolelli G, Lusvarghi L, Varis T, Turunen E, Leoni M, Scardi P, Azanza-Ricardo CL, Barletta M (2008) Residual stresses in HVOF-sprayed ceramic coatings. Surf Coat Technol 202:4810–4819

    Google Scholar 

  275. Wang T-G, Zhao S-S, Hua W-G, Li J-B, Gong J, Sun C (2010) Estimation of residual stress and its effects on the mechanical properties of detonation gun sprayed WC–Co coatings. Mater Sci Eng A527:454–461

    Google Scholar 

  276. Lima CRC, Nin J, Guilemany JM (2006) Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the modified layer removal method (MLRM). Surf Coat Technol 200:5963–5972

    Google Scholar 

  277. Jiang Yi, Bin-Shi Xu, Hai-dou Wang (2005) Residual stresses within sprayed coatings. J Cent South Univ Technol 12 (Suppl 2):53–58

    Google Scholar 

  278. Clyne TW (2001) Residual stresses in thick and thin surface coating, encyclopedia of materials: science and technology. Elsevier, Oxford, pp 8126–8134

    Google Scholar 

  279. Spencer K, Luzin V, Matthews N, Zhang M-X (2012) Residual stresses in cold spray Al coatings: the effect of alloying and of process parameters. Surf Coat Technol 206(19–20):4249–4255

    Google Scholar 

  280. Mellali M, Grimaud A, Léger AC, Fauchais P, Lu J (1997) Alumina grit blasting parameters for surface preparation in the plasma spraying operation. J Therm Spray Technol 6(2):217–227

    Google Scholar 

  281. Luzin V, Spencer K, Zhang M-X (2011) Residual stress and thermo-mechanical properties of cold spray metal coatings. Acta Materialia 59:1259–1270

    Google Scholar 

  282. Kroupa F (1997) Residual stresses in thick, non-homogeneous coatings. J Therm Spray Technol 6(3):309–319

    Google Scholar 

  283. Chang GC, Phucharoen W, Miller RA (1987) Finite element thermal stress solutions for thermal barrier coatings. Surf Coat Technol 32(1–4):307–325

    Google Scholar 

  284. Yokoyama K, Watanabe M, Kuroda S, Gotoh Y, Schmidt T, Gärtner F (2006) Simulation of solid particle impact behavior for spray processes. Mater Trans 47(7):1697–1702

    Google Scholar 

  285. Samadi H, Coyle TW (2009) Modeling the build-up of internal stresses in multilayer thick thermal barrier coatings. J Therm Spray Technol 18(5–6):996–1003

    Google Scholar 

  286. Ghafouri-Azar R, Mostaghimi J, Chandra S (2006) Modeling development of residual stresses in thermal spray coatings. Comput Mater Sci 35:13–26

    Google Scholar 

  287. Clyne W (1996) Residual stresses in surface coatings and their effects on interfacial debonding. Key Eng Mater 116(7):307–330

    Google Scholar 

  288. Gill SC, Clyne TW (1990) Stress distributions and material response in thermal spraying of metallic and ceramic deposits. Metall Trans B 21:377–385

    Google Scholar 

  289. Greving DJ, Shadley JR, Rybicki EF (1994) Effects of coating thickness and residual stresses on the bond strength of ASTM C633-79 thermal spray coating test specimens. J Therm Spray Technol 3(4):371–378

    Google Scholar 

  290. Tsui YC, Clyne TW (1996) Adhesion of thermal barrier coating systems and incorporation of an oxidation barrier layer. In: Berndt CC (ed) Thermal spray: practical solutions for engineering problems. ASM International, Materials Park, OH, pp 275–284

    Google Scholar 

  291. AWS (1985) Thermal spraying: practice, theory and application. American Welding Society, Miami, FL

    Google Scholar 

  292. Bose S, DeMasi-Marcin J (1997) Thermal barrier coating experience in gas turbine engines at Pratt & Whitney. J Therm Spray Technol 6(1):99–104

    Google Scholar 

  293. Koolloos MFJ, Houben JM (2000) Behavior of plasma-sprayed thermal barrier coatings during thermal cycling and the effect of a preoxidized NiCrAIY bond coat. J Therm Spray Technol 9(1):49–58

    Google Scholar 

  294. Tsipas SA, Golosnoy IO, Damani R, Clyne TW (2004) The effect of a high thermal gradient on sintering and stiffening in the top coat of a thermal barrier coating system. J Therm Spray Technol 13(3):370–376

    Google Scholar 

  295. Guo HB, Kuroda S, Murakamia H (2006) Segmented thermal barrier coatings produced by atmospheric plasma spraying hollow powders. Thin Solid Films 506–507:136–139

    Google Scholar 

  296. Strangman T, Raybould D, Jameel A, Baker W (2007) Damage mechanisms, life prediction, and development of EB-PVD thermal barrier coatings for turbine airfoils. Surf Coat Technol 202:658–664

    Google Scholar 

  297. Tricoire Au, Fauchais P, Braillard P, Malie A, Bengtsson A (2005) New concepts for plasma sprayed zirconia TBCs for aeronautical applications. In: International thermal spray conference 2005 – Basel, CH. DVS, Düsseldorf, Germany (DVD), e-proceedings

    Google Scholar 

  298. Smialek JL (2004) Improved oxidation life of segmented plasma sprayed 8YSZ thermal barrier coatings. J Therm Spray Technol 13(1):66–75

    Google Scholar 

  299. Choules BD, Kokini K (1996) Architecture of functionally graded ceramic coating against surface thermal fracture. ASME J Eng Mater Technol 118:522–528

    Google Scholar 

  300. Nemat-Alla M (2009) Reduction of thermal stresses by composition optimization of two-dimensional functionally graded materials. Acta Mech 208:147–161

    Google Scholar 

  301. Shabana YM, Noda N (2002) Geometry effects of substrate and coating layers on the thermal stress response of FGM structure. Acta Mech 159:143–156

    Google Scholar 

  302. Ahmed R, Hadfield M (2002) Mechanisms of fatigue failure in thermal spray coatings. J Therm Spray Technol 11(3):333–349

    Google Scholar 

  303. Ibrahim A, Berndt CC (2007) Fatigue and deformation of HVOF sprayed WC–Co coatings and hard chrome plating. Mater Sci Eng A 456:114–119

    Google Scholar 

  304. Malkin S, Guo C (2008) Grinding technology: theory and applications of machining with abrasives. Industrial Press, New York, NY

    Google Scholar 

  305. Gonzalez R, Cadenas M, Fernandez R, Cortizo JL, Rodrıguez E (2007) Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser. Wear 262:301–307

    Google Scholar 

  306. Akebono H, Komotori J, Shimizu M (2008) Effect of coating microstructure on the fatigue properties of steel thermally sprayed with Ni-based self-fluxing alloy. Int J Fatigue 30:814–821

    Google Scholar 

  307. Gomez-del Rio T, Garrido MA, Fernandez JE, Cadenas M, Rodrıgueza J (2008) Influence of the deposition techniques on the mechanical properties and microstructure of NiCrBSi coatings. J Mater Process Technol 204:304–312

    Google Scholar 

  308. Miguel JM, Guilemany JM, Vizcaino S (2003) Tribological study of NiCrBSi coating obtained by different processes. Tribol Int 36:181–187

    Google Scholar 

  309. Shrestha S, Hodgkiess T, Neville A (2005) Erosion–corrosion behaviour of high-velocity oxy-fuel Ni–Cr–Mo–Si–B coatings under high-velocity seawater jet impingement. Wear 259:208–218

    Google Scholar 

  310. Serres N, Hlawka F, Costil S, Langlade C, Machi F (2010) Microstructures and environmental assessment of metallic NiCrBSi coatings manufactured via hybrid plasma spray process. Surf Coat Technol 205(4):1039–1046

    Google Scholar 

  311. Gärtner F, Stoltenhoff T, Voyer J, Kreye H, Riekehr S, Kocak M (2006) Mechanical properties of cold sprayed and thermally sprayed copper coatings. Surf Coat Technol 200:6770–6782

    Google Scholar 

  312. Stoltenhoff T, Borchers C, Gartner F, Kreye H (2006) Microstructures and key properties of cold sprayed and thermally sprayed copper coatings. Surf Coat Technol 200:4947–4960

    Google Scholar 

  313. Phani SP, Srinivasa Rao D, Joshi SV, Sundararajan G (2007) Effect of process parameters and heat treatments on properties of cold sprayed copper coatings. J Therm Spray Technol 16(3):425–434

    Google Scholar 

  314. Calla E, McCartney DG, Shipway PH (2006) Effect of deposition conditions on the properties and annealing behavior of cold-sprayed copper. J Therm Spray Technol 15(2):255–262

    Google Scholar 

  315. Hall AC, Cook DJ, Neiser RA, Roemer TJ, Hirschfeld DA (2006) The effect of a simple annealing heat treatment on the mechanical properties of cold-sprayed aluminum. J Therm Spray Technol 15(2):233–238

    Google Scholar 

  316. Zhang Q, Li C-J, Wang X-R, Ren Z-L, Li C-X, Yang G-J (2008) Formation of NiAl intermetallic compound by cold spraying of ball-milled Ni/Al alloy powder through post-annealing treatment. J Therm Spray Technol 17(5–6):715–720

    Google Scholar 

  317. Wang H-T, Li C-J, Yang G-J, Li C-X (2008) Cold spraying of Fe/Al powder mixture: coating characteristics and influence of heat treatment on the phase structure. Appl Surf Sci 255:2538–2544

    Google Scholar 

  318. Li W-Y, Zhang C, Liao H, Coddet C (2009) Effect of heat treatment on microstructure and mechanical properties of cold sprayed Ti coatings with relatively large powder particles. J Coat Technol Res 6(3):401–406

    Google Scholar 

  319. Zahiri SH, Fraser D, Jahedi M (2009) Recrystallization of cold spray-fabricated CP titanium structures. J Therm Spray Technol 18(1):16–22

    Google Scholar 

  320. Yang G-J, Li C-J, Fan S-Q, Wang Y-Y, Li C-X (2007) Influence of annealing on photocatalytic performance and adhesion of vacuum cold-sprayed nanostructured TiO2 coating. J Therm Spray Technol 16(5–6):873–880

    Google Scholar 

  321. Prudenziati M, Gualtieri ML (2008) Electrical properties of thermally sprayed Ni- and Ni20Cr-based resistors. J Therm Spray Technol 17(3):385–394

    Google Scholar 

  322. Karthikeyan J, Sreekumar KP, Venkatramani N, Kurup MB, Patil DS, Rohatgi VK (1989) Effect of process parameters on the properties of plasma-sprayed superconducting Y1Ba2Cu3O7-x coatings. Appl Phys A Mater Sci Process 48(5):489–492

    Google Scholar 

  323. Damani RJ, Wanner A (2000) Microstructure and elastic properties of plasma-sprayed alumina. J Mater Sci 35(17):4307–4318

    Google Scholar 

  324. Marrocco T, Driver LC, Harris SJ, McCartney DG (2006) Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications. J Therm Spray Technol 15(4):634–639

    Google Scholar 

  325. Yasuda K, Takeda H (2000) Phase transformation during alternating aging at 473 K and at 773 K in the plasma-sprayed yttria stabilized zirconia coating. J Mater Sci 35(17):4379–4383

    Google Scholar 

  326. Ilavsky J, Wallace J, Stalick JK (2001) Thermal spray yttria-stabilized zirconia phase changes during annealing. J Therm Spray Technol 10(3):497–501

    Google Scholar 

  327. Markocsan N, Nylén P, Wigren J, Li X-H, Tricoire A (2009) Effect of thermal aging on microstructure and functional properties of zirconia-base thermal barrier coatings. J Therm Spray Technol 18(2):201–208

    Google Scholar 

  328. Li Y, Li C-J, Zhang Q, Yang G-J, Li C-X (2010) Influence of TGO composition on the thermal shock lifetime of thermal barrier coatings with cold-sprayed MCrAlY bond coat. J Therm Spray Technol 19(1–2):168–177

    Google Scholar 

  329. Laribi M, Vannes AB, Mesrati N, Treheux D (2003) Metallurgical characterization and determination of residual stresses of coatings formed by thermal spraying. J Therm Spray Technol 12(2):234–239

    Google Scholar 

  330. Stewart S, Ahmed R (2003) Contact fatigue failure modes in hot isostatically pressed WC-12%Co Coatings. Surf Coat Technol 172:204–216

    Google Scholar 

  331. Stoica V, Ahmed R, Golshan M, Tobe S (2004) Sliding wear evaluation of hot isostatically pressed thermal spray ceramet coatings. J Therm Spray Technol 13(1):93–107

    Google Scholar 

  332. Khor KA, Loh NL (1994) Hot isostatic pressing of plasma sprayed Ni-base alloys. J Therm Spray Technol 3(1):57–62

    Google Scholar 

  333. Abdel-Samad A, Lugscheider E, Bobzin K, Maes M (2006) The influence of hot isostatic pressing on plasma sprayed coatings properties. Surf Coat Technol 201:1224–1227

    Google Scholar 

  334. Lenling WJ, Smith MF, Henfling JA (1991) Beneficial effects of austempering post-treatment on tungsten carbide based wear coatings. In: Bernecki TF (ed) Thermal spray research and applications. ASM International, Materials Park, OH, pp 227–232

    Google Scholar 

  335. Schelz S, Enguehard F, Caron N, Plessis D, Minot B, Guillet F, Longuet J-L, Teneze N, Bruneton E (2008) Recombination of silica and zirconia into zircon by means of laser treatment of plasma-sprayed coatings. J Mater Sci 43:1948–1957

    Google Scholar 

  336. Zhanga Shi Hong, Jae Hong Yoon, Ming Xi Li, Tong Yul Cho, Yun Kon Joo, Jae Young Cho (2010) Influence of CO2 laser heat treatment on surface properties, electrochemical and tribological performance of HVOF sprayed WC–24%Cr3C2–6%Ni coating. Mater Chem Phys 119:458–464

    Google Scholar 

  337. Pokhmurska A, Ciach R (2000) Microstructure and properties of laser treated arc sprayed and plasma sprayed coatings. Surf Coat Technol 125:415–418

    Google Scholar 

  338. Wang Y, Li CG, Tian W, Yang Y (2009) Laser surface remelting of plasma sprayed nanostructured Al2O3–13wt%TiO2 coatings on titanium alloy. Appl Surf Sci 255:8603–8610

    Google Scholar 

  339. Song RG, U, He WZ, Huang WD (2000) Effects of laser surface remelting on hydrogen permeation resistance of thermally-sprayed pure aluminum coatings. Surf Coat Technol 130:20–23

    Google Scholar 

  340. Tsai HL, Tsai PC (1998) Laser glazing of plasma-sprayed zirconia coatings. J Mater Eng Performance 7(2):258–264

    Google Scholar 

  341. Dyshlovenko S, Pawlowski L, Smurov I, Veiko V (2006) Pulsed laser modification of plasma-sprayed coatings: experimental processing of hydroxyapatite and numerical simulation. Surf Coat Technol 201:2248–2255

    Google Scholar 

  342. Sidhu Buta Singh, Puri D, Prakash S (2005) Mechanical and metallurgical properties of plasma sprayed and laser remelted Ni–20Cr and Stellite-6 coatings. J Mater Process Technol 159:347–355

    Google Scholar 

  343. Razavy FG, Van Aken DC, Smith JD (2003) Effect of laser surface melting upon the devitrification of plasma sprayed cordierite. Mater Sci Eng A362:213–222

    Google Scholar 

  344. Dallaire S, Dubé D, Fiset M (1999) Laser melting of plasma-sprayed copper–ceramic coatings for improved erosion resistance. Wear 231:102–107

    Google Scholar 

  345. Ahmed N, Bakare MS, McCartney DG, Voisey KT (2010) The effects of microstructural features on the performance gap in corrosion resistance between bulk and HVOF sprayed Inconel 625. Surf Coat Technol 204:2294–2301

    Google Scholar 

  346. Antou G, Hlawka F, Cornet A, Montavon G, Coddet C, Machi F (2004) Processing of yttria partially stabilized zirconia thermal barrier coatings implementing a high-power laser diode. J Therm Spray Technol 13(3):381–389

    Google Scholar 

  347. Knuuttila J, Sorsa P, Mäntylä T (1999) Sealing of thermal spray coatings by impregnation. J Therm Spray Technol 8(2):251–257

    Google Scholar 

  348. Knuuttila J, Sorsa P, Mäntylä T, Knuuttila J, Sorsa P (1999) Sealing of thermal spray coatings by impregnation. J Therm Spray Technol 8(2):249–25

    Google Scholar 

  349. Shrestha S, Hodgkiess T, Neville A (2001) The effect of post-treatment of a high-velocity oxy-fuel Ni-Cr-Mo-Si-B coating part 2: erosion-corrosion behavior. J Therm Spray Technol 10(4):656–665

    Google Scholar 

  350. Kim H-J, Lee C-H, Kweon Y-G (2001) The effects of sealing on the mechanical properties of the plasma-sprayed alumina-titania coating. Surf Coat Technol 139:75–80

    Google Scholar 

  351. Ctibor P, Neufuss K, Zahalka F, Kolman B (2007) Plasma sprayed ceramic coatings without and with epoxy resin sealing treatment and their wear resistance. Wear 262:1274–1280

    Google Scholar 

  352. Leivo EM, Vippola MS, Sorsa PPA, Vuoristo PMJ, Mäntylä TA (1997) Wear and corrosion properties of plasma sprayed AI2O3 and Cr2O3 coatings sealed by aluminum phosphates. J Therm Spray Technol 6(2):205–210

    Google Scholar 

  353. Ahmaniemi S, Vippola M, Vuoristo P, Mäntylä T, Cernuschi F, Lutterotti L (2004) Modified thick thermal barrier coatings: microstructural characterization. J Eur Ceram Soc 24:2247–2258

    Google Scholar 

  354. Ahmaniemi S, Tuominen J, Vuoristo P, Mäntylä T (2002) Sealing procedures for thick thermal barrier coatings. J Therm Spray Technol 11(3):320–332

    Google Scholar 

  355. Ahmaniemi S, Vuoristo P, Mäntylä T, Gualco C, Bonadei A, Di R (2005) Thermal cycling resistance of modified thick thermal barrier coatings. Surf Coat Technol 190:378–387

    Google Scholar 

  356. Ahmaniemi S, Vippola M, Vuoristo P, Mäntylä T, Buchmann M, Gadow R (2002) Residual stresses in aluminium phosphate sealed plasma sprayed oxide coatings and their effect on abrasive wear. Wear 252:614–623

    Google Scholar 

  357. Troczynski T, Yang Q, John G (1999) Post-deposition treatment of zirconia thermal barrier coatings using Sol-Gel alumina. J Therm Spray Technol 8(2):229–234

    Google Scholar 

  358. Westergård R, Hogmark S (2004) Sealing to improve the wear properties of plasma sprayed alumina by electro-deposited Ni. Wear 256:1153–1162

    Google Scholar 

  359. Panadda N, Koiprasert H (2006) Improved corrosion resistance of thermally sprayed coating via surface grinding and electroplating techniques. Surf Coat Technol 201:737–743

    Google Scholar 

  360. Xie D, Xiong Y, Wang F (2003) Effect of an enamel coating on the oxidation and hot corrosion behavior of an HVOF-sprayed Co–Ni–Cr–Al–Y coating. Oxidation Metals 59(5/6):503–516

    Google Scholar 

  361. Caron N, Bianchi L, Méthout S (2008) Development of a functional sealing layer for SOFC applications. J Therm Spray Technol 17(5–6):598–602

    Google Scholar 

  362. Khor KA, Yu L-G, Chan SH, Chen XJ (2003) Densification of plasma sprayed YSZ electrolytes by spark plasma sintering (SPS). J Eur Ceram Soc 23:1855–1863

    Google Scholar 

  363. Prawara B, Yara H, Miyagi Y, Fukushima T (2003) Spark plasma sintering as a post-spray treatment for thermally-sprayed coatings. Surf Coat Technol 162:234–241

    Google Scholar 

  364. Zhou Zhao-huia, Sheng-kaia Gong, He-feia Li, Hui-bina Xu, Chun-gang Zhang, Lub Wang (2007) Effects of shot peening process on thermal cycling lifetime of TBCs prepared by EB-PVD. Chin J Aeronautics 20:145–147

    Google Scholar 

  365. Junior GS, Voorwald HJC, Vieira LFS, Cioffi MOH, Bonora RG (2010) Evaluation of WC-10Ni thermal spray coating with shot peening on the fatigue strength of AISI 4340 steel. Procedia Eng 2:649–656

    Google Scholar 

  366. Kubiak K, Fouvry S, Marechal AM, Vernet JM (2006) Behaviour of shot peening combined with WC–Co HVOF coating under complex fretting wear and fretting fatigue loading conditions. Surf Coat Technol 201:4323–4328

    Google Scholar 

  367. Marin de Camargo José André, Herman Jacobus Cornelis, Voorwald Maria Odila Hilário Cioffi, Midori Yoshikawa Pitanga Costa (2007) Coating residual stress effects on fatigue performance of 7050-T7451 aluminum alloy. Surf Coat Technol 201:9448–9455

    Google Scholar 

  368. Costa MYP, Venditti MLR, Voorwald HJC, Cioffi MOH, Cruz TG. Effect of WC–10%Co–4%Cr coating on the Ti–6Al–4V alloy fatigue strength. Mater Sci

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

a :

Ratio of flattening velocity v f to droplet impact velocity v p

a i :

Thermal diffusivity (i = s for solid phase, i = l for liquid phase) (m2/s)

A/C :

Adhesion/cohesion of a coating (MPa)

b :

Splat thickness (m)

Bi :

Biot number (Bi = dp./(Rth ⋅ κd)

c :

Sound velocity (m/s)

c l :

Sound velocity within the liquid droplet (m/s)

c pi :

Specific heat at constant pressure (i = s solid phase, i = l liquid phase) (J/kg.K)

d :

Distance in the y direction between successive beads sprayed in x direction (m)

d d :

Thermal diffusion distance (m)

d p :

Impacting droplet diameter (m)

D :

Equivalent splat diameter (m)

e f :

Thermal effusivity e f = (ρ p ⋅ c pp ⋅ κ p)1/2 (J/m2 K s0.5)

E c :

Young’s modulus (GPa)

EF:

Shape factor; ratio of the major to the minor axis of an elliptical splat

G :

Strain energy release rate (J/m2)

h :

Convective heat transfer coefficient (W/m2 K)

h′:

Coating thickness (m)

h b :

Bead height (μm)

h c :

Convective heat transfer coefficient (θ = 0) (W/m2 K)

H :

Substrate thickness (m)

K :

Sommerfeld parameter at impact K = We 1/2Re1/4(−)

K f :

Flattening splashing parameter

K ic :

Critical interfacial stress-intensity factor (Pa m1/2)

K fc :

Critical value of K f

K′:

Beam curvature (m−1)

L p :

Latent heat of solidification (J/kg)

m p :

The particle mass (kg)

m °p :

The powder mass flow rate (kg/s)

M :

Bending moment of a beam (N.m)

Ma :

Impact Mach number; Ma = v p/c l

p h :

Water hammer pressure; p h = ρ 1 ⋅ c l ⋅ v p(Pa)

p t :

Transition pressure (Pa)

P :

Splat perimeter (m)

P′:

Force (N)

Pe :

Peclet number (Pe = v p ⋅ d p/a p)

r :

Radius (m)

Ra:

Average rougness (μm)

Re :

Particle Reynolds number at impact (Re = v p ⋅ d p ⋅ ρ p/µ p)

ReN :

Reynolds number of the particle at its the normal impact velocity v N, (-)

R t :

Roughness: distance between the highest peak and the deepest undercut (μm)

R th :

Thermal contact resistance (K m2/W)

s :

Thickness of droplet's solidified layer (m)

s*:

Dimensionless solid layer thickness (s * = s/d p)

S :

Splat surface (m2)

SF:

Splat shape factor; SF = P/4 ⋅ π ⋅ S(m− 1)

Ste l :

Stephan number for the liquid phase (Ste l = c p ⋅ (T p − T m)/L p)

Ste s :

Stephan number for the solid phase (Ste s = c ps(T m − T o)/L p)

t :

Process time (s)

t c :

Wave propagation time (t c = d p ⋅ v p/4c 21 ) (s)

t i :

Induction time in cold spray process (or time of deposition delay) (s)

t ps :

Preheating time (s)

T m :

Melting temperature (K)

T mean :

Coating temperature (K)

T p :

Droplet temperature (K)

T ps :

Preheating temperature (K)

T s :

Substrate temperature (K)

T t :

Transition temperature (K)

v f :

Maximum flattening velocity (m/s)

v N :

Normal component of the particle impact velocity (v N = v p ⋅ cosφ) (m/s)

v p :

Particle impact velocity (m/s)

v r :

The relative velocity spray torch-substrate (m/s)

v s :

Solidification velocity (m/s)

Vm :

Heating rate (K/s)

w b :

Bead width at mid-height (μm)

We :

Weber number at impact (We = ρ p ⋅ v 2p  ⋅ d p/σ p)

x :

Characteristic system dimension (m)

α c t :

Expansion coefficient of the splat (K−1)

Δε :

Misfit strain

ε :

Strain

φ :

Angle between particle trajectory and an axis normal to the substrate (°)

η :

Dimensionless radius (η = 2 ⋅ r/dp)

η d :

Deposition efficiency

θ :

Contact or wetting angle (°)

K :

Thermal conductivity (W/m K)

μ :

Viscosity of molten particle (Pa s)

μ o :

Viscosity of molten particle at its melting temperature (Pa.s)

ν :

Kinematic viscosity; ν = µ/ρ (m2/s)

ν′:

Poisson’s ratio

σ :

Stress (Pa)

σ p :

Surface tension (J/m2) or (N/m)

σ q :

Quenching stress after relaxation phenomena (MPa)

σ q :

Quenching stress (MPa)

Ξ :

Flexural beam stiffness (Pa m4)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fauchais, P.L., Heberlein, J.V.R., Boulos, M.I. (2014). Conventional Coating Formation. In: Thermal Spray Fundamentals. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68991-3_13

Download citation

Publish with us

Policies and ethics