Advertisement

Plasma-Transferred Arc

  • Pierre L. Fauchais
  • Joachim V. R. Heberlein
  • Maher I. Boulos
Chapter

Abstract

The development of the plasma transferred arc coating process was directed towards reducing the cost of corrosion and wear resistant parts. Regular steel parts with an appropriate PTA coating can exhibit superior corrosion and wear behavior even compared to specialty alloys. The process is significantly different from the other coating processes as the substrate is part of the electrical circuit that delivers the power for the coating process. The substrate in most of the cases serves as the anode of the arc transferred from the torch, and only sometimes as the cathode. Thus it must consist of an electrically conducting material. First equipment and operating parameters are described with the coating materials used and the corresponding applications. Then the process characterization is presented with the temperature distributions in the arc and arc voltages, heat flux to substrate and process modeling. The different process modifications and adaptations are described, especially with the influence of the pilot arc, the nitriding of coating, the modulation of deposition parameters, the PTA combination with tape casting and the PTA deposition with a negative work piece polarity. Examples of applications are at last presented, especially against wear and abrasive wear, against wear and corrosion, refurbishing worn parts and finally free standing shape fabrication

Keywords

Weld Pool Traverse Speed Bead Width Powder Feed Rate Oscillation Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

FTC

Fused tungsten carbide

PTA

Plasma-transferred arc

SAW

Submerged arc welding

slm

Standard liters per minute

TIG, MIG

Tungsten inert gas welding or metal inert gas welding, respectively

References

  1. 1.
    Gebert A, Bouaifi B (2005) Oberflächenschutz durch Auftragschweiβen, Moderne Beschichtungsverfahren. Wiley, New York, NYGoogle Scholar
  2. 2.
    Hallen H, Lugscheider E, Ait-Mekideche A (1991) Plasma transferred arc surfacing with high deposition rates. In: Bernecki T (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 537–539Google Scholar
  3. 3.
    DuMola RJ, Heath GR (1997) New developments in the plasma transferred arc process. In: Berndt CC (ed) Proceedings of the united thermal spray conference, Indianapolis, IN. ASM International, Materials Park, OH, pp 427–434Google Scholar
  4. 4.
    Wilden J, Bergmann JP, Frank H (2006) Plasma transferred arc welding-modeling and experimental optimization. J Therm Spray Technol 15(4):779–784CrossRefGoogle Scholar
  5. 5.
    Gatto A, Bassoli E, Fornari M (2004) Plasma transferred arc deposition of powdered high performance alloys: process parameters optimisation as a function of alloy and geometrical configuration. Surf Coat Technol 187:265–271CrossRefGoogle Scholar
  6. 6.
    Wassermann R, Quaas J, Chalard J-C, Noel L, Steine H-T (1978) Installation for surfacing using plasma-arc welding. US Patent 4,125,754Google Scholar
  7. 7.
    Bouaifi B, Schreiber F, Göllner J, Schulze S (1996) Eigenschaften und Beständigkeit von Plasma-Pulver-Auftragschweißungen aus hartstoffverstärkten CrNiMoN-legierten Duplex-Stählen. DVS-Berichte 175:425–428Google Scholar
  8. 8.
    Shubert GC (1987) Welding apparatus method for depositing wear surfacing material and a substrate having a weld bead thereon. US Patent 4,689,463Google Scholar
  9. 9.
    Lindland D, Shubert G (1988) Method for applying a weld bead to a thin section of a substrate. US Patent 4,739,146Google Scholar
  10. 10.
    Saltzmann GA, Wertz TA, Friedman IL (1989) Method for refurbishing cast gas turbine engine components and refurbished component. US Patent 4,878,953Google Scholar
  11. 11.
    Saltzman G, Sahoo P (1991) Applications of plasma arc weld surfacing in turbine engines. In: Berndt CC (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 541–548Google Scholar
  12. 12.
    Hallen H, Mathesius H, Ait-Mekideche A, Hettiger F, Morkramer U, Lugscheider E (1992) New applications for high power PTA surfacing in the steel industry. In: Berndt CC (ed) Proceedings of the international thermal spray conference & exposition, Orlando, FL. ASM International, Materials Park, OH, pp 899–902Google Scholar
  13. 13.
    Kammer PA, Weinstein M, DuMola RJ (1991) Characteristics and applications for composite wear-resistant overlays. In: Bernecki T (ed) Proceedings of the fourth national thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 513–518Google Scholar
  14. 14.
    Schreiber F, Krefeld D (2002) Mobile plasma powder hand deposition welding: practice experience. In: Lugscheider E (ed) Proceedings of the international thermal spray conference 2002, Essen, Germany, 4–6 Mar 2002. DVS, Düsseldorf, Germany, pp 273–277Google Scholar
  15. 15.
    Ducos M (1985) Applications industrielles des plasmas d'arc de faible puissance et des plasmas inductifsinductifs, Les Plasmas dans l'Indudtrie, (ed.) G. Laroche (pub.) DopÕe, ElectricitÕ de France, France (in French)Google Scholar
  16. 16.
    Gebert A, Wocilka D, Bouaifi B, Alaluss K, Matthes K-J (2008) Neuentwicklungen für den Verschleiβ-und Korrosionsschutz beim Plasma-Pulver-Auftragschweiβen (New developments for wear an corrosion protection by weld surfacing with plasma transmitted arc process). Mat-wiss u Werkstofttech 39(1):99–104CrossRefGoogle Scholar
  17. 17.
    Lugscheider E, Ait-Mekideche A (1991) Advances in PTA surfacing. In: Berndt CC (ed) Proceedings of the fourth thermal spray conference, Pittsburgh, PA. ASM International, Materials Park, OH, pp 529–535Google Scholar
  18. 18.
    Yang LJ, Loh NL (1995) The wear properties of plasma transferred arc cladded stellite specimens. Surf Coat Technol 71:196–20CrossRefGoogle Scholar
  19. 19.
    Bharath RR, Ramanathan R, Sundararajan B, Srinivasan PB (2008) Optimization of process parameters for deposition of Stellite on S45CrSi93 steel by plasma transferrred arc technique. Mater Des 29:1725–1731CrossRefGoogle Scholar
  20. 20.
    Kim HJ, Yoon BH, Lee CH (2002) Wear performance of the Fe-based alloy coatings produced by plasma transferred arc weld-surfacing process. Wear 249:846–852CrossRefGoogle Scholar
  21. 21.
    Hou QY, He YZ, Zhang QA, Gao JS (2007) Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process. Mater Des 28:1982–1987CrossRefGoogle Scholar
  22. 22.
    Reimann H (1999) Metallic coatings for heavy-wear-protection. In: Lugscheider E, Kammer P (eds) Proceedings of the united thermal spray conference, Düsseldorf, Germany. DVS, Düsseldorf, Germany, pp 86–89Google Scholar
  23. 23.
    Dilthey U, Balashov B, Kondapalli S, Geffers C (2008) Entwicklung einer kostengünstigen und hoch verschleissbeständigen Eisenbasislegierung zum Auftragschweissen. Schweissen und Schneiden 60:200–204Google Scholar
  24. 24.
    Reisgen U, Dilthey U, Balashov B, Kondapalli S, Geffers C (2008) Investigation of wear resistance and microstructure of a newly developed chromium and vanadium containing iron-based hardfacing alloy. Mat-wiss u Werkstofttech 39(6):379–384CrossRefGoogle Scholar
  25. 25.
    Hou QY, He Y, Gao J (2006) Microstructure and properties of Fe-C-Cr-Cu coating deposited by plasma transferred arc process. Surf Coat Technol 201:3685–3690CrossRefGoogle Scholar
  26. 26.
    Bourithis L, Papaefthymiou S, Papadimitriou GD (2002) Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties. Appl Surf Sci 200:203–218CrossRefGoogle Scholar
  27. 27.
    Iakovou R, Bourithis L, Papadimitriou GD (2002) Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance. Wear 252:1007–1015CrossRefGoogle Scholar
  28. 28.
    Liu YF, Liu XB, Xua XY, Yang SZ (2010) Microstructure and dry sliding wear behavior of Fe2TiSi/-Fe/Ti5Si3. Surf Coat Technol 205:814–819CrossRefGoogle Scholar
  29. 29.
    Cheng JB, Xu BS, Liang XB, Wu YX (2008) Microstructure and mechanical characteristics of iron-based coating prepared by plasma transferred arc cladding process. Mater Sci Eng A 492:407–412CrossRefGoogle Scholar
  30. 30.
    Lugscheider E, Ait-Mekideche A, Aache AM (1994) Verbesserung der Eigenschaften von Hartlegierungen durch auftraggeschweiβte carbidische Verbundpulver. Schweissen und Schneiden 46(3):109–112Google Scholar
  31. 31.
    Saltzman G (1986) Carbides add muscle to PTA antiwear coatings. Metal Prog 129:25–30Google Scholar
  32. 32.
    Saltzman G, Aufderhaar WB (1984) New antiwear coatings applied by plasma-transferred arc wearsurfacing. Lubr Eng 41:233–241Google Scholar
  33. 33.
    Shi K, Hu S, Zheng H (2011) Microstructure and fatigue properties of plasma transferred arc alloying TiC-W-Cr on gray cast iron. Surf Coat Technol 206:1211–1217CrossRefGoogle Scholar
  34. 34.
    Huang Z, Hou Q, Wang P (2008) Microstructure and properties of Cr3C2-modified nickel-based alloy coating deposited by plasma transferred arc process. Surf Coat Technol 202:2993–2999CrossRefGoogle Scholar
  35. 35.
    Hou Q, Huang Z, Wang JT (2011) Influence of nano-Al2O3 particles on the microstructure and wear resistance of nickel-based alloy coating deposited by plasma transferred arc overlay welding. Surf Coat Technol 205:2806–2812CrossRefGoogle Scholar
  36. 36.
    Hartmann U, Gebert A, Richter U, Leonhardt G (2007) Erhöhung der Verschleissfestigkeit von Elastomerverarbeitungsmaschinen durch innovative Beschichtungsverfahren. Mat-wiss u Werkstofttech 38(2):155–159CrossRefGoogle Scholar
  37. 37.
    Bouaifi B, Gebert A, Heinze H (1993) Plasma-Pulver-Auftragschweiβungen zum Verschleiβschutz abrasiv beanspruchter Bauteile mit Kantenbelastung. Schweissen und Schneiden 45:506–509Google Scholar
  38. 38.
    Bouaifi B, Reichmann B (1997) Neue Anwendungsfelder durch die Entwicklung des Hochleistungs-Plasma-Pulverauftragschweiβens. Schweissen und Schneiden 49:734–736Google Scholar
  39. 39.
    Heinze H, Gebert A, Bouaifi B, Ait-Mekideche A (1999) Korrosionsbeständige Auftragschweisschichten auf Eisenbasis mit hoher Verschleissbeständigkeit. Schweissen und Schneiden 51(9):550–559Google Scholar
  40. 40.
    Gebert A, Heinze H (2002) PTA powder cladding of knives for food processing industry. In: Lugscheider E (ed) Proceedings of ITSC, Essen, Germany. DVS, Düsseldorf, Germany, pp 991–993Google Scholar
  41. 41.
    Flores JF, Neville A, Kapur N, Gnanavelu A (2009) Erosion-corrosion degradation mechanisms of Fe-Cr-C and WC-Fe-Cr-C PTA overlays in concentrated slurries. Wear 267:1811–1820CrossRefGoogle Scholar
  42. 42.
    Draugelates U, Bouaifi B, Steinberg H (1993) Korrosionsschutz durch Auftragschweissen mit den reaktiven Metallen Titan, Tantal und Zirkonium. Werkst Korros 44:269–273CrossRefGoogle Scholar
  43. 43.
    Tomita T, Takatani Y, Okita K, Harada Y (1998) Improvement of wear property of NbC/high Cr-high Ni overlay alloy coating formed by plasma transferred arc welding process. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 253–258Google Scholar
  44. 44.
    Alaluss K, Matthes K-J (2007) Beanspruchungsgerechte Formgebung von Umformwerkzeugen durch formgebendes Plasma-Pulver-Auftragschweiβen (Load adjusted shaping of forming tools using build-up PTA welding). Mat-wiss u Werkstofttech 38(7):565–571CrossRefGoogle Scholar
  45. 45.
    Dilthey U, Kabatnik L, Lugscheider E, Schlimbach K, Langer G (1999) Möglichkeiten zur Steigerung der Oberflächenfestigkeit bei Aluminiumlegierungen mit Plasma-Pulver-Schweiβverfahren (Improving of the wear resistance of aluminum alloys by plasma transferred arc welding). Mat-wiss u Werkstofttech 30(11):697–702CrossRefGoogle Scholar
  46. 46.
    Lugscheider E, Langer G, Schlimbach K, Dilthey U, Kabatnik L (1999) Possibilites for improving wear-properties of aluminum-alloys by plasma powder welding process. In: Lugscheider E, Kammer P (eds) Proceedings of the united thermal spray conference, Düsseldorf, Germany. DVS, Düsseldorf, Germany, pp 410–413Google Scholar
  47. 47.
    Deuis RL, Yellup JM, Subramanian C (1998) Metal-matrix composite coatings by PTA surfacing. Compos Sci Technol 58:299–309CrossRefGoogle Scholar
  48. 48.
    Skarvelis P, Papadimitriou GD (2009) Microstructural and tribological evaluation of potential self-lubricating coatings with MoS2\MnS additions produced by the plasma transferred arc technique. Tribol Int 42:1765–1770CrossRefGoogle Scholar
  49. 49.
    Skarvelis P, Papadimitriou GD (2009) Plasma transferred arc composite coatings with self lubricating properties, based on Fe and Ti sulfides: microstructure and tribological behavior. Surf Coat Technol 203:1385–1394CrossRefGoogle Scholar
  50. 50.
    Wang H, Jiang W, Valant M, Kovacevic R (2003) Microplasma powder deposition as a new solid freeform fabrication process. Proc Inst Mech Eng:1641–1650Google Scholar
  51. 51.
    Hollis K, Bartram B, Withers J, Storm R, Massarello J (2006) Plasma transferred arc deposition of beryllium. J Therm Spray Technol 15(4):785–789CrossRefGoogle Scholar
  52. 52.
    Hsu KC, Etemadi K, Pfender E (1983) Studey of the free-burning high-intensity argon arc. J Appl Phys 54(3):1293–1301CrossRefGoogle Scholar
  53. 53.
    Lowke JJ, Morrow R, Haidar J (1997) A simplified unified theory of arcs and their electrodes. J Phys D Appl Phys 30:2033–2042CrossRefGoogle Scholar
  54. 54.
    Lowke JJ, Tanaka M, Ushio M (2005) Mechanisms giving increased weld depth due to a flux. J Phys D Appl Phys 38(18):3438–3445CrossRefGoogle Scholar
  55. 55.
    Bini R, Monno M, Boulos MI (2007) Effect of cathode nozzle geometry and process parameters on the energy distribution for an argon transferred arc. Plasma Chem Plasma Process 27:359–380CrossRefGoogle Scholar
  56. 56.
    Etemadi K (1982) Investigation of high-current arcs by computer-controlled plasma spectroscopy. PhD Thesis, University of MinnesotaGoogle Scholar
  57. 57.
    Young RM, Chyou YP, Fleck E, Pfender E (1983) An experimental arc plasma reactor for the synthesis of refractory materials. In: Boulos MI, Munz RJ (eds) Proceedings of the 6th international symposium on plasma chemistry, Montreal, QC. International Union of Pure and Applied Chemistry, pp 211–218Google Scholar
  58. 58.
    Peters J, Heberlein J, Lindsay J (2007) Spectroscopic diagnostics in a highly constricted oxygen arc. J Phys D Appl Phys 40:3960–3971CrossRefGoogle Scholar
  59. 59.
    Evrard M, Blanchet B (1970) Etudes des plasmas d'arc du point de vue du soudage. Soudages et Techniques Connexes 7:261–298Google Scholar
  60. 60.
    Leylavergne M, Valetoux H, Coudert JF, Fauchais P, Leroux V (1998) Comparison of the behaviour of copper, cast iron and aluminum alloy substrates heated by a plasma transferred arc. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 489–495Google Scholar
  61. 61.
    Jenista J, Heberlein J, Pfender E (1997) Model for anode heat transfer from an electric arc. In: Fauchais P (ed) Proceedings of the 4th international thermal plasma processes conference, Athens, Greece. Begell House Inc., New York, NY, pp 805–815Google Scholar
  62. 62.
    Heberlein J, Mentel J, Pfender E (2007) The anode region of electric arcs – a survey. J Phys D Appl Phys 43:023001CrossRefGoogle Scholar
  63. 63.
    Yang G, Heberlein J (2008) Anode heat transfer by electron current and electron conduction in an atmospheric pressure argon arc. In: Jemmaa NB (ed) Proceedings of the international conference on electrical contacts, Saint Malo, France. Universite de Rennes, Rennes, France, pp 313–316Google Scholar
  64. 64.
    Jenista J, Heberlein J, Pfender E (1997) Numerical model of the anode region of high-current electric arcs. IEEE Trans Plasma Sci 25(5):883–890CrossRefGoogle Scholar
  65. 65.
    Menart JA (1996) Theoretical and experimental investigations of radiative and total heat transfer in thermal plasmas. Ph.D. Thesis, University of MinnesotaGoogle Scholar
  66. 66.
    Dilthey U, Ellermeier J, Gladkij P, Pavlenko AV (1993) Kombiniertes Plasma-Pulver-Auftragschweissen. Schweissen und Schneiden 45(5):241–244Google Scholar
  67. 67.
    Nestor OH (1962) Heat intensity and current density distributions at the anode of high current, inert gas arcs. J Appl Phys 33(5):1638–1648CrossRefGoogle Scholar
  68. 68.
    Ebert L, Thurner S, Neyka S (2009) Beeinflussung der Hartstoffverteilung beim Plasma-Pulver-Auftragschweiβen. Influencing the distribution of reinforcing particles in plasma transfer arc welding. Mat.-wiss u. Werkstofttech 40(12):878–881Google Scholar
  69. 69.
    Wilden J, Bergmann JP, Frank H, Pinzl S, Schrieber F (2004) Thin plasma-transferred-arc welded coatings – an alternative to thermally sprayed coatings? In: Ohmori A (ed) Proceedings of the international thermal spray conference, Osaka, Japan. ASM International, Materials Park, OH, pp 556–561Google Scholar
  70. 70.
    Matthes K-J, Alaluss K, Riedel F (2002) Nutzung der Finite-Elemente-Methode zur Optimierung des formgebenden Pulver-Plasmaauftragschweissens für die Herstellung hoch beanspruchbarer Umformwerkzeuge. Schweissen und Schneiden 54(4):178–184Google Scholar
  71. 71.
    Lakshminarayanan AK, Balasubramanian V, Varahamoorthy R, Babu S (2008) Predicting the dilution of plasma transferred arc hardfacing of stellite on carbon steel using response surface methodology. Met Mater Int 14(6):779–789CrossRefGoogle Scholar
  72. 72.
    DuPont JN (1998) On optimization of the powder plasma arc surfacing process. Metallugical Mater Trans B 29B:932–934CrossRefGoogle Scholar
  73. 73.
    Just C, Badisch E, Wosik J (2010) Influence of welding current on carbide/matrix interface properties in MMCs. J Mater Process Technol 210:408–414CrossRefGoogle Scholar
  74. 74.
    Bouaifi B, Ait-Mekideche A, Gebert A, Wocilka D (2001) Nutzung von stickstoffhaltigen Hochtemperaturplasmen zum reaktiven beschichten mittels Plasmaauftragschweiβen. Schweissen und Schneiden 53:478–482Google Scholar
  75. 75.
    Bach F-W, SP, Zühlsdorf J (1999) Plasma powder welding under raised pressure environment. In: Lugscheider E, Kammer P (eds) Proceedings of the united thermal spray conference, Düsseldorf, Germany. DVS, Düsseldorf, Germany, pp 757–760Google Scholar
  76. 76.
    Wang W, Qian SQ, Zhou XY (2009) Microstructure and properties of TiN/Ni composite coating prepared by plasma transferred arc scanning process. Trans Nonferrous Met Soc China 19:1180–1184CrossRefGoogle Scholar
  77. 77.
    Matthes K-J, Alaluss K (1996) Formgebendes Plasma-Pulverauftragschweissen mit Impulslichtbogen unter Beachtung minimaler Verformung. Schweissen und Schneiden 48(9):668–672Google Scholar
  78. 78.
    D’Oliveira CM, Paredes RS, Santos RL (2005) Pulsed current plasma transferred arc hardfacing. Mater Process Technol 171:167–174CrossRefGoogle Scholar
  79. 79.
    Proner A, Dacquet JP, Rouanet R (1997) The plasma high energy: a new hardfacing technique. Begell House, Inc., New York, NYGoogle Scholar
  80. 80.
    Proner A, Ducos M, Dacquet JP (1997) Process for coating of hardfacing a part by means of a plasma tranferred arc. US Patent US 5,624,717Google Scholar
  81. 81.
    Leylavergne M, Chartier T, Grimaud A, Baumard JF, Fauchais P (1998) PTA reclamation of cast iron and aluminum alloys substrate with NiCu film deposited by tape casting. In: Proceedings of the 15th international thermal spray conference, Nice, France, pp 373–377Google Scholar
  82. 82.
    Leylavergne M, Chartier T, Grimaud A, Fauchais P (1999) PTA reclamation of cast iron and nickel-based alloy substrates with films deposited by tape casting. In: Lugscheider PAKE (ed) Proceedings of the united thermal spray conference, Düsseldorf, Germany. DVS, Düsseldorf, Germany, pp 253–258Google Scholar
  83. 83.
    Leylavergne M, Chartier T, Grimaud A, Fauchais P (2000) PTA reclamation of cast iron substrates using tape casting process – the role of the organic binder concentration. In: Berndt CC (ed) Proceedings of the international thermal spray conference, Montreal, Canada. ASM International, Materials Park, OH, pp 1169–1177Google Scholar
  84. 84.
    Leylavergne M, Chartier T, Denoirjean A, Grimaud A, Abelard P, Fauchais P (2001) Cast iron substrates reclamation by tape casting of NiCu treated by plasma transferred arc: optimization of the tape and its plasma treatment. Thin Solid Films 391:1–10CrossRefGoogle Scholar
  85. 85.
    Dilthey U, Kondapalli S, Balashow B, Riedel F (2008) Improving wear resistance of aluminium alloys by developing FTC and TiC based composite coatings using plasma powered arc welding process. Surf Eng 24(1):75–80CrossRefGoogle Scholar
  86. 86.
    Gebert A, Wocilka D, Bouaifi B, Schütz M (2002) Wear and corrosion prevention at light metals by means of welding methods. In: Lugscheider E (ed) Proceedings of ITSC, Essen, Germany. DVS, Düsseldorf, Germany, pp 268–272Google Scholar
  87. 87.
    Bouaifi B, Plegge T, Sommer D, Hettiger F, Hallen H (1992) High performance plasma-powder weld surfacing – increase in efficiency and in service life of components subject to wear and corrosion. Schweissen und Schneiden 44:675–677Google Scholar
  88. 88.
    Kesavan D, Kamaraj M (2010) The microstructure and high temperature wear performance of a nickel base hardfaced coating. Surf Coat Technol 204:4034–4043CrossRefGoogle Scholar
  89. 89.
    Bartys H, Guerin JD, Bricout JP, Oudin J (1998) Thermal spraying applied onto high energy railway braking: characterization of friction performances. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 1127–1132Google Scholar
  90. 90.
    Wang XB, Cai LJ, Yang ZH, Xiao C, Xu LF (2009) Selection of covering materials for synthesising fabrication of TiB2 based coating with PTA process. Surf Eng 25(6):470–475CrossRefGoogle Scholar
  91. 91.
    Branagan DJ, Marshall MC, Meacham BE (2006) High toughness high hardness iron based PTAW weld materials. Mater Sci Eng A 428:116–123CrossRefGoogle Scholar
  92. 92.
    Flores JF, Neville A, Kapur N, Gnanavelu A (2009) An experimental study of the erosion-corrosion behavior of plasma transferred arc MMCs. Wear 267:213–222CrossRefGoogle Scholar
  93. 93.
    Harper DH, Gill MJ, Hart KWD, Anderson M (2002) Plasma transferred arc overlays reduce operating costs in oil sand processing. In: Lugscheider E (ed) Proceedings of the ITSC, Essen, Germany. DVS, Düsseldorf, Germany, pp 278–283Google Scholar
  94. 94.
    Hart KWD, Harper DH, Gill MJ (2000) Case studies in wear resistance using HVOF, PTAW and spray fusion surfacing. In: Berndt CC (ed) Proceedings of the international thermal spray conference, Montreal, Canada. ASM International, Materials Park, OH, pp 1117–1125Google Scholar
  95. 95.
    Huang X, Wang R, Xu LF, Luo H, Yin X (1998) Applications of PTA powder welding in petroleum chemical industry. In: Coddet C (ed) Proceedings of the 15th international thermal spray conference, Nice, France. ASM International, Materials Park, OH, pp 1013–1017Google Scholar
  96. 96.
    Draugelates U, Bouaifi B, Giessler S (1998) Zweipulver-Plasmaauftragschweissen von oxidkeramikhaltigen Nickelbasislegierungen. Schweissen und Schneiden 50:713–716Google Scholar
  97. 97.
    Draugelates U, Bouaifi B, Schreiber F, Göllner J, Schultze S, Boese E (1998) Korrosionsverhalten von Plasma-Auftragschweissungen aus Titan-Legierungen. Mater Corros 49:744–752CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pierre L. Fauchais
    • 1
  • Joachim V. R. Heberlein
    • 2
  • Maher I. Boulos
    • 3
  1. 1.Sciences des Procédés Céramiques et de Traitements de Surface (SPCTS)Université de LimogesLimogesFrance
  2. 2.Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Chemical EngineeringUniversity of SherbrookeSherbrookeCanada

Personalised recommendations