Advertisement

Hox Genes and Stem Cells

  • Mina Gouti
  • Anthony Gavalas

Abstract

Stem cells are cells that undergo self-renewal as well as differentiation into progenitor cells. They are abundantly present, although ill defined, during development and it is believed that most, if not all, adult tissues harbor small populations of stem cells. Adult stem cells have been described for intestine, skin, muscle, blood and nervous system and may provide a tissue specific resource for tissue damage repair. A balance between stem cell self-renewal and differentiation maintains homeostasis in adult tissue. Thus normal tissue stem cells are defined by three common properties. (1) extensive self-renewal capacity, (2) strict control of stem cell numbers and (3) ability to undergo extensive differentiation to reconstitute all the functional elements in a given tissue. In this chapter we review the evidence that Hox genes may be involved in stem cell maintenance and control of self-renewal in different cellular and developmental contexts. Strong evidence exists for their role in controlling Drosophila neuroblast numbers and fate decisions and for their role in controlling expansion, self-renewal and lineage specification in the mammalian hematopoietic stem cells. There are tantalizing clues for their involvement in stem cell expansion during embryonic development and later in the process of oncogenesis.

Keywords

Stem Cell Acute Myeloid Leukemia Homeobox Gene Erythroid Progenitor Lineage Commitment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Betschinger J, Knoblich JA. Dare to be different: Asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 2004; 14(16):R674–685.PubMedCrossRefGoogle Scholar
  2. 2.
    Peterson C, Carney GE, Taylor BJ et al. reaper is required for neuroblast apoptosis during Drosophila development. Development 2002; 129(6):1467–1476.PubMedGoogle Scholar
  3. 3.
    White K, Grether ME, Abrams JM et al. Genetic control of programmed cell death in Drosophila. Science 1994; 264(5159):677–683.PubMedCrossRefGoogle Scholar
  4. 4.
    Bello BC, Hirth F, Gould AP. A pulse of the Drosophila Hox protein Abdominal-A schedules the end of neural proliferation via neuroblast apoptosis. Neuron 2003; 37(2):209–219.PubMedCrossRefGoogle Scholar
  5. 5.
    Lohmann I, McGinnis N, Bodmer M et al. The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 2002; 110(4):457–466.PubMedCrossRefGoogle Scholar
  6. 6.
    Prokop A, Bray S, Harrison E et al. Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system. Mech Dev 1998; 74(1–2):99–110.PubMedCrossRefGoogle Scholar
  7. 7.
    Cenci C, Gould AP. Drosophila Grainyhead specifies late programmes of neural proliferation by regulating the mitotic activity and Hox-dependent apoptosis of neuroblasts. Development 2005; 132(17):3835–3845.PubMedCrossRefGoogle Scholar
  8. 8.
    Berger C, Pallavi SK, Prasad M et al. A critical role for cyclin E in cell fate determination in the central nervous system of Drosophila melanogaster. Nat Cell Biol 2005; 7(1):56–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Trainor PA, Krumlauf R. Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 2001; 13(6):698–705.PubMedCrossRefGoogle Scholar
  10. 10.
    Favier B, Dolle P. Developmental functions of mammalian Hox genes. Mol Hum Reprod 1997; 3(2):115–131.PubMedCrossRefGoogle Scholar
  11. 11.
    Horan GS, Ramirez-Solis R, Featherstone MS et al. Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev 1995; 9(13):1667–1677.PubMedCrossRefGoogle Scholar
  12. 12.
    Rijli FM, Mark M, Lakkaraju S et al. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 1993; 75(7):1333–1349.PubMedCrossRefGoogle Scholar
  13. 13.
    Maconochie MK, Nonchev S, Studer M et al. Cross-regulation in the mouse HoxB complex: The expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 1997; 11(14):1885–1895.PubMedCrossRefGoogle Scholar
  14. 14.
    Gavalas A, Trainor P, Ariza-McNaughton L et al. Synergy between Hoxal and Hoxb1: The relationship between arch patterning and the generation of cranial neural crest. Development 2001; 128(15):3017–3027.PubMedGoogle Scholar
  15. 15.
    Gavalas A, Studer M, Lumsden A et al. Hoxal and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 1998; 125(6):1123–1136.PubMedGoogle Scholar
  16. 16.
    Hirth F, Hartmann B, Reichert H. Homeotic gene action in embryonic brain development of Drosophila. Development 1998; 125(9):1579–1589.PubMedGoogle Scholar
  17. 17.
    Manley NR, Capecchi MR. The role of Hoxa-3 in mouse thymus and thyroid development. Development 1995; 121(7):1989–2003.PubMedGoogle Scholar
  18. 18.
    Manley NR, Capecchi MR. Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev Biol 1997; 192(2):274–288.PubMedCrossRefGoogle Scholar
  19. 19.
    Davis AP, Witte DP, Hsieh-Li HM et al. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature 1995; 375(6534):791–795.PubMedCrossRefGoogle Scholar
  20. 20.
    Wellik DM, Hawkes PJ, Capecchi MR. Hoxll paralogous genes are essential for metanephric kidney induction. Genes Dev 2002; 16(11):1423–1432.PubMedCrossRefGoogle Scholar
  21. 21.
    Afonja O, Smith Jr JE, Cheng DM et al. MEIS1 and HOXA7 genes in human acute myeloid leukemia. Leuk Res 2000; 24(10):849–855.PubMedCrossRefGoogle Scholar
  22. 22.
    Kawagoe H, Humphries RK, Blair A et al. Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia 1999; 13(5):687–698.PubMedCrossRefGoogle Scholar
  23. 23.
    Barbouti A, Hoglund M, Johansson B et al. A novel gene, MSI2, encoding a putative RNA-binding protein is recurrently rearranged at disease progression of chronic myeloid leukemia and forms a fusion gene with HOXA9 as a result of the cryptic t(7; 17)(p15; q23). Cancer Res 2003; 63(6):1202–1206.PubMedGoogle Scholar
  24. 24.
    Lam DH, Aplan PD. NUP98 gene fusions in hematologic malignancies. Leukemia 2001; 15(11):1689–1695.PubMedGoogle Scholar
  25. 25.
    Hunger SP, Galili N, Carroll AJ et al. The t(1; 19)(q23; p13) results in consistent fusion of E2A and PBX1 coding sequences in acute lymphoblastic leukemias. Blood 1991; 77(4):687–693.PubMedGoogle Scholar
  26. 26.
    Kamps MP, Baltimore D. E2A-Pbxl, the t(1; 19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol 1993; 13(1):351–357.PubMedGoogle Scholar
  27. 27.
    Sauvageau G, Lansdorp PM, Eaves CJ et al. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci USA 1994; 91(25):12223–12227.PubMedCrossRefGoogle Scholar
  28. 28.
    Ernst P, Wang J, Korsmeyer SJ. The role of MLL in hematopoiesis and leukemia. Curr Opin Hematol 2002; 9(4):282–287.PubMedCrossRefGoogle Scholar
  29. 29.
    Rawat VP, Cusan M, Deshpande A et al. Ectopic expression of the homeobox gene Cdx2 is the transforming event in a mouse model of t(12; 13)(p13; ql2) acute myeloid leukemia. Proc Natl Acad Sci USA 2004; 101(3):817–822.PubMedCrossRefGoogle Scholar
  30. 30.
    Golub TR, Slonim DK, Tamayo P et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999; 286(5439):531–537.PubMedCrossRefGoogle Scholar
  31. 31.
    Thorsteinsdottir U, Krosl J, Kroon E et al. The oncoprotein E2A-Pbxla collaborates with Hoxa9 to acutely transform primary bone marrow cells. Mol Cell Biol 1999; 19(9):6355–6366.PubMedGoogle Scholar
  32. 32.
    Ayton PM, Cleary ML. Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17(18):2298–2307.PubMedCrossRefGoogle Scholar
  33. 33.
    Giampaolo A, Pelosi E, Valtieri M et al. HOXB gene expression and function in differentiating purified hematopoietic progenitors. Stem Cells 1995; 13(Suppl 1):90–105.PubMedGoogle Scholar
  34. 34.
    Pineault N, Helgason CD, Lawrence HJ et al. Differential expression of Hox, Meisl, and Pbxl genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002; 30(1):49–57.PubMedCrossRefGoogle Scholar
  35. 35.
    Lawrence HJ, Sauvageau G, Humphries RK et al. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells 1996; 14(3):281–291.PubMedCrossRefGoogle Scholar
  36. 36.
    Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 2002; 109(1):29–37.PubMedCrossRefGoogle Scholar
  37. 37.
    Amsellem S, Pflumio F, Bardinet D et al. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med 2003; 9(11):1423–1427.PubMedCrossRefGoogle Scholar
  38. 38.
    Sauvageau G, Thorsteinsdottir U, Eaves CJ et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev 1995; 9(14):1753–1765.PubMedCrossRefGoogle Scholar
  39. 39.
    Buske C, Feuring-Buske M, Abramovich C et al. Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. Blood 2002; 100(3):862–868.PubMedCrossRefGoogle Scholar
  40. 40.
    Antonchuk J, Sauvageau G, Humphries RK. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109(1):39–45.PubMedCrossRefGoogle Scholar
  41. 41.
    Krosl J, Austin P, Beslu N et al. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 2003; 9(11):1428–1432.PubMedCrossRefGoogle Scholar
  42. 42.
    Krosl J, Beslu N, Mayotte N et al. The competitive nature of HOXB4-transduced HSC is limited by PBX1: The generation of ultra-competitive stem cells retaining full differentiation potential. Immunity 2003; 18(4):561–571.PubMedCrossRefGoogle Scholar
  43. 43.
    Thorsteinsdottir U, Mamo A, Kroon E et al. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 2002; 99(1):121–129.PubMedCrossRefGoogle Scholar
  44. 44.
    Bjornsson JM, Larsson N, Brun AC et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol 2003; 23(11):3872–3883.PubMedCrossRefGoogle Scholar
  45. 45.
    Ernst P, Mabon M, Davidson AJ et al. An Mil-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol 2004; 14(22):2063–2069.PubMedCrossRefGoogle Scholar
  46. 46.
    Davidson AJ, Ernst P, Wang Y et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 2003; 425(6955):300–306.PubMedCrossRefGoogle Scholar
  47. 47.
    Giampaolo A, Sterpetti P, Bulgarini D et al. Key functional role and lineage-specific expression of selected HOXB genes in purified hematopoietic progenitor differentiation. Blood 1994; 84(11):3637–3647.PubMedGoogle Scholar
  48. 48.
    Giannola DM, Shlomchik WD, Jegathesan M et al. Hematopoietic expression of HOXB4 is regulated in normal and leukemic stem cells through transcriptional activation of the HOXB4 promoter by upstream stimulating factor (USF)-l and USF-2. J Exp Med 2000; 192(10):1479–1490.PubMedCrossRefGoogle Scholar
  49. 49.
    Lill MC, Fuller JF, Herzig R et al. The role of the homeobox gene, HOX B7, in human myelomonocytic differentiation. Blood 1995; 85(3):692–697.PubMedGoogle Scholar
  50. 50.
    Crooks GM, Fuller J, Petersen D et al. Constitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors. Blood 1999; 94(2):519–528.PubMedGoogle Scholar
  51. 51.
    Buske C, Feuring-Buske M, Antonchuk J et al. Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Blood 2001; 97(8):2286–2292.PubMedCrossRefGoogle Scholar
  52. 52.
    Taghon T, Stolz F, De Smedt M et al. HOX-A10 regulates hematopoietic lineage commitment: Evidence for a monocyte-specific transcription factor. Blood 2002; 99(4):1197–1204.PubMedCrossRefGoogle Scholar
  53. 53.
    Daga A, Podesta M, Capra MC et al. The retroviral transduction of HOXC4 into human CD34(+) cells induces an in vitro expansion of clonogenic and early progenitors. Exp Hematol 2000; 28(5):569–574.PubMedCrossRefGoogle Scholar
  54. 54.
    Bijl J, van Oostveen JW, Kreike M et al. Expression of HOXC4, HOXC5, and HOXC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood 1996; 87(5):1737–1745.PubMedGoogle Scholar
  55. 55.
    Lawrence HJ, Stage KM, Mathews CH et al. Expression of HOX C homeobox genes in lymphoid cells. Cell Growth Differ 1993; 4(8):665–669.PubMedGoogle Scholar
  56. 56.
    Lessard J, Baban S, Sauvageau G. Stage-specific expression of polycomb group genes in human bone marrow cells. Blood 1998; 91(4):1216–1224.PubMedGoogle Scholar
  57. 57.
    Pineault N, Abramovich C, Ohta H et al. Differential and common leukemogenic potentials of multiple NUP98-Hox fusion proteins alone or with Meis1. Mol Cell Biol 2004; 24(5):1907–1917.PubMedCrossRefGoogle Scholar
  58. 58.
    Cillo C. HOX genes in human cancers. Invasion Metastasis 1994; 14(1–6):38–49.PubMedGoogle Scholar
  59. 59.
    Abate-Shen C. Deregulated homeobox gene expression in cancer: Cause or consequence? Nat Rev Cancer 2002; 2(10):777–785.PubMedCrossRefGoogle Scholar
  60. 60.
    Cillo C, Cantile M, Faiella A et al. Homeobox genes in normal and malignant cells. J Cell Physiol 2001; 188(2):161–169.PubMedCrossRefGoogle Scholar
  61. 61.
    De Vita G, Barba P, Odartchenko N et al. Expression of homeobox-containing genes in primary and metastatic colorectal cancer. Eur J Cancer 1993; 29A(6):887–893.PubMedGoogle Scholar
  62. 62.
    Tiberio C, Barba P, Magli MC et al. HOX gene expression in human small-cell lung cancers xenografted into nude mice. Int J Cancer 1994; 58(4):608–615.PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang X, Zhu T, Chen Y et al. Human growth hormone-regulated HOXA1 is a human mammary epithelial oncogene. J Biol Chem 2003; 278(9):7580–7590.PubMedCrossRefGoogle Scholar
  64. 64.
    Care A, Silvani A, Meccia E et al. HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Mol Cell Biol 1996; 16(9):4842–4851.PubMedGoogle Scholar
  65. 65.
    Naora H, Montz FJ, Chai CY et al. Aberrant expression of homeobox gene HOXA7 is associated with mullerian-like differentiation of epithelial ovarian tumors and the generation of a specific autologous antibody response. Proc Natl Acad Sci USA 2001; 98(26):15209–15214.PubMedCrossRefGoogle Scholar
  66. 66.
    Luo L, Yang X, Takihara Y et al. The cell-cycle regulator geminin inhibits Hox function through direct and polycomb-mediated interactions. Nature 2004; 427(6976):749–753.PubMedCrossRefGoogle Scholar
  67. 67.
    Gabellini D, Colaluca IN, Vodermaier HC et al. Early mitotic degradation of the homeoprotein HOXC10 is potentially linked to cell cycle progression. EMBO J 2003; 22(14):3715–3724.PubMedCrossRefGoogle Scholar
  68. 68.
    Raman V, Martensen SA, Reisman D et al. Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 2000; 405(6789):974–978.PubMedCrossRefGoogle Scholar
  69. 69.
    Chen H, Chung S, Sukumar S. HOXA5-induced apoptosis in breast cancer cells is mediated by caspases 2 and 8. Mol Cell Biol 2004; 24(2):924–935.PubMedCrossRefGoogle Scholar
  70. 70.
    Waltregny D, Alami Y, Clausse N et al. Overexpression of the homeobox gene HOXC8 in human prostate cancer correlates with loss of tumor differentiation. Prostate 2002; 50(3):162–169.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.Foundation for Biomedical Research of the Academy of AthensAthensHellas/Greece

Personalised recommendations