Advertisement

Powders, Wires, Cords, and Rods

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos
Chapter

Abstract

The structure and properties of coatings obtained by thermal or cold gas spraying depend strongly upon different parameters among which the quality of the powder, wire, rod or cord used plays a key role. Powder quality can affect coating performance through different effects. First are presented the different powder manufacturing techniques: atomization, fusing and crushing, milling and sintering, ball-, attrition-, cryo-milling, mechanical alloying and milling, spray-drying, spheroidization, cladding, sol-gel and solutions, self-propagating high-temperature synthesis, cermets. The influence of powder morphologies on coating properties is discussed through examples. Then are presented powder classification methods and characterization: sampling, XRD, elements distribution, composition and purity, particle shape, size distribution, flow ability and surface area. The different types of powder feeders and the hazards related to particles are finally presented. Wires, cored wires, rods and cords are also presented and the chapter finishes with problems linked to polymer powders according to their physical, chemical and mechanical properties widely different from those of metals, alloys ceramics and cermets

Keywords

Thermal Spray Mechanical Alloy Ultra High Molecular Weight Polyethylene Cold Spray Spray Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

APD

Automatic powder diffraction

AS

Agglomerated and sintered

ASTM

American Society for Testing and Materials

CET

Coefficient of thermal expansion

CNT

Carbon nano tubes

D-gun

Detonation gun

d.c.

Direct current

DNA

Deoxyribo nucleic acid

ECTFE

Ethylene chlorotrifluoroethylene

EDS

Energy dispersion spectroscopy

EDXA

Energy dispersion X-ray absorption

EMAA

Ethylene-methacrylic copolymer

EPMA

Electron micro probe analysis

ETFE

Ethylene tetrafluoroethylene

EVA

Ethylene vinylene acetate

FC

Fused and crushed

FEP

Fluorinated ethylene propylene

GDC

Gadolinia-doped ceria

GFA

Glass forming ability

HA

Hydroxyapatite

HOSP

Hollow spherical particles

HVAF

High-velocity air fuel

HVOF

High-velocity oxy-fuel flame

ICPES

Inductively coupled plasma emission spectroscopy

IMTA

Integrated mechanical and thermal activation

JCPDS

Joint Committee on Powder Diffraction Standards, USA

LCP

Liquid-crystalline polymers

MA

Mechanical alloying

NIST

National Institute of Standards and Technology

OM

Optical microscopy

PA

Polyamides

PAEK

Polyaryletherketone

PAS

Polyarylene sulfide

PEA

Polyether amide

PES

Polyester

PC

Polycarbonate

PE

Polyethylene

PET

Polyethylene terephthalate

PFA

Perfluoroalkoxy

PMMA

Polymethylmethacrylate

PP

Polypropylene

PPS

Polyphenylene sulfide

PEEK

Poly-ether-ether-ketone

PTFE

Polytetrafluoroethylene

PVDF

Polyvinylidene fluoride

r.f.

Radio frequency

SEM

Scanning electron microscope

SHS

Self-propagating high-temperature synthesis

SOFC

Solid oxide fuel cell

SR

Sedimentation ratio

UHMWPE

Ultra high-molecular weight polyethylene

XRD

X-ray diffraction

XRF

X-ray fluorescence

YAG

Yttrium aluminums garnet

References

  1. 1.
    Salman AD, Ghadiri M, Hounslow MJ (eds) (2007) Particle breakage, vol 12, Handbook of powder technology. Elsevier, Amsterdam, pp 1–1227Google Scholar
  2. 2.
    Davis JR (ed) (2004) Handbook of thermal spray technology. ASM International, Materials Park, OHGoogle Scholar
  3. 3.
    AWS (1985) Thermal spraying, practice, theory and application. American Welding Society, Miami, FLGoogle Scholar
  4. 4.
    Pawlowski L (1995) The science and engineering of thermal spray coatings. Wiley, New York, NYGoogle Scholar
  5. 5.
    Fauchais P, Montavon G, Bertrand G (2010) From powders to thermally sprayed coatings. J Therm Spray Technol 19(1–2):56–80Google Scholar
  6. 6.
    Kubel EJ Jr (1990) Powders dictate thermal spray coating properties. Adv Mater Process:24–32Google Scholar
  7. 7.
    Kolman B, Forman J, Dubsky J, Chraska P (1994) Homogeneity studies of powders and plasma sprayed deposits. Mikrochim Acta 114–115:335–42Google Scholar
  8. 8.
    Wigren J, de Vries JF, Greving D (1996) Effects of powder morphology, microstructure and residual stresses on thermal barrier coating thermal shock performance. In: Berndt CC (ed) Thermal spray: practical solutions for engineering problems. ASM International, Materials Park, OH, pp 855–61Google Scholar
  9. 9.
    Denoirjean A, Vardelle A, Grimaud A, Fauchais P, Lugsheider E, Rass I, Heijen HL, Chandler P, McIntyre R, Cosak T (1992) Comparison of the properties of plasma sprayed stabilized zirconia coatings for different powder morphologies. In: Berndt CC (ed) Thermal spray: international advances in coating technology. ASM International, Materials Park, OH, pp 975–82Google Scholar
  10. 10.
    Vinayo ME, Kassabji F, Guyonnet J, Fauchais P (1985) Plasma sprayed WC-Co coatings influence of the spray conditions. J Vac Sci Technol 3(6):2483–89Google Scholar
  11. 11.
    Diez P, Smith RW (1993) The influence of powder agglomeration methods on plasma sprayed yttria coatings. J Therm Spray Technol 2(2):165–72Google Scholar
  12. 12.
    Wang M, Shaw LL (2007) Effects of the powder manufacturing method on microstructure and wear performance of plasma sprayed alumina–titania coatings. Surf Coat Technol 202:34–44Google Scholar
  13. 13.
    Beczkowiak J, Schwier G (1991) Tailoring carbides and oxides for HVOF. In: Berndt CC, Bernecki TF (eds) Thermal spray: coatings properties, processes and applications. ASM International, Materials Park, OH, pp 121–26Google Scholar
  14. 14.
    Vuoristo P, Mantyla T, Berger LM, Nebelung M (1997) Sprayability and properties of TiC-Ni based powders in the detonation gun and HVOF processes. In: Berndt CC (ed) Thermal spray: a united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 855–61Google Scholar
  15. 15.
    Jarosinski WJ, Gruninger MF, Londry CH (1993) Characterization of tungsten carbide cobalt powders and HVOF coatings. In: Berndt CC, Bernecki TF (eds) Thermal spray coatings: research, design and applications. ASM International, Materials Park, OH, pp 855–61Google Scholar
  16. 16.
    de Villiers Lovelock HL (1998) Powder/processing-structure relationships in WC-Co thermal spray coatings: a review of the published literature. J Therm Spray Technol 7(3):357–373Google Scholar
  17. 17.
    Kim MC, Kim SB, Hong JW (1997) Effect of powder types on mechanical properties of D-Gun coatings. In: Berndt CC (ed) Thermal spray: a united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 791–95Google Scholar
  18. 18.
    Oliker VE, Grechishkin EF, Polotai VV, Loskutov MG, Timofeeva II (2004) Refractory and ceramics materials influence of the structure and properties of WC-Co alloy powders on the structure and wear resistance of detonation coatings. Powder Metall Metal Ceram 43(5–6):258–264Google Scholar
  19. 19.
    Yandouzi M, Ajdelsztajn L, Jodoin B (2008) WC-based composite coatings prepared by the pulsed gas dynamic spraying process: effect of the feedstock powders. Surf Coat Technol 202:3866–3877Google Scholar
  20. 20.
    Anderson IE, Sordelet DJ, Besser MF, Terpstra RL (1998) Effects of powder morphology on pneumatic feeding and plasma spray deposition. In: Coddet C (ed) Thermal spray: meeting the challenges of the 21st century. ASM International, Materials Park, OH, pp 911–16, Peer reviewedGoogle Scholar
  21. 21.
    Fan X, Gitzhofer F, Boulos MI (1998) Statistical design of experiments for the spheroidization of powdered alumina by induction plasma processing. J Therm Spray Technol 7(2):247–253Google Scholar
  22. 22.
    Vardelle M, Vardelle A, Fauchais P (1993) Spray parameters and particle behavior relationships during plasma spraying. J Therm Spray Technol 2(1):79–92Google Scholar
  23. 23.
    Boch P, Fauchais P, Lombard D, Rogeaux B, Vardelle M (1985) Plasma sprayed zirconia coatings. Ad Ceram 12:488–503Google Scholar
  24. 24.
    Sordelet DJ, Besser MF, Kramer MJ (1998) Thermal spray quasicrystalline coatings. Part 1: relationships among processing phase structure and splat morphology. In: Coddet C (ed) Thermal spray: meeting the challenges of the 21st century. ASM International, Materials Park, OH, pp 467–72Google Scholar
  25. 25.
    Sordelet D, Besser M (1996) Effect of starting powder particle size and composition on chemistry and structure of Al-Cu-Fe quasicrystalline plasma sprayed coatings. In: Berndt CC (ed) Thermal spray: practical solutions for engineering problems. ASM International, Materials Park, OH, pp 419–28Google Scholar
  26. 26.
    Wang Y, Lima RS, Moreau C, Garcia E, Guimaraes J, Miranzo P, Osendi MI (2009) Mullite coatings produced by APS and SPS: effect of powder morphology and spray processing on the microstructure, crystallinity and mechanical properties. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2009: expanding thermal spray performance to new markets and applications. ASM International, Materials Park, OH, pp 97–102Google Scholar
  27. 27.
    Pei P, Kelly J, Malghan S, Dapkunas S (1996) Analysis of zirconia powder for thermal spray: reference material for particle size distribution measurements. In: Berndt CC (ed) Thermal spray: practical solutions for engineering problems. ASM International, Materials Park, OH, pp 263–73Google Scholar
  28. 28.
    Özbilen S (1999) Influence of atomizing gas pressure on particle shape of Al and Mg Powders. Powder Technol 102:109–119Google Scholar
  29. 29.
    Dunkley JJ (1998) Atomization, powder metal technologies and applications, vol 7, ASM handbook. ASM International, Materials Park, OH, pp 35–52Google Scholar
  30. 30.
    Mates SP, Settles GS (2005) A study of liquid metal atomization using close-coupled nozzles. Part1: gas dynamic behavior. Atomization Sprays 15:19–40Google Scholar
  31. 31.
    Ünal R (2006) The influence of the pressure formation at the tip of the melt delivery tube on tin powder size and gas/melt ratio in gas atomization method. J Mater Process Technol 180:291–295Google Scholar
  32. 32.
    Antipas GSE (2006) Modelling of the break up mechanism in gas atomization of liquid metals. Part I: the surface wave formation model. Comput Mater Sci 35:416–422Google Scholar
  33. 33.
    Allimant A, Planche MP, Bailly Y, Dembinski L, Coddet C (2009) Progress in gas atomization of liquid metals by means of a De Laval nozzle. Powder Technol 190:79–83Google Scholar
  34. 34.
    Zambon A (2004) Nitrogen versus helium: effects of the choice of the atomizing gas on the structures of Fe50Ni30Si10B10 and Fe32Ni36Ta7Si8B17 powders. Mater Sci Eng A 375–377:630–637Google Scholar
  35. 35.
    Ajdelsztajn L, Jodoin B, Richer P, Sansoucy E, Lavernia EJ (2006) Cold gas dynamic spraying of iron-base amorphous alloy. J Therm Spray Technol 15(4):495–500 FT60Google Scholar
  36. 36.
    Otsubo F, Era H, Kishitake K (2000) Formation of amorphous Fe-Cr-Mo-8P-2C coatings by the high velocity oxy-fuel process. J Therm Spray Technol 9(4):494–498Google Scholar
  37. 37.
    Das SK, Norin EM, Bye RL (1984) Ni-Mo-Cr-B alloys: corrosion resistant amorphous hardfacing coatings. In: Kear BH, Cohen M (eds) Materials Research Society symposium proceedings, vol 28. Elsevier Science, Amsterdam, pp 233–237Google Scholar
  38. 38.
    Choi H, Kim J, Lee C, Lee KH (2005) Critical factors affecting the amorphous phase formation of NiTiZrSiSn bulk amorphous feedstock in vacuum plasma spray. J Mater Sci 40:3873–3875Google Scholar
  39. 39.
    Dent AH, Horlock AJ, McCartney DG, Harris SJ (1999) The corrosion behavior and microstructure of high-velocity oxy-fuel sprayed nickel-base amorphous/nano-crystalline coatings. J Therm Spray Technol 8(3):399–404Google Scholar
  40. 40.
    Branagan DJ, Swank WD, Meacham BE (2009) Maximizing the glass fraction in iron-based high velocity oxy-fuel coatings. Metall Mater Trans A 40(6):1306–1313Google Scholar
  41. 41.
    Sergueeva AV, Branagan DJ, Mukherjee AK (2008) Microstructure/properties relationship in Fe-based nanomaterials. Mater Sci Eng A 493:237–240Google Scholar
  42. 42.
    Branagan DJ, Swank WD, Haggard DC, Fincke JR (2001) Wear-resistant amorphous and nanocomposite steel coatings. Metall Mater Trans A 32A:2615–2621Google Scholar
  43. 43.
    Branagan DJ, Marshall MC, Meacham BE, Aprigliano LF, Bayles R, Lemieux EJ, Newbauer T, Martin FJ, Farmer JC, Haslam JJ, Day SD (2006) Wear and corrosion resistant amorphous/nanostructured steel coatings for replacement of electrolytic hard chromium. In: Marple BR, Hyland MM, Lau YC, Lima RS, Voyer J (eds) Building on 100 years of success: proceedings of the 2006 international thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  44. 44.
    Tsunekawa Y, Ozdemir I, Okumiya M (2006) Plasma sprayed cast iron coatings containing solid lubricant graphite and h-BN structure. J Therm Spray Technol 15(2):239–245Google Scholar
  45. 45.
    Laha T, Balani K, Agarwal A, Patil S, Seal S (2005) Synthesis of nanostructured spherical aluminum oxide powders by plasma engineering. Metall Mater Trans A 36A:301–309Google Scholar
  46. 46.
    Lee HM, Huang CY, Wang CJ (2009) Forming and sintering behaviors of commercial α-Al2O3 powders with different particle size distribution and agglomeration. J Mater Process Technol 209:714–722Google Scholar
  47. 47.
    Schwier C (1986) Plasma spray powders for thermal barrier coating. Adv Thermal Spray. Pergamon Press, pp 277–286Google Scholar
  48. 48.
    Berger L-M, Ettmayer P, Vuoristo P, Mäntylä T, Kunert W (2001) Microstructure and properties of WC-10%Co-4% Cr spray powders and coatings: Part 1. Powder characterization. J Therm Spray Technol 10(2):311–325Google Scholar
  49. 49.
    (2007) Powders, fibers, platelets, and composites, in ceramic materials, chemistry and materials science collection. Springer, New YorkGoogle Scholar
  50. 50.
    Camerucci MA, Cavalieri AL (1998) Process parameters in attrition milling of cordierite powders. J Mater Synth Process 6(2):115–121Google Scholar
  51. 51.
    Lavernia EJ, Han BQ, Schoenung JM (2008) Cryomilled nanostructured materials: processing and properties. Mater Sci Eng A 493:207–214Google Scholar
  52. 52.
    Kilinc Y, Öztqrk S, Öztqrk B, Uslan I (2004) Investigation of milling characteristics of alumina powders milled with a newly designed vibratory horizontal attritor. Powder Technol 146:200–205Google Scholar
  53. 53.
    Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184Google Scholar
  54. 54.
    Picas JA, Forn A, Ajdelsztajn L, Schoenung J (2004) Nanocrystalline NiCrAlY powder synthesis by mechanical cryomilling. Powder Technol 148:20–23Google Scholar
  55. 55.
    Wang H-T, Li C-J, Yang G-J, Li C-X, Zhang Q, Li W-Y (2007) Microstructural characterization cold-sprayed nanostructured FeAl intermetallic compound coating and its ball-milled feedstock powders. J Therm Spray Technol 16(5–6):669–676Google Scholar
  56. 56.
    He J, Schoenung JM (2002) Nanostructured coatings, a review. Mater Sci Eng A336:274–319Google Scholar
  57. 57.
    Eigen N, Gärtner F, Klassen T, Aus E, Bormann R, Kreye H (2002) Microstructures and properties of nanostructured thermal sprayed coatings using high-energy milled cermet powders. Surf Coat Technol A336:274–319Google Scholar
  58. 58.
    Zhang X-F, Zhang X-L, Wang A-H, Huang Z-W (2009) Microstructure and properties of HVOF sprayed Ni-based submicron WS2/CaF2 self-lubricating composite coating. Trans Nonferrous Met Soc China 19:85–92Google Scholar
  59. 59.
    Tekmen C, Ozdemir I, Fritsche G, Tsunekawa Y (2009) Structural evolution of mechanically alloyed Al–12Si/TiB2/h–BN composite powder coating by atmospheric plasma spraying. Surf Coat Technol 203(14):2046–2051Google Scholar
  60. 60.
    Oberste Berghaus J, Legoux J-G, Moreau C, Tarasi F, Chraska T (2008) Mechanical and thermal transport properties of suspension thermal-sprayed alumina-zirconia composite coatings. J Therm Spray Technol 17(1):91–104Google Scholar
  61. 61.
    Walton DE, Mumford CJ (1999) Spray dried products-characterization of particle morphology. Trans Inst Chem Eng 77:21–38Google Scholar
  62. 62.
    Xiong Z, Shao G, Shi X, Duan X, Yan L (2008) Ultrafine hardmetals prepared by WC–10 wt.% Co composite powder. Int J Refractory Metals Hard Mater 26:242–250Google Scholar
  63. 63.
    Bertrand G, Roya P, Filiatre C, Coddet C (2005) Spray-dried ceramic powders: a quantitative correlation between slurry characteristics and shapes of the granules. Chem Eng Sci 60:95–102Google Scholar
  64. 64.
    Lima RS, Marple BR (2008) Process–property–performance relationships for titanium dioxide coatings engineered from nanostructured and conventional powders. Mater Des 29:1845–1855Google Scholar
  65. 65.
    Baksh SR, Singh V, Balani K, McCartney DG, Seal S, Agarwal A (2008) Carbon nanotube reinforced aluminum composite coating via cold spraying. Surf Coat Technol 202:5162–5169Google Scholar
  66. 66.
    BenEttouil F, Mazhorova O, Pateyron B, Ageorges H, El-Ganaoui M, Fauchais P (2008) Predicting dynamic and thermal histories of agglomerated particles injected within a d.c. plasma jet. Surf Coat Technol 202:4491–4495Google Scholar
  67. 67.
    Dzur B. (2008) Plasma puts heat into spherical powder production. MPR, February, 12–15Google Scholar
  68. 68.
    Boulos M, Ducos M, Fauchais P (2006) (in French) Plasma technology and its potential for powder treatment, Matériaux 2006, Dijon, France, 13–17 Nov 2006. SF2M, Paris, FranceGoogle Scholar
  69. 69.
    Boulos M, Fauchais P, Vardelle A, Pfender E (1993) Injection of hot particles in a plasma flame. In: Suryanarayanun R (ed) Plasma spraying theory and applications. World Scientific, Singapore, pp 3–61Google Scholar
  70. 70.
    Dignard NM, Boulos MI (1997) Ceramic and metallic powder spherodization using induction plasma technology. In: Berndt CC (ed) Thermal spray: a united forum for scientific and technological advances. ASM International, Materials Park, OH, pp 1–7Google Scholar
  71. 71.
    Bouyer E, Gitzhofer F, Boulos M (1997) Suspension plasma spraying for hydroxyapatite powder preparation by RF plasma. IEEE Trans Plasma Sci 25(5):1066–1072Google Scholar
  72. 72.
    Schiller G, Müller M, Gitzhofer F (1999) Preparation of perovskite powders and coatings by radio frequency suspension plasma spraying. J Therm Spray Technol 8(3):389–392Google Scholar
  73. 73.
    Bouchard D, Sun L, Gitzhofer F, Brisard GM (2006) Synthesis and characterization of La0.8Sr0.2MO3−δδ (M = Mn, Fe, or Co) cathode materials by induction plasma technology. J Therm Spray Technol 15(1):37–45Google Scholar
  74. 74.
    Ravi BG, Gandhi AS, Guo XZ, Margolies J, Sampath S (2008) Liquid precursor plasma spraying of functional materials: a case study for yttrium aluminium garnet (YAG). J Therm Spray Technol 17(1):82–90Google Scholar
  75. 75.
    Lugscheider E, Loch M, Eschnauer H (1991) Coated powders-the status today. In: Huber P, Echnauer H (eds) 2nd Plasma-Technik symposium, June 1991, vol 2. Plasma Technik, Wholen, CH, pp 339–351Google Scholar
  76. 76.
    Ito H, Umakoshi M, Nakamura R, Yokoyama T, Urayama K, Kato M (1991) Characterization of Ni-Al composite powders formed by mechanofusion. In: Bernecki TF (ed) Thermal spray coatings: properties, processes and applications. ASM International, Materials Park, OH, pp 405–411Google Scholar
  77. 77.
    Ageorges H, Fauchais P (2000) Plasma spraying of stainless-steel particles coated with an alumina shell. Thin Solid Films 370:213–222Google Scholar
  78. 78.
    Cuenca AR (2003) Contribution à l’élaboration de dépôts composites par projection plasma d’arc de poudres élaborées par mechanofusion. Ph.D. thesis, University of Limoges, France, 25 Nov 2003 (in French)Google Scholar
  79. 79.
    Wang J, Jordan EH, Gell M (2010) Plasma sprayed dense MgO-Y2O3 nanocomposite coatings using sol-gel combustion synthesized powder. J Therm Spray Technol 19(5):873–878Google Scholar
  80. 80.
    Chen D, Jordan EH, Gell M (2009) Microstructure of suspension plasma spray and air plasma spray Al2O3-ZrO2 composite coatings. J Therm Spray Technol 18(3):421–42Google Scholar
  81. 81.
    Prakash S, Grips VKW, Aruna ST (2012) A single step solution combustion approach for preparing gadolinia doped ceria solid oxide fuel cell electrolyte material suitable for wet powder and plasma spraying processes. J Power Source 214:358–364Google Scholar
  82. 82.
    Borisova AL, Borisov Yu S (2008) Self-propagating high-temperature synthesis for the deposition of thermal-sprayed coatings. Powder Metall Metal Ceram 47(1–2):80–94Google Scholar
  83. 83.
    Borisov Y, Borisova A, Shvedova L (1986) Transition metal – nonmetallic refractory compound composite powders for thermal spraying. In: Proceedings of ITSC’86, Montreal, Canada, 8–12 Sept 1986. Pergamon Press, pp 323–330Google Scholar
  84. 84.
    Borisov Y, Borisova A (1992) Application of self-propagating high-temperature synthesis in thermal spraying technology. In: Bernicki TF (ed) Thermal spray: research, design and applications. ASM International, Materials Park, OH, pp 139–144Google Scholar
  85. 85.
    Deevi SC, Sikka VK, Swindeman CJ, Seals RD (1997) Reactive spraying of nickel-aluminide coatings. J Therm Spray Technol 6(3):335–344Google Scholar
  86. 86.
    Haller B, Bonnet J-P, Fauchais P, Grimaud A, Labbe J-C (2005) TiC based coatings prepared by combining SHS and plasma spraying. In: Lugscheider E (ed) Thermal spray connects: explore its surfacing potential! DVS-Verlag GmbH, Düsseldorf, Germany, e-proceedingsGoogle Scholar
  87. 87.
    Dallaire S (1982) Influence of temperature on the bonding mechanism of plasma-sprayed coatings. Thin Solid Films 95:237–241Google Scholar
  88. 88.
    Legoux JG, Dallaire S (1993) Copper-TiB2 coatings by plasma spraying reactive micropellets. In: Berndt CC, Bernecki TF (eds) Thermal spray: research, in design and applications. ASM International, Materials Park, OH, pp 429–432Google Scholar
  89. 89.
    Dallaire S, Cliche G (1992) The influence of composition and process parameters on the microstructure of TiC-Fe multiphase and multilayer coatings. Surf Coat Technol 50:233–239Google Scholar
  90. 90.
    Seegopaul P, McCandlish UE, Shinneman FM (1997) Production capability and powder processing methods for nanostructured WC-Co powder. Int J Refractory Metals Hard Mater 15:133–138Google Scholar
  91. 91.
    Kear BH, Sadangi RK, Jain M, Yao R, Kalman Z, Skandan G, Mayo WE (2000) Thermal sprayed nanostructured WC/Co hardcoatings. J Therm Spray Technol 9(3):399–406Google Scholar
  92. 92.
    Schubert WD, Bock A, Lux B (1995) General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. Int J Metals Hard Mater 13:281–296Google Scholar
  93. 93.
    Ban Z-G, Shaw L (2002) Synthesis and processing of nanostructured WC-Co materials. J Mater Sci 37:3397–3403Google Scholar
  94. 94.
    Ban Z-G, Shaw LL (2003) Characterization of thermal sprayed nanostructured WC-Co coatings derived from nanocrystalline WC-18wt.% Co powders. J Therm Spray Technol 12(1):112–119Google Scholar
  95. 95.
    Ren R-M, Yang Z-G, Shaw LL (1998) A novel process for synthesizing nanostructured carbides: mechanically activated synthesis. Ceram Eng Sci Proc 19(4):461–68Google Scholar
  96. 96.
    Shaw LL (2000) Processing of nanostructured carbides, nitrides and their composites. Adv Eng Mater 2(11):721–723Google Scholar
  97. 97.
    Kurlov AS, Rempel AA, Blagoveshenskii Yu V, Samokhin AV, Tsvetkov Yu V (2011) Hard alloys WC–Co (6 wt %) and WC–Co (10 wt %) based on nanocrystalline powders. Chem Technol 439(1):213–218Google Scholar
  98. 98.
    Streibl T, Vaidya A, Friis M, Srinivasan V, Sampath S (2006) A critical assessment of particle temperature distributions during plasma spraying: experimental results for YSZ. Plasma Chem Plasma Proc 26(1):73–102Google Scholar
  99. 99.
    Chi W, Sampath S, Wang H (2006) Ambient and high-temperature thermal conductivity of thermal sprayed coatings. J Therm Spray Technol 15(4):773–778Google Scholar
  100. 100.
    Bertrand G, Bertrand P, Roy P, Rio C, Mevrel R (2008) Low conductivity plasma sprayed thermal barrier coating using hollow PSZ spheres: correlation between thermo physical properties and microstructure. Surf Coat Technol 202:1994–2001Google Scholar
  101. 101.
    de Villiers LHL (1998) Powder/processing/structure relationships in WC-Co thermal spray coatings: a review of the published literature. J Therm Spray Technol 7(3):357–373Google Scholar
  102. 102.
    Jacobs L, Hyland MM, De Bonte M (1998) Comparative study of WC-cermet coatings sprayed via the HVOF and the HVAF process. J Therm Spray Technol 7(2):213–218Google Scholar
  103. 103.
    de Villiers Lovelock HL, Richter PW, Benson JM, Young PM (1998) Parameter study of HP/HVOF deposited WC-Co coatings. J Therm Spray Technol 7(1):97–107Google Scholar
  104. 104.
    Peetsalu P, Zimakov S, Pirso J, Mikli V, Tarbe R, Kulu P (2006) Characterization of WC-Co composite thermal spray powders and coatings. Proc Estonian Acad Sci Eng 12(4):435–444Google Scholar
  105. 105.
    Cuenca Alvarez R, Ageorges H, Fauchais P, Fournier P, Smith A (2003) The effect of the mechanofusion process and planetary milling on composite powder preparation: agglomeration and fragmentation. Mater Sci Forum 442:67–72Google Scholar
  106. 106.
    Stoltenhoff T, Kreye H, Richter HJ (2002) An analysis of the cold spray process and its coatings. J Therm Spray Technol 11(4):542–550Google Scholar
  107. 107.
    Klinkov SV, Kosarev VF (2006) Measurements of cold spray deposition efficiency. J Therm Spray Technol 15(3):364–371Google Scholar
  108. 108.
    Li C-J, Li W-Y, Wang Y-Y, Yang G-J, Fukanuma H (2005) A theoretical model for prediction of deposition efficiency in cold spraying. Thin Sol Films 489:79–85Google Scholar
  109. 109.
    Lee JH, Kim JS, Shin SM, Lee CH, Kim HJ (1996) Effect of particle temperature on the critical velocity for particle deposition by kinetic spraying. In: Marple BR, Hyland MM, Lau YC, Lima RS, Voyer J (eds) Building on 100 years of success: proceedings of the 2006 international thermal spray conference. ASM International, Materials Park, OH, e-proceedingsGoogle Scholar
  110. 110.
    Katanoda H, Fukuhara M, Iino N (2007) Numerical study of combination parameters for particle impact velocity and temperature in cold spray. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 72–77Google Scholar
  111. 111.
    Mäkinen H, Lagerbom J, Vuoristo P (2007) Adhesion of cold sprayed coatings: effect of powder, substrate, and heat treatment. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 31–36Google Scholar
  112. 112.
    Raletz F (2005) Contribution to the development of a Cold Gas Dynamic Spray system (C.G.D.S.) for the realization of nickel coatings. Ph.D., University of Limoges, France, 17 Oct (in French)Google Scholar
  113. 113.
    Kang KC, Yoon SH, Ji YG, Lee C (2007) Lee, oxidation effects on the critical velocity of pure Al feedstock deposition in the kinetic spraying process. In: Marple BR, Hyland MM, Lau Y-C, Li C-J, Lima RS, Montavon G (eds) Thermal spray 2007: global coating solutions. ASM International, Materials Park, OH, pp 66–71Google Scholar
  114. 114.
    Berndt C (2007) Thermal spray workshop, ITSC courses in conjunction with ITSC 2007 Beijing, May 2007. ASM International, Materials Park, OHGoogle Scholar
  115. 115.
    Allen T (1997) Particle size measurements (Volume 1: powder sampling and particle size measurements. Volume 2: surface area and pore size determination), 5th edn. Chapman & Hall, LondonGoogle Scholar
  116. 116.
    ASTM-B214-07(2011) Standard Test Method for Sieve Analysis of Metal PowdersGoogle Scholar
  117. 117.
    ASTM E2651-10 Standard Guide for Powder Particle Size AnalysisGoogle Scholar
  118. 118.
    Iinoya K, Gotoh K, Higashitani K (1991) Powder technology handbook. Dekker, New York, NYGoogle Scholar
  119. 119.
    Barth H. (ed.) (1984) Modern methods of particle size analysis, (pub.) John Wiley & SonsGoogle Scholar
  120. 120.
    Hoffmann AC, Arends H, Sie H (1991) An experimental investigation elucidating the nature of the effect of solids loading on cyclone performance. Filtration and Separation May–June:188–193Google Scholar
  121. 121.
    Hoffmann AC, Van Santen A, Allen WK, Clift R (1992) Effects of geometry and solids loading on the performance of gas cyclones. Powder Technol 70:83–91Google Scholar
  122. 122.
    Ji Z, Xiong Z, Wu X, Chen H, Wu H (2008) Experimental investigations on a cyclone separator performance at an extremely low particle concentration. Powder Technol 191(3):254–259Google Scholar
  123. 123.
    ASTM WK19862, Standard Practices for Sampling Metal Powders, Revision of B215-04, Active Standard: B215-08. Google Scholar
  124. 124.
    Goldstein JI, Newbury DE, Echlin P, Joy DC, Lyman CE, Lifshin E, Sawyer LC, Michael JR (2003) Scanning electron microscopy and X-ray micro- analysis. Springer, New York, NYGoogle Scholar
  125. 125.
    Trassy C, Mermet JM (1984) Analytical applications of RF plasmas (in French). Lavoisier, Paris, FranceGoogle Scholar
  126. 126.
    Beckhoff B, Kanngießer B, Langhoff N, Wedell R, Wolff H (2006) Handbook of practical X-ray fluorescence analysis. Springer, BerlinGoogle Scholar
  127. 127.
    van de Hulst HC (1981) Light scattering by small particles. Dover Publications, New York, NY, 470 pGoogle Scholar
  128. 128.
    ASTM B213 Flow Rate of Metal PowdersGoogle Scholar
  129. 129.
    Stanford MK, Della Corte C (2006) Effect of humidity on the flow characteristics of a composite plasma spray powder. J Therm Spray Technol 15(1):33–36Google Scholar
  130. 130.
    Hériaud-Kraemer H, Montavon G, Hertert S, Robin H, Coddet C (2003) Harmful risks for workers in thermal spraying: a review completed by a survey in a French company. J Therm Spray Technol 12(4):542–554Google Scholar
  131. 131.
    Petsas N, Kouzilos G, Papapanos G, Vardavoulias M, Moutsatsou A (2007) Worker exposure monitoring of suspended particles in a thermal spray industry. J Therm Spray Technol 16(2):214–219Google Scholar
  132. 132.
    Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ, Doak SH (2009) Nano-genotoxicology: the DNA damaging potential of engineered nano-materials a review. Biomaterials 30:3891–3914Google Scholar
  133. 133.
    Lester T (2005) Metallized coatings application: an overview of the flame- and arc-spraying processes used for surface finishing. Organic finishing July/August:35–39Google Scholar
  134. 134.
    Liu S-G, Wu J-M, Zhang S-C, Rong S-J, Li Z-Z (2007) High temperature erosion properties of arc-sprayed coatings using various cored wires containing Ti–Al intermetallics. Wear 262:555–561Google Scholar
  135. 135.
    Norouzi S (2004) Contribution to the development of hard metal coatings against abrasive wear sprayed by wire arc process. Ph.D. thesis, University of Limoges, France, 30 NovGoogle Scholar
  136. 136.
    Mc Crum NG, Buckley CP, Bucknall CB (1997) Principles of polymer engineering. Oxford University Press, OxfordGoogle Scholar
  137. 137.
    Cowley M (2002) Coating powders and powder coatings—the state of the art. Finishing 26(8):32–36Google Scholar
  138. 138.
    Ivosevic M, Knight R, Kalidindi SR, Palmese GR, Sutter JK, Tsurikov A (2003) Optimal substrate preheating model for thermal spray deposition of thermosets onto polymer matrix composite. In: Moreau C (ed) Proceedings of the ITSC-2003, Orlando, FL. ASM International, Materials Park, OHGoogle Scholar
  139. 139.
    Åström BT (1997) Manufacturing of polymer composites. Chapman & Hall, LondonGoogle Scholar
  140. 140.
    Petrovicova E, Knight R, Schadler LS, Twardowski TE (2002) Thermal spraying of polymers. Int Mater Rev 47(4):169–190Google Scholar
  141. 141.
    Ivosevic M (2006) Splat formation during thermal spraying of polymer particles: mathematical modeling and experimental analysis. Ph.D. thesis, Faculty of Drexel UniversityGoogle Scholar
  142. 142.
    Ivosevic M, Cairncross RA, Knight R (2006) 3D predictions of thermally sprayed polymer splats: modeling particle acceleration, heating and deformation on impact with a flat substrate. Int J Heat Mass Transf 49:3285–3297Google Scholar
  143. 143.
    Arjula S, Harsha AP, Ghosh MK (2008) Solid-particle erosion behavior of high-performance thermoplastic polymers. J Mater Sci 43:1757–1768Google Scholar
  144. 144.
    Soveja A, Costil S, Liao H, Sallamand P, Coddet C (2010) Remelting of flame spraying PEEK coating using lasers. J Therm Spray Technol 19(1–2):439–447Google Scholar
  145. 145.
    Zhang C, Zhang G, JI V, Liao H, Costil S, Coddet C (2009) Microstructure and mechanical properties of flame-sprayed PEEK coating remelted by laser process. Prog Organic Coat 66:248–253Google Scholar
  146. 146.
    Zhang G, Liao H, Cherigui M, Paulo Davim J, Coddet C (2007) Effect of crystalline structure on the hardness and interfacial adherence of fame sprayed (poly-ether–ether–ketone) coatings. Eur Polym J 43:1077–1082Google Scholar
  147. 147.
    Patel K, Doyle CS, James BJ, Hyland MM (2010) Valence band XPS and FT-IR evaluation of thermal degradation of HVAF thermally sprayed PEEK coatings. Polym Degrad Stab 95:792–797Google Scholar
  148. 148.
    Wu J, Munroe PR, Withy B, Hyland MM (2010) Study of the splat-substrate interface for a PEEK coating plasma-sprayed onto aluminum substrates. J Therm Spray Technol 19(1–2):42–48Google Scholar
  149. 149.
    Withy BP, Hyland MM, James BJ (2008) The effect of surface chemistry and morphology on the properties of HVAF PEEK single splats. J Therm Spray Technol 17(5–6):631–636Google Scholar
  150. 150.
    Niebuhr D, Scholl M (2005) Synthesis and performance of plasma-sprayed polymer/steel coating system. J Therm Spray Technol 14(4):487–494Google Scholar
  151. 151.
    Xie W, Wang J, Berndt CC (2013) Analysis of EMAA deposits on glass and mild steel substrates, Journal of Thermal Spray Technology (published on line)Google Scholar
  152. 152.
    Leivo E, Wilenius T, Kinos T, Vuoristo P, Mäntylä T (2004) Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Prog Organic Coat 49(1):69–73Google Scholar
  153. 153.
    Schadler LS, Laul KO, Smith RW, Petrovicova E (1997) Microstructure and mechanical properties of thermally sprayed silica/nylon nanocomposites. J Therm Spray Technol 6(4):475–485Google Scholar
  154. 154.
    Ivosevic M, Knight R, Kalidindi SR, Palmese GR, Sutter JK (2005) Adhesive/cohesive properties of thermally sprayed functionally graded coatings for polymer matrix composites. J Therm Spray Technol 14(1):45–51Google Scholar
  155. 155.
    Sumita M, Tsukumo Y, Miyasaka K, Ishikawa KJ (1983) Effect of re- ducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultra-fine particles. J Macromol Sci Phys B-22(4):601–618Google Scholar
  156. 156.
    Petrovicova E (1999) Structure and properties of polymer nanocomposite coatings applied by the HVOF process. Ph.D. Dissertation, Drexel University, Philadelphia, PAGoogle Scholar
  157. 157.
    Jackson L, Ivosevic M, Knight R, Cairncross RA (2007) Sliding wear properties of HVOF thermally sprayed nylon-11 and nylon-11/ceramic composites on steel. J Therm Spray Technol 16(5–6):927–932Google Scholar
  158. 158.
    Niezgoda S, Gupta V, Knight R, Cairncross RA, Twardowski TE (2006) Effect of reinforcement size on the scratch resistance and crystallinity of HVOF sprayed nylon-11/ceramic composite coatings. J Therm Spray Technol 15(4):731–738Google Scholar
  159. 159.
    Stravato A, Knight R, Mochalin V, Picardi SC (2008) HVOF-sprayed nylon-11 + nanodiamond composite coatings: production & characterization. J Therm Spray Technol 17(5–6):812–817Google Scholar
  160. 160.
    Berndt CC, Brogan JA, Montavon G, Claudon A, Coddet C (1998) Mechanical properties of metal- and ceramic-polymer composites formed via thermal spray consolidation. J Therm Spray Technol 7(3):337–339Google Scholar
  161. 161.
    Li Y, Ma Y, Xie B, Cao S, Wu Z (2007) Dry friction and wear behavior of flame-sprayed polyamide1010/n-SiO2 composite coatings. Wear 262:1232–1238Google Scholar
  162. 162.
    Mateus C, Costil S, Bolot R, Coddet C (2005) Ceramic/fluoropolymer composite coatings by thermal spraying-a modification of surface properties. Surf Coat Technol 191:108–118Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations