The Hox Gene Network in Vertebrate Limb Development

  • Cheryll Tickle


The Hox gene network has multiple roles in vertebrate limb development. One of its main functions is to encode positional information thus providing a “Hox” code for the pattern of structures along the long axis of the limb. Another function of Hox genes that has emerged recently is to regulate expression of the Sonic hedgehog gene (Shh) which controls patterning of distal structures. Hox genes also play a major role in development of the digits. The most recent advances have been the identification of control regions that drive Hox gene expression in the limb.


Limb Development Apical Ectodermal Ridge Chick Limb Vertebrate Limb Hoxd Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Saunders JW. The experimental analysis of chick limb bud development. In: Ede DA H, JR, Balls MJ, eds. Vertebrate Limb and Somite Morphogenesis. Cambridge: Cambridge University Press, 1977:1–24.Google Scholar
  2. 2.
    Saunders JW, Gasseling MT. Ectodermal-mesenchymal interactions in the origin of limb symmetry. In: Fleischmeyer R, Billingham RE, eds. Epithelial-mesenchymal interactions. Baltimore: Williams and Wilkins, 1968:78–97.Google Scholar
  3. 3.
    Oliver G, Wright CV, Hardwicke J et al. A gradient of homeodomain protein in developing fore-limbs of Xenopus and mouse embryos. Cell 1988; 55(6):1017–1024.PubMedCrossRefGoogle Scholar
  4. 4.
    Oliver G, Wright CV, Hardwicke J et al. Differential antero-posterior expression of two proteins encoded by a homeobox gene in Xenopus and mouse embryos. EMBO J 1988; 7(10):3199–3209.PubMedGoogle Scholar
  5. 5.
    Molven A, Wright CV, Bremiller R et al. Expression of a homeobox gene product in normal and mutant zebrafish embryos: Evolution of the tetrapod body plan. Development 1990; 109(2):279–288.PubMedGoogle Scholar
  6. 6.
    Oliver G, De Robertis EM, Wolpert L et al. Expression of a homeobox gene in the chick wing bud following application of retinoic acid and grafts of polarizing region tissue. EMBO J 1990; 9(10):3093–3099.PubMedGoogle Scholar
  7. 7.
    Dolle P, Duboule D. Two gene members of the murine HOX-5 complex show regional and cell-type specific expression in developing limbs and gonads. EMBO J 1989; 8(5):1507–1515.PubMedGoogle Scholar
  8. 8.
    Dolle P, Izpisua-Belmonte JC, Falkenstein H et al. Coordinate expression of the murine Hox-5 complex homeobox-containing genes during limb pattern formation. Nature 1989; 342(6251):767–772.PubMedCrossRefGoogle Scholar
  9. 9.
    Izpisua-Belmonte JC, Tickle C, Dolle P et al. Expression of the homeobox Hox-4 genes and the specification of position in chick wing development. Nature 1991; 350(6319):585–589.PubMedCrossRefGoogle Scholar
  10. 10.
    Yokouchi Y, Sasaki H, Kuroiwa A. Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature 1991; 353(6343):443–445.PubMedCrossRefGoogle Scholar
  11. 11.
    Nelson CE, Morgan BA, Burke AC et al. Analysis of Hox gene expression in the chick limb bud. Development 1996; 122(5):1449–1466.PubMedGoogle Scholar
  12. 12.
    Stratford TH, Kostakopoulou K, Maden M. Hoxb-8 has a role in establishing early anterior-posterior polarity in chick forelimb but not hindlimb. Development 1997; 124(21):4225–4234.PubMedGoogle Scholar
  13. 13.
    Cohn MJ, Patel K, Krumlauf R et al. Hox9 genes and vertebrate limb specification. Nature 1997; 387(6628):97–101.PubMedCrossRefGoogle Scholar
  14. 14.
    Saunders JW. The proximo-distal sequence of origin of parts of the chick wing and the role of the ectoderm. Journal of Experimental Zoology 1948; 108:363–404.CrossRefGoogle Scholar
  15. 15.
    Tabin CJ. Why we have (only) five fingers per hand: Hox genes and evolution of paired limbs. Development 1992; 116(2):289–296.PubMedGoogle Scholar
  16. 16.
    Nohno T, Noji S, Koyama E et al. Involvement of the Chox-4 chicken homeobox genes in determination of anteroposterior axial polarity during limb development. Cell 1991; 64(6):1197–1205.PubMedCrossRefGoogle Scholar
  17. 17.
    Izpisua-Belmonte JC, Brown JM, Duboule D et al. Expression of Hox-4 genes in the chick wing links pattern formation to the epithelial-mesenchymal interactions that mediate growth. EMBO J 1992; 11(4):1451–1457.PubMedGoogle Scholar
  18. 18.
    Riddle RD, Johnson RL, Laufer E et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993; 75(7):1401–1416.PubMedCrossRefGoogle Scholar
  19. 19.
    Masuya H, Sagai T, Moriwaki K et al. Multigenic control of the localization of the zone of polarizing activity in limb morphogenesis in the mouse. Dev Biol 1997; 182(1):42–51.PubMedCrossRefGoogle Scholar
  20. 20.
    Sharpe J, Lettice L, Hecksher-Sorensen J et al. Identification of sonic hedgehog as a candidate gene responsible for the polydactylous mouse mutant Sasquatch. Curr Biol 1999; 9(2):97–100.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 2000; 100(4):423–434.PubMedCrossRefGoogle Scholar
  22. 22.
    Chiang C, Litingtung Y, Harris MP, et al. Manifestation of the limb prepattern: Limb development in the absence of sonic hedgehog function. Dev Biol 2001; 236(2):421–435.PubMedCrossRefGoogle Scholar
  23. 23.
    Litingtung Y, Dahn RD, Li YN et al. Shh and Gli3 are dispensable for limb skeleton formation but regulate digit number and identity. Nature 2002; 418(6901):979–983.PubMedCrossRefGoogle Scholar
  24. 24.
    te Welscher P, Zuniga A, Kuijper S et al. Progression of vertebrate limb development through SHH-mediated counteraction of GLI3. Science 2002; 298(5594):827–830.CrossRefGoogle Scholar
  25. 25.
    Liu A, Wang B, Niswander LA. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors. Development 2005; 132(13):3103–3111.PubMedCrossRefGoogle Scholar
  26. 26.
    Caruccio NC, Martinez-Lopez A, Harris M et al. Constitutive activation of sonic hedgehog signaling in the chicken mutant talpid(2): Shh-independent outgrowth and polarizing activity. Dev Biol 1999; 212 9(1):137–149.CrossRefGoogle Scholar
  27. 27.
    Ispizua-Belmonte JC, Ede DA, Tickle C et al. The mis-expression of posterior Hox-4 genes in talpid (ta3) mutant wings correlates with absence of antero-posterior polarity. Development 1992; H4(4):959–963.Google Scholar
  28. 28.
    Yang Y, Drossopoulou G, Chuang PT et al. Relationship between dose, distance and time in Sonic Hedgehog-mediated regulation of anteroposterior polarity in the chick limb. Development 1997; 124(21):4393–4404.PubMedGoogle Scholar
  29. 29.
    Dahn RD, Fallon JF. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science 2000; 289(5478):438–441.PubMedCrossRefGoogle Scholar
  30. 30.
    Duprez DM, Kostakopoulou K, Francis-West PH et al. Activation of Fgf-4 and HoxD gene expression by BMP-2 expressing cells in the developing chick limb. Development 1996; 122(6):1821–1828.PubMedGoogle Scholar
  31. 31.
    Vogel A, Roberts-Clarke D, Niswander L. Effect of FGF on gene expression in chick limb bud cells in vivo and in vitro. Dev Biol 1995; 171(2):507–520.PubMedCrossRefGoogle Scholar
  32. 32.
    Hashimoto K, Yokouchi Y, Yamamoto M et al. Distinct signalling molecules control Hox-all and Hox-al3 expression in the muscle precursor and mesenchyme of the chick limb bud. Development 1999; 126(12):2771–2783.PubMedGoogle Scholar
  33. 33.
    Vargesson N, Kostakopoulou K, Drossopoulou G et al. Characterisation of Hoxa gene expression in the chick limb bud in response to FGF. Dev Dyn 2001; 220(1):87–90.PubMedCrossRefGoogle Scholar
  34. 34.
    Niswander L, Tickle C, Vogel A et al. FGF-4 replaces the apical ectodermal ridge and directs outgrowth and patterning of the limb. Cell 1993; 75(3):579–587.PubMedCrossRefGoogle Scholar
  35. 35.
    Fallon JF, Lopez A, Ros MA et al. FGF-2: Apical ectodermal ridge growth signal for chick limb development. Science 1994; 264(5155):104–107.PubMedCrossRefGoogle Scholar
  36. 36.
    Summerbell D, Lewis J, Wolpert L. Positional information in chick limb morphogenesis. Nature 1973; 244(5413):492–496.PubMedCrossRefGoogle Scholar
  37. 37.
    Dudley AT, Ros MA, Tabin CJ. A reexamination of proximodistal patterning during vertebrate limb development. Nature 2002; 418(6897):539–544.PubMedCrossRefGoogle Scholar
  38. 38.
    Papageorgiou S. Cooperating morphogens control hoxd gene expression in the developing vertebrate limb. J Theor Biol 1998; 192(1):43–53.PubMedGoogle Scholar
  39. 39.
    Vargesson N, Clarke JD, Vincent K et al. Cell fate in the chick limb bud and relationship to gene expression. Development 1997; 124(10):1909–1918.PubMedGoogle Scholar
  40. 40.
    Niswander L, Jeffrey S, Martin GR et al. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature 1994; 371(6498):609–612.PubMedCrossRefGoogle Scholar
  41. 41.
    Laufer E, Nelson CE, Johnson RL et al. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell 1994; 79(6):993–1003.PubMedCrossRefGoogle Scholar
  42. 42.
    Morgan BA, Izpisua-Belmonte JC, Duboule D et al. Targeted misexpression of Hox-4.6 in the avian limb bud causes apparent homeotic transformations. Nature 1992; 358(6383):236–239.PubMedCrossRefGoogle Scholar
  43. 43.
    Knezevic V, De Santo R, Schughart K et al. Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates Sonic hedgehog in a positive feedback loop. Development 1997; 124(22):4523–4536.PubMedGoogle Scholar
  44. 44.
    Dolle P, Dierich A, LeMeur M et al. Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell 1993; 75(3):431–441.PubMedCrossRefGoogle Scholar
  45. 45.
    Small KM, Potter SS. Homeotic transformations and limb defects in Hox Al 1 mutant mice. Genes and Development 1993; 7(12A):2318–2328.PubMedCrossRefGoogle Scholar
  46. 46.
    Fromental-Ramain C, Warot X, Messadecq N et al. Hoxa13 and Hoxd13 play a crucial role in the patterning of the limb autopod. Development 1996; 122:2997–3011.PubMedGoogle Scholar
  47. 47.
    Davis AP, Capecchi MR. A mutational analysis of the 5′ HoxD genes: Dissection of genetic interactions during limb development in the mouse. Development 1996; 122(4):1175–1185.PubMedGoogle Scholar
  48. 48.
    Zakany J, Duboule D. Synpolydactyly in mice with a targeted deficiency in the HoxD complex. Nature 1996; 384(6604):69–71.PubMedCrossRefGoogle Scholar
  49. 49.
    Zakany J, Fromental-Ramain C, Warot X et al. Regulation of number and size of digits by posterior Hox genes: A dose-dependent mechanism with potential evolutionary implications. Proc Natl Acad Sci USA 1997; 94(25):13695–13700.PubMedCrossRefGoogle Scholar
  50. 50.
    Wellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 2003; 301(5631):363–367.PubMedCrossRefGoogle Scholar
  51. 51.
    Salsi V, Zappavigna V. Hoxd13 and Hoxa13 directly control the expression of the EphA7 Ephrin tyrosine kinase receptor in developing limbs. J Biol Chem 2006; 281(4):1992–1999.PubMedCrossRefGoogle Scholar
  52. 52.
    Kmita M, Tarchini B, Zakany J et al. Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature 2005; 435(7045):1113–1116.PubMedCrossRefGoogle Scholar
  53. 53.
    Charite J, de Graaff W, Shen S et al. Ectopic expression of Hoxb-8 causes duplication of the ZPA in the forelimb and homeotic transformation of axial structures. Cell 1994; 78(4):589–601.PubMedCrossRefGoogle Scholar
  54. 54.
    Lu HC, Revelli JP, Goering L et al. Retinoid signalling is required for the establishment of a ZPA and for the expression of Hoxb-8, a mediator of ZPA formation. Development 1997; 124(9):1643–1651.PubMedGoogle Scholar
  55. 55.
    Hornstein E, Mansfield JH, Yekta S et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 2005; 438(7068):671–674.PubMedCrossRefGoogle Scholar
  56. 56.
    Spitz F, Gonzalez F, Duboule D. A Global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 2003; 113(3):405–417.PubMedCrossRefGoogle Scholar
  57. 57.
    Zakany J, Kmita M, Duboule D. A dual role for Hox genes in limb anterior-posterior asymmetry. Science 2004; 304(5677):1669–1672.PubMedCrossRefGoogle Scholar
  58. 58.
    Tarchini B, Duboule D. Control of Hoxd genes’ collinearity during early limb development. Dev Cell 2006; 10(1):93–103.PubMedCrossRefGoogle Scholar
  59. 59.
    Mortlock DP, Innis JW. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet 1997; 15(2):179–180.PubMedCrossRefGoogle Scholar
  60. 60.
    Muragaki Y, Mundlos S, Upton J et al. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 1996; 272(5261):548–551.PubMedCrossRefGoogle Scholar
  61. 61.
    Goodman FR. Limb malformations and the human HOX genes. Am J Med Genet 2002; 112(3):256–265.PubMedCrossRefGoogle Scholar
  62. 62.
    Caronia G, Goodman FR, McKeown CM et al. An I47L substitution in the HOXD13 homeodomain causes a novel human limb malformation by producing a selective loss of function. Development 2003; 130(8):1701–1712.PubMedCrossRefGoogle Scholar
  63. 63.
    Sordino P, van der Hoeven F, Duboule D. Hox gene expression in teleost fins and the origin of vertebrate digits. Nature 1995; 375(6533):678–681.PubMedCrossRefGoogle Scholar
  64. 64.
    Metscher BD, Takahashi K, Crow K et al. Expression of Hoxa-11 and Hoxa-13 in the pectoral fin of a basal ray-finnned fish, Polydon spathula: Implications for the origin of tetrapod limbs. Evol Dev 2005; 7(3):186–195.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.Division of Cell and Developmental Biology, School of Life SciencesUniversity of DundeeDundeeUK

Personalised recommendations