Expression of Hox Genes in the Nervous System of Vertebrates


The vertebrate nervous system is a major site of Hox gene expression and function. Studies on the patterns of expression, regulation and function of the vertebrate Hox gene family have played a key role in aiding our understanding of the basic ground plan of the CNS and processes that control how unique regional character is established and maintained in this complex organ system. This chapter will document the nature of the ordered patterns of Hox expression and link them with their regulation and functional roles in the nervous system.


Retinoic Acid Neural Tube Anterior Border Paraxial Mesoderm Homeotic Transformation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276:565–570.PubMedCrossRefGoogle Scholar
  2. 2.
    McGinnis W, Garber RL, Wirz J et al. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 1984; 37:403–408.PubMedCrossRefGoogle Scholar
  3. 3.
    Carrasco AE, McGinnis W, Gehring WJ et al. Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell 1984; 37:409–414.PubMedCrossRefGoogle Scholar
  4. 4.
    Scott M, Weiner A, Hazelrigg T et al. The molecular organization of the Antennapedia locus of Drosophila. Cell 1983; 35:763–776.PubMedCrossRefGoogle Scholar
  5. 5.
    McGinnis W, Krumlauf R. Homeobox genes and axial patterning. Cell 1992; 68:283–302.PubMedCrossRefGoogle Scholar
  6. 6.
    Krumlauf R. Hox genes in vertebrate development. Cell 1994; 78:191–201.PubMedCrossRefGoogle Scholar
  7. 7.
    Graham A, Papalopulu N, Hunt P et al. The murine and Drosophila homeobox clusters are derived from a common ancestor based on similarities in structure and expression. In: Capecchi M, ed. Molecular Genetics of Early Drosophila and Mouse Development. Cold Spring Harbor: Cold Spring Harpor Press, 1989:85–90.Google Scholar
  8. 8.
    Duboule D, Dollé P. The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 1989; 8(5):1497–1505.PubMedGoogle Scholar
  9. 9.
    Amores A, Force A, Yan YL et al. Zebrafish hox clusters and vertebrate genome evolution. Science 1998; 282:1711–1714.PubMedCrossRefGoogle Scholar
  10. 10.
    Amores A, Suzuki T, Yan YL et al. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 2004; 14(1):1–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Hoegg S, Meyer A. Hox clusters as models for vertebrate genome evolution. Trends Genet 2005; 21:421–424.PubMedCrossRefGoogle Scholar
  12. 12.
    Aparicio S, Hawker K, Cottage A et al. Organization of the Fugu rubripes Hox clusters, evidence for continuing evolution of vertebrate Hox complexes. Nat Gen 1997; 16:79–84.CrossRefGoogle Scholar
  13. 13.
    Gaunt SJ, Krumlauf R, Duboule D. Mouse homeo-genes within a subfamily, Hox-1.4,-2.6 and-5.1, display similar anteroposterior domains of expression in the embryo, but show stage-and tissue-dependent differences in their regulation. Development 1989; 107(1):131–141.PubMedGoogle Scholar
  14. 14.
    Graham A, Papalopulu N, Krumlauf R. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 1989; 57:367–378.PubMedCrossRefGoogle Scholar
  15. 15.
    Dollé P, Izpisùa-Belmonte JC, Falkenstcin H et al. Coordinate expression of the murine Hox-5 complex homeobox-containing genes during limb pattern formation. Nature 1989; 342(6251):767–712.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilkinson DG, Bhatt S, Cook M et al. Segmental expression of Hox-2 homeobox-containing genes in the developing mouse hindbrain. Nature 1989; 341:405–409.PubMedCrossRefGoogle Scholar
  17. 17.
    Izpisua-Belmonte JC, Falkenstein H, Dollé P et al. Murine genes related to the Drosophila AbdB homeotic genes are sequentially expressed during development of the posterior part of the body. EMBO J 1991; 10:2279–2289.PubMedGoogle Scholar
  18. 18.
    Hunt P, Wilkinson D, Krumlauf R. Patterning the vertebrate head: Murine Hox 2 genes mark distinct subpopulations of premigratory and migrating neural crest. Development 1991; 112:43–51.PubMedGoogle Scholar
  19. 19.
    Hunt P, Gulisano M, Cook M et al. A distinct Hox code for the branchial region of the vertebrate head. Nature 1991; 353(6347):861–864.PubMedCrossRefGoogle Scholar
  20. 20.
    Dollé P, Izpisua-Belmonte JC, Falkenstein H et al. Coordinate expression of the murine Hox-5 complex homoeobox-containing genes during limb pattern formation. Nature 1989; 342:767–772.PubMedCrossRefGoogle Scholar
  21. 21.
    Izpisua-Belmonte J, Falkenstein H, Dollé P et al. Murine genes related to the Drosophila AbdB homeotic gene are sequentially expressed during development of the posterior part of the body. EMBO J 1991; 10:2279–2289.PubMedGoogle Scholar
  22. 22.
    Nohno T, Noji S, Koyama E et al. Involvement of the Chox-4 chicken homeobox genes in determination of anteroposterior axial polarity during limb development. Cell 1991; 64:1197–1205.PubMedCrossRefGoogle Scholar
  23. 23.
    Dollé P, Izpisùa-Belmonte JC, Brown JM et al. Hox-4 genes and the morphogenesis of mammalian genitalia. Genes Dev 1991; 5:1767–1776.PubMedCrossRefGoogle Scholar
  24. 24.
    Kessel M, Gruss P. Homeotic transformations of murine prevertebrae and concommitant alteration of Hox codes induced by retinoic acid. Cell 1991; 67:89–104.PubMedCrossRefGoogle Scholar
  25. 25.
    Kessel M, Balling R, Gruss P. Variations of cervical vertebrae after expression of a Hox 1.1 transgene in mice. Cell 1990; 61:301–308.PubMedCrossRefGoogle Scholar
  26. 26.
    Gehring WJ, Qian YQ, Billeter M et al. Homeodomain-DNA recognition. Cell 1994; 78:211–223.PubMedCrossRefGoogle Scholar
  27. 27.
    Maconochie M, Nonchev S, Morrison A et al. Paralogous Hox genes: Function and regulation. Ann Rev Genet 1996; 30:529–556.PubMedCrossRefGoogle Scholar
  28. 28.
    Favier B, Dolle P. Developmental functions of mammalian Hox genes. Mol Hum Reprod 1997; 3:115–131.PubMedCrossRefGoogle Scholar
  29. 29.
    Slack JMW, Tannahill D. Mechanism of anteroposterior axis specification in vertebrates. Lessons from the amphibians. Development 1992; 114:285–302.PubMedGoogle Scholar
  30. 30.
    Nieuwkoop P. Activation and organization of the central nervous system in amphibians. J Exp Zool 1952; 120:1–108.CrossRefGoogle Scholar
  31. 31.
    Nieuwkoop P. Inductive interactions in early amphibian development and their general nature. J Embryol Exp Morph 1985; 89(suppl.): 333–347.PubMedGoogle Scholar
  32. 32.
    Lumsden A, Krumlauf R. Patterning the vertebrate neuraxis. Science 1996; 274:1109–1115.PubMedCrossRefGoogle Scholar
  33. 33.
    Jessell TM. Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nat Rev Genet 2000; 1(1):20–29.PubMedCrossRefGoogle Scholar
  34. 34.
    Le Douarin N, Kalcheim C. The Neural Crest. 2nd ed. Cambridge Univesity Press, 1999.Google Scholar
  35. 35.
    Keynes R, Krumlauf R. Hox genes and regionalization of the nervous system. Ann Rev Neurosci 1994; 17:109–132.PubMedCrossRefGoogle Scholar
  36. 36.
    Lumsden A, Keynes R. Segmental patterns of neuronal development in the chick hindbrain. Nature 1989; 337:424–428.PubMedCrossRefGoogle Scholar
  37. 37.
    Fraser S, Keynes R, Lumsden A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 1990; 344:431–435.PubMedCrossRefGoogle Scholar
  38. 38.
    Akam M, Dawson I, Tear G. Homeotic genes and the control of segment diversity. Development 1988; 104 (Supplement: Mechanisms of Segmentation): 123–133.Google Scholar
  39. 39.
    Chisaka O, Capecchi MR. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hoxl.5. Nature 1991; 350:473–479.PubMedCrossRefGoogle Scholar
  40. 40.
    Condie BG, Capecchi MR. Mice homozygous for a targeted disruption of Hoxd-3(Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and axis. Development 1993; 119:579–595.PubMedGoogle Scholar
  41. 41.
    Gendron-Maguire M, Mallo M, Zhang M et al. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 1993; 75:1317–1331.PubMedCrossRefGoogle Scholar
  42. 42.
    Jeannottee L, Lemieux M, Charron J et al. Specification of axial identity in the mouse: Role of the Hoxa-5(Hoxl.3) gene. Genes Dev 1993; 7:2085–2096.CrossRefGoogle Scholar
  43. 43.
    Rijli FM, Mark M, Lakkaraju S et al. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 1993; 75:1333–1349.PubMedCrossRefGoogle Scholar
  44. 44.
    Ramirez-Solis R, Zheng H, Whiting J et al. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 1993; 73:279–294.PubMedCrossRefGoogle Scholar
  45. 45.
    Small KS, Potter S. Homeotic transformations and limb defects in Hoxa-11 mutant mice. Genes Dev 1993; 7:2318–2328.PubMedCrossRefGoogle Scholar
  46. 46.
    Jegalian BG, De Robertis EM. Homeotic transformations in the mouse induced by over-expression of a human Hox3.3 transgene. Cell 1992; 71:901–910.PubMedCrossRefGoogle Scholar
  47. 47.
    Le Mouellic H, Lallemand Y, Brulet P. Homeosis in the mouse induced by a null mutation in the Hox-3.1 gene. Cell 1992; 69:251–264.PubMedCrossRefGoogle Scholar
  48. 48.
    Birgbauer E, Fraser SE. Violation of cell lineage restriction compartments in the chick hindbrain. Development 1994; 120:1347–1356.PubMedGoogle Scholar
  49. 49.
    Clarke JD, Lumsden A. Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 1993; 118:151–162.PubMedGoogle Scholar
  50. 50.
    Clarke JDW, Erskine L, Lumsden A. Differential progenitor dispersal and the spatial origin of early neurons can explain the predominance of single-phenotype clones in the chick hindbrain. Dev Dyn 1998; 212:14–26.PubMedCrossRefGoogle Scholar
  51. 51.
    McClintock JM, Kheirbek MA, Prince VE. Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 2002; 129(10):2339–2354.PubMedGoogle Scholar
  52. 52.
    McClintock JM, Carlson R, Mann DM et al. Consequences of Hox gene duplication in the vertebrates: An investigation of the zebrafish Hox paralogue group 1 genes. Development 2001; 128(13):2471–2484.PubMedGoogle Scholar
  53. 53.
    Moens CB, Cordes SP, Giorgianni MW et al. Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 1998; 125:381–391.PubMedGoogle Scholar
  54. 54.
    Moens CB, Kimmel CB. Hindbrain patterning in the zebrafish embryo. Soc Neurosci Abstr 1995; 21:118.Google Scholar
  55. 55.
    Moens CB, Prince VE. Constructing the hindbrain: Insights from the zebrafish. Dev Dyn 2002; 224(1):1–17.PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang M, Kim HJ, Marshall H et al. Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. Development 1994; 120:2431–2442.PubMedGoogle Scholar
  57. 57.
    Prince VE, Joly L, Ekker M et al. Zebrafish hox genes: Genomic organization and modified colinear expression patterns in the trunk. Development 1998; 125:407–420.PubMedGoogle Scholar
  58. 58.
    Prince VE, Moens CB, Kimmel CB et al. Zebrafish hox genes: Expression in the hindbrain region of wild-type and mutants of the segmentation gene, Valentino. Development 1998; 125:393–406.PubMedGoogle Scholar
  59. 59.
    Bell E, Wingate RJ, Lumsden A. Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science 1999; 284:21682171.CrossRefGoogle Scholar
  60. 60.
    Alexandre D, Clarke J, Oxtoby E et al. Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid-induced phenotype. Development 1996; 122:735–746.PubMedGoogle Scholar
  61. 61.
    Rossel M, Capecchi MR. Mice mutant for both Hoxal and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 1999; 126:5027–5040.PubMedGoogle Scholar
  62. 62.
    Gaufo GO, Wu S, Capecchi MR. Contribution of Hox genes to the diversity of the hindbrain sensory system. Development 2004; 131(6):1259–1266.PubMedCrossRefGoogle Scholar
  63. 63.
    Gaufo GO, Thomas KR, Capecchi MR. Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 2003; 130:5191–5201.PubMedCrossRefGoogle Scholar
  64. 64.
    Lufkin T, Dierich A, LeMeur M et al. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 1991; 66(6):1105–1119.PubMedCrossRefGoogle Scholar
  65. 65.
    Mark M, Lufkin T, Vonesch JL et al. Two rhombomeres are altered in Hoxa-1 mutant mice. Development 1993; 119:319–338.PubMedGoogle Scholar
  66. 66.
    Gavalas A, Davenne M, Lumsden A et al. Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 1997; 124:3693–3702.PubMedGoogle Scholar
  67. 67.
    Gavalas A, Studer M, Lumsden A et al. Hoxal and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 1998; 125:1123–1136.PubMedGoogle Scholar
  68. 68.
    Gavalas A, Ruhrberg C, Livet J et al. Neuronal defects in the hindbrain of Hoxal, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 2003.Google Scholar
  69. 69.
    Studer M, Lumsden A, Ariza-McNaughton L et al. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 1996; 384:630–635.PubMedCrossRefGoogle Scholar
  70. 70.
    Studer M, Gavalas A, Marshall H et al. Genetic interaction between Hoxal and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development 1998; 125:1025–1036.PubMedGoogle Scholar
  71. 71.
    Lim T, Jaques K, Stern C et al. An evaluation of myelomeres and segmentation of the chick embryo spinal cord. Development 1991; 113:227–238.PubMedGoogle Scholar
  72. 72.
    Stern C, Jaques K, Lim T et al. Segmental lineage restrictions in the chick embryo spinal cord depend on the adjacent somites. Development 1991; 113:239–244.PubMedGoogle Scholar
  73. 73.
    Phelan KA, Hollyday M. Axon guidance in muscleless chick wings: The role of muscle cells in motoneuronal pathway selection and muscle nerve formation. J Neurosci 1990; 10:2699–2716.PubMedGoogle Scholar
  74. 74.
    Ensini M, Tsuchida T, Belting HG et al. The control of rostrocaudal pattern in the developing spinal cord: Specification of motor neuron subtype identity is initiated by signals from paraxial mesoderm. Development 1998; 125:969–982.PubMedGoogle Scholar
  75. 75.
    Bronner-Fraser M. Rostrocaudal differences within the somites confer segmental pattern to trunk neural crest migration. Curr Top Dev Biol 2000; 47:279–296.PubMedCrossRefGoogle Scholar
  76. 76.
    Krumlauf R, Holland P, McVey J et al. Developmental and spatial patterns of expression of the mouse homeobox gene, Hox 2.1. Development 1987; 99:603–617.PubMedGoogle Scholar
  77. 77.
    Murphy P, Hill RE. Expression of the mouse labial-like homeobox-containing genes, Hox 2.9 and Hox 1.6, during segmentation of the hindbrain. Development 1991; 111:61–74.PubMedGoogle Scholar
  78. 78.
    Murphy P, Davidson DR, Hill RE. Segment-specific expression of a homeobox-containing gene in the mouse hindbrain. Nature 1989; 341:156–159.PubMedCrossRefGoogle Scholar
  79. 79.
    Prince V, Lumsden A. Hox-a2 expression in normal and transposed rhombomeres: Independent regulation in the neural tube and neural crest. Development 1994; 120:911–923.PubMedGoogle Scholar
  80. 80.
    Frohman MA, Boyle M, Martin GR. Isolation of the mouse Hox-2.9 gene; analysis of embryonic expression suggests that positional information along the anterior-posterior axis is specified by mesoderm. Development 1990; 110:589–607.PubMedGoogle Scholar
  81. 81.
    Geada AMC, Gaunt SJ, Azzawi M et al. Sequence and embryonic expression of the murine Hox-3.5 gene. Development 1992; 116:497–506.PubMedGoogle Scholar
  82. 82.
    Manzanares M, Bel-Vialer S, Ariza-McNaughton L et al. Independent regulation of initiation and maintenance phases of Hoxa3 expression in the vertebrate hindbrain involves auto and cross-regulatory mechanisms. Development 2001; 128(18):3595–3607.PubMedGoogle Scholar
  83. 83.
    Forlani S, Lawson KA, Deschamps J. Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 2003; 130:3807–3819.PubMedCrossRefGoogle Scholar
  84. 84.
    Deschamps J, van Nes J. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 2005; 132:2931–2942.PubMedCrossRefGoogle Scholar
  85. 85.
    Carpenter EM. Hox genes and spinal cord development. Dev Neurosci 2002; 24:24–34.PubMedCrossRefGoogle Scholar
  86. 86.
    Zeltser L, Desplan C, Heintz N. Hoxb-13: Colinear expression of a new Hox gene in a distant region of the HOXB cluster. Development 1996; 122:2475–2484.PubMedGoogle Scholar
  87. 87.
    Mahon KA, Westphal H, Gruss P. Expression of homeobox gene Hox 1.1 during mouse embryo-genesis. Development 1988; 104(Suppl):187–195.PubMedGoogle Scholar
  88. 88.
    Peterson RL, Jacobs DF, Awgulewitsch A. Hox-3.6: Isolation and characterization of a new murine homeobox gene located in the 5′ region of the Hox-3 cluster. Mech Dev 1992; 37:151–166.PubMedCrossRefGoogle Scholar
  89. 89.
    Oosterveen T, Meijlink F, Deschamps J. Expression of retinaldehyde dehydrogenase II and sequential activation of 5′ Hoxb genes in the mouse caudal hindbrain. Gene Expr Patterns 2004; 4:243–247.PubMedCrossRefGoogle Scholar
  90. 90.
    Hostikka SL, Capecchi MR. The mouse Hoxc 11 gene: Genomic structure and expression pattern. Mech Dev 1998; 70:133–145.PubMedCrossRefGoogle Scholar
  91. 91.
    Erselius JR, Goulding MD, Gruss P. Structure and expression pattern of the murine Hox-3.2 gene. Development 1990; 110:629–642.PubMedGoogle Scholar
  92. 92.
    Larochelle C, Tremblay M, Bernier D et al. Multiple cis-acting regulatory regions are required for restricted spatio-temporal Hoxa5 gene expression. Dev Dyn 1999; 214:127–140.PubMedCrossRefGoogle Scholar
  93. 93.
    Sham MH, Hunt P, Nonchev S et al. Analysis of the murine Hox-2.7 gene: Conserved alternative transcripts with differential distributions in the nervous system and the potential for shared regulatory regions. EMBO J 1992; 11:1825–1836.PubMedGoogle Scholar
  94. 94.
    Awgulewitsch A, Jacobs D. Differential expression of Hox 3.1 protein in subregions of the embryonic and adult spinal cord. Development 1990; 108(3):411–420.PubMedGoogle Scholar
  95. 95.
    Liu JP, Laufer E, Jessell TM. Assigning the positional identity of spinal motor neurons. rostrocaudal patterning of Hox-c expression by FGFs, Gdf11, and Retinoids. Neuron 2001; 32(6):997–1012.PubMedCrossRefGoogle Scholar
  96. 96.
    Dasen JS, Liu JP, Jessell TM. Motor neuron columnar fate imposed by sequential phases of Hox-c activity. Nature 2003; 425(6961):926–933.PubMedCrossRefGoogle Scholar
  97. 97.
    Carpenter EM, Goddard JM, Davis AP et al. Targeted disruption of Hoxd-10 affects mouse hindlimb development. Development 1997; 124:4505–4514.PubMedGoogle Scholar
  98. 98.
    Tiret L, Le Mouellic H, Maury M et al. Increased apoptosis of motoneurons and altered somatotopic maps in the branchial spinal cord of Hoxc8-deficient mice. Development 1998; 125:279–291.PubMedGoogle Scholar
  99. 99.
    de la Cruz CC, Der-Avakian A, Spyropoulos DD et al. Targeted disruption of Hoxd9 and Hoxd10 alters locomotor behavior, vertebral identity, and peripheral nervous system development. Dev Biol 1999; 216:595–610.PubMedCrossRefGoogle Scholar
  100. 100.
    Lin AW, Carpenter EM. Hoxa10 and Hoxd10 coordinately regulate lumbar motor neuron patterning. J Neurobiol 2003; 56:328–337.PubMedCrossRefGoogle Scholar
  101. 101.
    Wahba GM, Hostikka SL, Carpenter EM. The paralogous Hox genes Hoxa10 and Hoxd10 interact to pattern the mouse hindlimb peripheral nervous system and skeleton. Dev Biol 2001; 231:87–102.PubMedCrossRefGoogle Scholar
  102. 102.
    Burke AC, Tabin CJ. Virally mediated misexpression of Hoxc-6 in the cervical mesoderm results in spinal nerve truncations. Dev Biol 1996; 178:192–197.PubMedCrossRefGoogle Scholar
  103. 103.
    Shah V, Drill E, Lance-Jones C. Ectopic expression of Hoxd10 in thoracic spinal segments induces motoneurons with a lumbosacral molecular profile and axon projections to the limb. Dev Dyn 2004; 231:43–56.PubMedCrossRefGoogle Scholar
  104. 104.
    Altman J, Bayer J. The development of the rat spinal cord. Adv Anat Embryol Cell Biol 1984; 85:1–166.PubMedGoogle Scholar
  105. 105.
    Graham A, Maden M, Krumlauf R. The murine Hox-2 genes display dynamic dorsoventral patterns of expression during central nervous system development. Development 1991; 112:255–264.PubMedGoogle Scholar
  106. 106.
    Gaunt SJ. Expression patterns of mouse Hox genes: Clues to an understanding of developmental and evolutionary strategies. Bioessays 1991; 13(10):505–513.PubMedCrossRefGoogle Scholar
  107. 107.
    Gaunt SJ, Coletta PL, Pravtcheva D et al. Mouse Hox-3.4: Homeobox sequence and embryonic expression patterns compared with other members of the Hox gene network. Development 1990; 109(2):329–339.PubMedGoogle Scholar
  108. 108.
    Greer JM, Capecchi MR. Hoxb8 is required for normal grooming behavior in mice. Neuron 2002; 33:23–34.PubMedCrossRefGoogle Scholar
  109. 109.
    Lufkin T. Transcriptional regulation of vertebrate Hox genes during embryogenesis. Crit Rev Eukaryot Gene Expr 1997; 7:195–213.PubMedGoogle Scholar
  110. 110.
    Pöpperl H, Bienz M, Studer M et al. Segmental expression of Hoxb1 is controlled by a highly conserved autoregulatory loop dependent upon exd/Pbx. Cell 1995; 81:1031–1042.PubMedCrossRefGoogle Scholar
  111. 111.
    Studer M, Pöpperl H, Marshall H et al. Role of a conserved retinoic acid response element in rhombomere restriction of Hoxb-1. Science 1994; 265:1728–1732.PubMedCrossRefGoogle Scholar
  112. 112.
    Marshall H, Studer M, Pöpperl H et al. A conserved retinoic acid response element required for early expression of the homeobox gene Hoxb-1. Nature 1994; 370:567–571.PubMedCrossRefGoogle Scholar
  113. 113.
    Manzanares M, Cordes S, Kwan CT et al. Segmental regulation of Hoxb3 by kreisler. Nature 1997; 387:191–195.PubMedCrossRefGoogle Scholar
  114. 114.
    Manzanares M, Nardelli J, Gilardi-Hebenstreit P et al. Krox20 and kreisler cooperate in the transcriptional control of segmental expression of Hoxb3 in the developing hindbrain. EMBO J 2002; 21(3):365–376.PubMedCrossRefGoogle Scholar
  115. 115.
    Manzanares M, Cordes S, Ariza-McNaughton L et al. Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 1999; 126:759–769.PubMedGoogle Scholar
  116. 116.
    Gould A, Itasaki N, Krumlauf R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 1998; 21:39–51.PubMedCrossRefGoogle Scholar
  117. 117.
    Whiting J, Marshall H, Cook M et al. Multiple spatially specific enhancers are required to reconstruct the pattern of Hox-2.6 gene expression. Genes Dev 1991; 5(11):2048–2059.PubMedCrossRefGoogle Scholar
  118. 118.
    Morrison A, Ariza-McNaughton L, Gould A et al. HOXD4 and regulation of the group 4 paralog genes. Development 1997; 124:3135–3146.PubMedGoogle Scholar
  119. 119.
    Frasch M, Chen X, Lufkin T. Evolutionary-conserved enhancers direct region-specific expression of the murine Hoxa-1 and Hoxa-2 loci in both mice and Drosophila. Development 1995; 121:957–974.PubMedGoogle Scholar
  120. 120.
    Maconochie M, Krishnamurthy R, Nonchev S et al. Regulation of Hoxa2 in cranial neural crest cells involves members of the AP-2 family. Development 1999; 126:1483–1494.PubMedGoogle Scholar
  121. 121.
    Maconochie MK, Nonchev S, Manzanares M et al. Differences in Krox20-dependent regulation of Hoxa2 and Hoxb2 during hindbrain development. Dev Biol 2001; 233(2):468–481.PubMedCrossRefGoogle Scholar
  122. 122.
    Maconochie MK, Nonchev S, Studer M et al. Cross-regulation in the mouse HoxB complex: The expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev 1997; 11:1885–1896.PubMedCrossRefGoogle Scholar
  123. 123.
    Tumpel S, Cambronero F, Wiedemann LM et al. Evolution of cis elements in the differential expression of two Hoxa2 coparalogous genes in pufferfish (Takifugu rubripes). Proc Natl Acad Sci USA 2006; 103:5419–5424.PubMedCrossRefGoogle Scholar
  124. 124.
    Nonchev S, Maconochie M, Vesque C et al. The conserved role of Krox-20 in directing Hox gene expression during vertebrate hindbrain segmentation. Proc Natl Acad Sci USA 1996; 93:9339–9345.PubMedCrossRefGoogle Scholar
  125. 125.
    Nonchev S, Vesque C, Maconochie M et al. Segmental expression of Hoxa-2 in the hindbrain is directly regulated by Krox-20. Development 1996; 122:543–554.PubMedGoogle Scholar
  126. 126.
    Zhang F, Pöpperl H, Morrison A et al. Elements both 5′ and 3′ to the murine Hoxd4 gene establish anterior borders of expression in mesoderm and neuroectoderm. Mech Dev 1997; 67:49–58.PubMedCrossRefGoogle Scholar
  127. 127.
    Vesque C, Maconochie M, Nonchev S et al. Hoxb-2 transcriptional activation in rhombomeres 3 and 5 requires an evolutionarily conserved cis-acting element in addition to the Krox-20 binding site. EMBO J 1996; 15:5383–5896.PubMedGoogle Scholar
  128. 128.
    Sham MH, Vesque C, Nonchev S et al. The zinc finger gene Krox-20 regulates Hoxb-2 (Hox2.8) during hindbrain segmentation. Cell 1993; 72:183–196.PubMedCrossRefGoogle Scholar
  129. 129.
    Packer AI, Crotty DA, Elwell VA et al. Expression of the murine Hoxa4 gene requires both auto-regulation and a conserved retinoic acid response element. Development 1998; 125:1991–1998.PubMedGoogle Scholar
  130. 130.
    Sharpe J, Nonchev S, Gould A et al. Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J 1998; 17:1788–1798.PubMedCrossRefGoogle Scholar
  131. 131.
    Pöpperl H, Featherstone M. Identification of a retinoic acid repsonse element upstream of the murine Hox-4.2 gene. Mol Cell Biol 1993; 13(1):257–265.PubMedGoogle Scholar
  132. 132.
    Morrison A, Chaudhuri C, Ariza-McNaughton L et al. Comparative analysis of chicken Hoxb-4 regulation in transgenic mice. Mech Dev 1995; 53:47–59.PubMedCrossRefGoogle Scholar
  133. 133.
    Packer AI, Mailutha KG, Ambrozewicz LA et al. Regulation of the Hoxa4 and Hoxa5 genes in the embryonic mouse lung by retinoic acid and TGFbetal: Implications for lung development and patterning. Dev Dyn 2000; 217(1):62–74.PubMedCrossRefGoogle Scholar
  134. 134.
    Behringer R, Crotty DA, Tennyson VM et al. Seguences 5′ of the homeobox of the Hox-1.4 gene direct tissue-specific expression of lacZ during mouse development. Development 1993; 117:823–833.PubMedGoogle Scholar
  135. 135.
    Nowling T, Zhou W, Krieger KE et al. Hoxa5 gene regulation: A gradient of binding activity to a brachial spinal cord element. Dev Biol 1999; 208:134–146.PubMedCrossRefGoogle Scholar
  136. 136.
    Moreau J, Jeannotte L. Sequence analysis of a Hoxa4-Hoxa5 intergenic region including shared regulatory elements. DNA Seq 2002; 13:203–209.PubMedGoogle Scholar
  137. 137.
    Tuggle CK, Zakany J, Cianetti L et al. Region-specific enhancers near two mammalian homeo box genes define adjacent rostrocaudal domains in the central nervous system. Genes Dev 1990; 4(2):180–189.PubMedCrossRefGoogle Scholar
  138. 138.
    Zakany J, Gérard M, Favier B et al. Deletion of a HoxD enhancer induces transcriptional heterochrony leading to transposition of the sacrum. EMBO J 1997; 16:4393–4402.PubMedCrossRefGoogle Scholar
  139. 139.
    Gérard M, Chen JW, Gronemeyer H et al. In vivo targeted mutagenesis of a regulatory element reguired for positioning the Hoxd-11 and Hoxd-10 expression boundaries. Genes Dev 1996; 10:2326–2334.PubMedCrossRefGoogle Scholar
  140. 140.
    Gould A, Morrison A, Sproat G et al. Positive cross-regulation and enhancer sharing: Two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 1997; 11:900–913.PubMedCrossRefGoogle Scholar
  141. 141.
    Mansfield JH, Harfe BD, Nissen R et al. MicroRNA-responsive’ sensor’ transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 2004.Google Scholar
  142. 142.
    Hornstein E, Mansfield JH, Yekta S et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 2005; 438:671–674.PubMedCrossRefGoogle Scholar
  143. 143.
    Williams T, Tjian R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes Dev 1991; 5:670–682.PubMedCrossRefGoogle Scholar
  144. 144.
    Mitchell PJ, Timmons PM, Hébert JM et al. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev 1991; 5:105–119.PubMedCrossRefGoogle Scholar
  145. 145.
    Moser M, Ruschoff J, Buettner R. Comparative analysis of AP-2α and AP-2β gene expression during mouse embryogenesis. Dev Dyn 1997; 208:115–124.PubMedCrossRefGoogle Scholar
  146. 146.
    Chazaud C, Oulad-Abdelghani M, Bouillet P et al. AP-2.2, a novel gene related to AP-2, is expressed in the forebrain, limbs and face during mouse embryogenesis. Mech Dev 1996; 54:83–94.PubMedCrossRefGoogle Scholar
  147. 147.
    Deol MS. The abnormalities of the inner ear in kreisler mice. J Embryol Exp Morphol 1964; 12:475–490.PubMedGoogle Scholar
  148. 148.
    McKay I, Lewis J, Lumsden A. Organization and development of facial motor neurons in the kreisler mutant mouse. Eur J Neurosci 1997; 9:1499–1506.PubMedCrossRefGoogle Scholar
  149. 149.
    McKay IJ, Muchamore I, Krumlauf R et al. The kreisler mouse: A hindbrain segmentation mutant that lacks two rhombomeres. Development 1994; 120:2199–2211.PubMedGoogle Scholar
  150. 150.
    Cordes SP, Barsh GS. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 1994; 79:1025–1034.PubMedCrossRefGoogle Scholar
  151. 151.
    Frohman MA, Martin GR, Cordes SP et al. Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). Development 1993; 117:925–936.PubMedGoogle Scholar
  152. 152.
    Sadl VS, Sing A, Mar L et al. Analysis of hindbrain patterning defects caused by the kreisler(enu) mutation reveals multiple roles of Kreisler in hindbrain segmentation. Dev Dyn 2003; 227:134–142.PubMedCrossRefGoogle Scholar
  153. 153.
    Moens CB, Yan YL, Appel B et al. Valentino: A zebrafish gene required for normal hindbrain segmentation. Development 1996; 122:3981–3990.PubMedGoogle Scholar
  154. 154.
    Giudicelli F, Gilardi-Hebenstreit P, Mechta-Grigoriou F et al. Novel activities of Mafb underlie its dual role in hindbrain segmentation and regional specification. Dev Biol 2003; 253(1):150–162.PubMedCrossRefGoogle Scholar
  155. 155.
    Theil T, Ariza-McNaughton L, Manzanares M et al. Requirement for downregulation of kreisler during late patterning of the hindbrain. Development 2002; 129(6):1477–1485.PubMedGoogle Scholar
  156. 156.
    Nieto MA, Bradley LC, Wilkinson DG. Conserved segmental expression of Krox-20 in the vertebrate hindbrain and its relationship to lineage restriction. Development Supplement 1991; 2:59–62.Google Scholar
  157. 157.
    Wilkinson DG, Bhatt S, Chavrier P et al. Segment-specific expression of a zinc finger gene in the developing nervous system of the mouse. Nature 1989; 337:461–464.PubMedCrossRefGoogle Scholar
  158. 158.
    Schneider-Maunoury S, Topilko P, Seitandou T et al. Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell 1993; 75:1199–1214.PubMedCrossRefGoogle Scholar
  159. 159.
    Swiatek PJ, Gridley T. Perinatal lethality and defects in hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox-20. Genes Dev 1993; 7:2071–2084.PubMedCrossRefGoogle Scholar
  160. 160.
    Voiculescu O, Taillebourg E, Pujades C et al. Hindbrain patterning: Krox20 couples segmentation and specification of regional identity. Development 2001; 128(24):4967–4978.PubMedGoogle Scholar
  161. 161.
    Vogel A, Tickle C. FGF-4 maintains polarizing activity of posterior limb buds cells in vivo and in vitro. Development 1993; 119(1):199–206.PubMedGoogle Scholar
  162. 162.
    Chavrier P, Vesque C, Galliot B et al. The segment-specific gene Krox-20 encodes a transcription factor with binding sites in the promoter of the Hox 1.4 gene. EMBO J 1990; 9:1209–1218.PubMedGoogle Scholar
  163. 163.
    Kim MH, Chang HH, Shin C et al. Genomic structure and sequence analysis of human HOXA-9. DNA Cell Biol 1998; 17:407–414.PubMedCrossRefGoogle Scholar
  164. 164.
    Kim MH, Cho M, Park D. Sequence analysis of the 5′-flanking region of the gene encoding human HOXA-7. Somat Cell Mol Genet 1998; 24:371–374.PubMedCrossRefGoogle Scholar
  165. 165.
    Theil T, Frain M, Gilardi-Hebenstreit P et al. Segmental expression of the EphA4 (Sek-1) receptor tyrosine kinase in the hindbrain is under direct transcriptional control of Krox-20. Development 1998; 125(3):443–452.PubMedGoogle Scholar
  166. 166.
    McNabb DS, Xing Y, Guarente L. Cloning of yeast HAP5: A novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 1995; 9:47–58.PubMedCrossRefGoogle Scholar
  167. 167.
    Sinha S, Maity SN, Lu J et al. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci USA 1995; 92:1624–1628.PubMedCrossRefGoogle Scholar
  168. 168.
    Bertagna A, Jahroudi N. The NFY transcription factor mediates induction of the von Willebrand factor promoter by irradiation. Thromb Haemost 2001; 85:837–844.PubMedGoogle Scholar
  169. 169.
    Faniello MC, Bevilacqua MA, Condorelli G et al. The B subunit of the CAAT-binding factor NFY binds the central segment of the Coactivator p300. J Biol Chem 1999; 274:7623–7626.PubMedCrossRefGoogle Scholar
  170. 170.
    Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY 1: Are chromatin modifying enzymes the key? Gene 1999; 236:197–208.PubMedCrossRefGoogle Scholar
  171. 171.
    Gilthorpe J, Vandromme M, Brend T et al. Spatially specific expression of Hoxb4 is dependent on the ubiquitous transcription factor NFY. Development 2002; 129:3887–3899.PubMedGoogle Scholar
  172. 172.
    Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: With partners in the regulation of embryonic development. Trends Genet 2000; 16:182–187.PubMedCrossRefGoogle Scholar
  173. 173.
    Botquin V, Hess H, Fuhrmann G et al. New POU dimer configuration mediates antagonistic control of an osteopontin preimplantation enhancer by Oct-4 and Sox-2. Genes Dev 1998; 12(13):2073–2090.PubMedGoogle Scholar
  174. 174.
    Ambrosetti DC, Scholer HR, Dailey L et al. Modulation of the activity of multiple transcriptional activation domains by the DNA binding domains mediates the synergistic action of Sox2 and Oct-3 on the fibroblast growth factor-4 enhancer. J Biol Chem 2000; 275(30):23387–23397.PubMedCrossRefGoogle Scholar
  175. 175.
    Boyer LA, Lee TI, Cole MF et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122:947–956.PubMedCrossRefGoogle Scholar
  176. 176.
    Di Rocco G, Gavalas A, Popperl H et al. The recruitment of SOX/OCT complexes and the differential activity of HOXA1 and HOXB1 modulate the Hoxb1 auto-regulatory enhancer function. J Biol Chem 2001; 1:1.Google Scholar
  177. 177.
    Mlodzik M, Fjose A, Gehring WJ. Isolation of caudal, a Drosophila homeo box-containing gene with maternal expression, whose transcripts form a concentration gradient at the preblastoderm stage. EMBO J 1985; 4:2961–2969.PubMedGoogle Scholar
  178. 178.
    Mlodzik M, Gehring WJ. Expression of the caudal gene in the germ line of Drosophila: Formation of an RNA and protein gradient during early embryogenesis. Cell 1987; 48:465–478.PubMedCrossRefGoogle Scholar
  179. 179.
    Duprey P, Chowdhury K, Dressier GR et al. A mouse gene homologous to the Drosophila gene caudal is expressed in epithelial cells from the embryonic intestine. Genes Dev 1988; 2:1647–1654.PubMedCrossRefGoogle Scholar
  180. 180.
    Gamer LW, Wright CV. Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homeodomain sequence and early expression pattern. Mech Dev 1993; 43:71–81.PubMedCrossRefGoogle Scholar
  181. 181.
    Beck F, Erler T, Russell A et al. Expression of Cdx-2 in the mouse embryo and placenta: Possible role in patterning of the extra-embryonic membranes. Dev Dyn 1995; 204:219–227.PubMedGoogle Scholar
  182. 182.
    Meyer BI, Gruss P. Mouse Cdx-1 expression during gastrulation. Development 1993; 117:191–203.PubMedGoogle Scholar
  183. 183.
    Marom K, Shapira E, Fainsod A. The chicken caudal genes establish an anterior-posterior gradient by partially overlapping temporal and spatial patterns of expression. Mech Dev 1997; 64:41–52.PubMedCrossRefGoogle Scholar
  184. 184.
    Pillemer G, Epstein M, Blumberg B et al. Nested expression and sequential downregulation of the Xenopus caudal genes along the anterior-posterior axis. Mech Dev 1998; 71:193–196.PubMedCrossRefGoogle Scholar
  185. 185.
    Davidson AJ, Ernst P, Wang Y et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nature 2003; 425:300–306.PubMedCrossRefGoogle Scholar
  186. 186.
    Joly JS, Maury M, Joly C et al. Expression of a zebrafish caudal homeobox gene correlates with the establishment of posterior cell lineages at gastrulation. Differentiation 1992; 50:75–87.PubMedCrossRefGoogle Scholar
  187. 187.
    Subramanian V, Meyer BI, Gruss P. Disruption of the murine homeobox gene Cdxl affects axial skeletal identities by altering the mesodermal expression domains of Hox genes. Cell 1995; 83(4):641–653.PubMedCrossRefGoogle Scholar
  188. 188.
    Chawengsaksophak K, James R, Hammond VE et al. Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 1997; 386:84–87.PubMedCrossRefGoogle Scholar
  189. 189.
    van den Akker E, Forlani S, Chawengsaksophak K et al. Cdxl and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 2002; 129:2181–2193.PubMedGoogle Scholar
  190. 190.
    Epstein M, Pillemer G, Yelin R et al. Patterning of the embryo along the anterior-posterior axis: The role of the caudal genes. Development 1997; 124:3805–3814.PubMedGoogle Scholar
  191. 191.
    Isaacs H, Pownall M, Slack J. Regulation of Hox gene expression and posterior development by the Xenopus caudal homolog Xcad3. EMBO J 1998; 17:3413–3427.PubMedCrossRefGoogle Scholar
  192. 192.
    Tabaries S, Lapointe J, Besch T et al. Cdx protein interaction with Hoxa5 regulatory sequences contributes to Hoxa5 regional expression along the axial skeleton. Mol Cell Biol 2005; 25:1389–1401.PubMedCrossRefGoogle Scholar
  193. 193.
    Knittel T, Kessel M, Kim MH et al. A conserved enhancer of the human and murine Hoxa-7 gene specifies the anterior boundary of expression during embryonal development. Development 1995; 121:1077–1088.PubMedGoogle Scholar
  194. 194.
    Min W, Cho M, Jang SI et al. Sequence and functional analysis of an upstream regulatory region of human HOXA7 gene. Gene 1996; 182:1–6.PubMedCrossRefGoogle Scholar
  195. 195.
    Charité J, de Graaff W, Consten D et al. Transducing positional information to the Hox henes: Critical interaction of cdx gene products with position-sensitive regulatory elements. Development 1998; 125:4349–4358.PubMedGoogle Scholar
  196. 196.
    Shashikant CS, Ruddle FH. Combinations of closely situated cis-acting elements determine tissue-specific patterns and anterior extent of early Hoxc8 expression. Proc Natl Acad Sci USA 1996; 93:12364–12369.PubMedCrossRefGoogle Scholar
  197. 197.
    Bel-Vialar S, Itasaki N, Krumlauf R. Initiating Hox gene expression: In the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two distinct groups. Development 2002; 129(22):5103–5115.PubMedGoogle Scholar
  198. 198.
    Wilson JG, Warkany J. Congenital anomalies of heart and great vessels in offspring of vitamin A-deficient rats. Am J Dis Child 1950; 79:963.PubMedGoogle Scholar
  199. 199.
    Wilson JG, Warkany J. Malformations in the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am J Anat 1948; 83:357–407.CrossRefPubMedGoogle Scholar
  200. 200.
    Wilson JG, Roth CB, Warkany J. An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anat 1953; 92:189–217.PubMedCrossRefGoogle Scholar
  201. 201.
    Morriss GM. Morphogenesis of the malformations induced in rat embryos by maternal hypervitaminosis A. J Anat 1972; 113:241–250.PubMedGoogle Scholar
  202. 202.
    Morriss-Kay GM, Murphy P, Hill RE et al. Effects of retinoic acid excess on expression of Hox-2.9 and Krox-20 and on morphological segmentation in the hindbrain of mouse embryos. EMBO J 1991; 10:2985–2995.PubMedGoogle Scholar
  203. 203.
    Simeone A, Avantaggiato V, Moroni MC et al. Retinoic acid induces stage-specific antero-posterior transformation of rostral central nervous system. Mech Dev 1995; 51(1):83–98.PubMedCrossRefGoogle Scholar
  204. 204.
    Papalopulu N, Clarke J, Bradley L et al. Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos. Development 1991; 113:1145–1159.PubMedGoogle Scholar
  205. 205.
    Leonard L, Horton C, Maden M et al. Anteriorization of CRABP-I expression by retinoic acid in the developing mouse central nervous system and its relationship to teratogenesis. Dev Biol 1995; 168:514–528.PubMedCrossRefGoogle Scholar
  206. 206.
    Hill J, Clarke JDW, Vargesson N et al. Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech Dev 1995; 50:3–16.PubMedCrossRefGoogle Scholar
  207. 207.
    Holder N, Hill J. Effects of retinoic acid on zebrafish embryos: Modulation of engrailed protein expression at the midbrain-hindbrain border and development of cranial ganglia. Development 1991; 113:1159–1170.PubMedGoogle Scholar
  208. 208.
    Durston AJ, Timmermans JP, Hage WJ et al. Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 1989; 340:140–144.PubMedCrossRefGoogle Scholar
  209. 209.
    Sive H, Draper B, Harland R et al. Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev 1990; 4:932–942.PubMedCrossRefGoogle Scholar
  210. 210.
    Niederreither K, Vermot J, Schuhbaur B et al. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 2000; 127(1):75–85.PubMedGoogle Scholar
  211. 211.
    White JC, Highland M, Kaiser M et al. Vitamin A-deficiency in the rat embryo results in anteriorization of the posterior hindbrain which is prevented by maternal consumption of retinoic acid or retinol. Dev Biol 2000; 220:263–284.PubMedCrossRefGoogle Scholar
  212. 212.
    Maden M, Gale E, Kostetskii I et al. Vitamin A deficient quail embryos have half a hindbrain and other neural defects. Curr Biol 1996; 6:417–426.PubMedCrossRefGoogle Scholar
  213. 213.
    Dupe V, Lumsden A. Hindbrain patterning involves graded responses to retinoic acid signalling. Development 2001; 128(12):2199–2208.PubMedGoogle Scholar
  214. 214.
    Dupé V, Ghyselinck NB, Wendling O et al. Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocyst in the mouse. Development 1999; 126:5051–5059.PubMedGoogle Scholar
  215. 215.
    Blumberg B, Bolado J, Moreno T et al. An essential role for retinoid signaling in anteroposterior neural patterning. Development 1997; 124:373–379.PubMedGoogle Scholar
  216. 216.
    Conlon RA, Rossant J. Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo. Development 1992; 116(2):357–368.PubMedGoogle Scholar
  217. 217.
    Marshall H, Nonchev S, Sham MH et al. Retinoic acid alters hindbrain Hox code and induces transformation of rhombomeres 2/3 into a 4/5 identity. Nature 1992; 360:737–741.PubMedCrossRefGoogle Scholar
  218. 218.
    Simeone A, Acampora D, Arcioni L et al. Sequential activation of HOX2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 1990; 346:763–766.PubMedCrossRefGoogle Scholar
  219. 219.
    Papalopulu N, Lovell-Badge R, Krumlauf R. The expression of murine Hox-2 genes is dependent on the differentiation pathway and displays a collinear sensitivity to retinoic acid in F9 cells and Xenopus embryos. Nuc Acids Res 1991; 19(20):5497–5506.CrossRefGoogle Scholar
  220. 220.
    Simeone A, Acampora D, Nigro V et al. Differential regulation by retinoic acid of the homeobox genes of the four HOX loci in human embryonal carcinoma cells. Mech Dev 1991; 33:215–227.PubMedCrossRefGoogle Scholar
  221. 221.
    Langston AW, Gudas LJ. Identification of a retinoic acid responsive enhancer 3′ of the murine homeobox gene Hox-1.6. Mech Dev 1992; 38(3):217–228.PubMedCrossRefGoogle Scholar
  222. 222.
    Langston A, Thompson J, Gudas L. Retinoic acid-responsive enhancers located 3′ of the HoxA and the HoxB gene clusters. J Biol Chem 1997; 272:2167–2175.PubMedCrossRefGoogle Scholar
  223. 223.
    Ogura T, Evans R. Evidence for two distinct retinoic acid response pathways for Hoxb-1 gene regulation. Proc Nad Acad Sci USA 1995; 92:392–396.CrossRefGoogle Scholar
  224. 224.
    Morrison A, Moroni M, Ariza-McNaughton L et al. In vitro and transgenic analysis of a human HOXD4 retinoid-responsive enhancer. Development 1996; 122:1895–1907.PubMedGoogle Scholar
  225. 225.
    Zhang F, Nagy Kovacs E, Featherstone MS. Murine hoxd4 expression in the CNS requires multiple elements including a retinoic acid response element. Mech Dev 2000; 96(1):79–89.PubMedCrossRefGoogle Scholar
  226. 226.
    Oosterveen T, Niederreither K, Dolle P et al. Retinoids regulate the anterior expression boundaries of 5′ Hoxb genes in posterior hindbrain. EMBO J 2003; 22:262–269.PubMedCrossRefGoogle Scholar
  227. 227.
    Dupé V, Davenne M, Brocard J et al. In vivo functional analysis of the Hoxal 3′ retinoid response element (3′ RARE). Development 1997; 124:399–410.PubMedGoogle Scholar
  228. 228.
    Ruiz-i-Altaba A, Melton DA. Interaction between peptide growth factors and homeobox genes in the establishment of anteroposterior polarity in frog embryos. Nature 1989; 341:33–38.PubMedCrossRefGoogle Scholar
  229. 229.
    Cho K, De Robertis E. Differential activation of Xenopus homeobox genes by mesoderm-inducing growth factors and retinoic acid. Genes Dev 1990; 4:1910–1917.PubMedCrossRefGoogle Scholar
  230. 230.
    Kengaku M, Okamoto H. bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 1995; 121:3121–3130.PubMedGoogle Scholar
  231. 231.
    Cox WG, Hemmati-Brivanlou A. Caudalization of neural fate by tissue recombination and bFGF. Development 1995; 121:4349–4358.PubMedGoogle Scholar
  232. 232.
    Kolm P, Sive H. Regulation of the Xenopus labial homeodomain genes, HoxAl and HoxDl: Activation by retinoids and peptide growth factors. Dev Biol 1995; 167:34–49.PubMedCrossRefGoogle Scholar
  233. 233.
    Lamb TM, Harland RM. Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 1995; 121:3627–3636.PubMedGoogle Scholar
  234. 234.
    Pownall M, Tucker A, Slack J et al. eFGF, Xcad3 and Hox genes form a molecular pathway that establishes the anteroposterior axis in Xenopus. Development 1996; 122:3881–3892.PubMedGoogle Scholar
  235. 235.
    Godsave SF, Durston AJ. Neural induction and patterning in embryos deficient in FGF signaling. Int J Dev Biol 1997; 41(1):57–65.PubMedGoogle Scholar
  236. 236.
    Ornitz DM, Itoh N. Fibroblast growth factors. Genome Biol 2001; 2, (REVIEWS3005).Google Scholar
  237. 237.
    Ornitz DM, Xu J, Colvin JS et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem 1996; 271:15292–15297.PubMedCrossRefGoogle Scholar
  238. 238.
    Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004; 20:563–569.PubMedCrossRefGoogle Scholar
  239. 239.
    Maves L, Jackman W, Kimmel CB. FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 2002; 129(16):3825–3837.PubMedGoogle Scholar
  240. 240.
    Walshe J, Maroon H, McGonnell IM et al. Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr Biol 2002; 12(13):1117–1123.PubMedCrossRefGoogle Scholar
  241. 241.
    Heikinheimo M, Lawshe A, Shackleford G et al. Fgf-8 expression in the post-gastrulation mouse suggests roles in the development of face, limbs and central nervous system. Mech Dev 1994; 48:129–138.PubMedCrossRefGoogle Scholar
  242. 242.
    Crossley PH, Martin GR. The mouse FGF-8 gene encodes a family of polypeptides expressed in regions that direct outgrowth and patterning in the developing embryo. Development 1995; 121:439–451.PubMedGoogle Scholar
  243. 243.
    Marin F, Charnay P. Hindbrain patterning: FGFs regulate Krox20 and mafB/kr expression in the otic/preotic region. Development 2000; 127(22):4925–4935.PubMedGoogle Scholar
  244. 244.
    Mahmood R, Kiefer P, Guthrie S et al. Multiple roles for FGF-3 during cranial neural development in the chicken. Development 1995; 121(5):1399–1410.PubMedGoogle Scholar
  245. 245.
    Mahmood R, Mason IJ, Morriss-Kay GM. Expression of Fgf-3 in relation to hindbrain segmentation, otic pit position and pharyngeal arch morphology in normal and retinoic acid-exposed mouse embryos. Anat Embryol (Berl) 1996; 194:13–22.PubMedCrossRefGoogle Scholar
  246. 246.
    Lombardo A, Isaacs HV, Slack JM. Expression and functions of FGF-3 in Xenopus development. Int J Dev Biol 1998; 42:1101–1107.PubMedGoogle Scholar
  247. 247.
    Irving C, Mason I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 2000; 127:177–186.PubMedGoogle Scholar
  248. 248.
    Diez del Corral R, Breitkreuz DN, Storey KG. Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development 2002; 129:1681–1691.PubMedGoogle Scholar
  249. 249.
    Diez del Corral R, Olivera-Martinez I, Goriely A et al. Opposing FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 2003; 40(1):65–79.PubMedCrossRefGoogle Scholar
  250. 250.
    Houle M, Prinos P, Iulianella A et al. Retinoic acid regulation of Cdxl: An indirect mechanism for retinoids and vertebral specification. Mol Cell Biol 2000; 20(17):6579–6586.PubMedCrossRefGoogle Scholar
  251. 251.
    Lohnes D. The Cdxl homeodomain protein: An integrator of posterior signaling in the mouse. Bioessays 2003; 25(10):971–980.PubMedCrossRefGoogle Scholar
  252. 252.
    Gaunt SJ, Drage D, Trubshaw RC. cdx4/lacZ and cdx2/lacZ protein gradients formed by decay during gastrulation in the mouse. Int J Dev Biol 2005; 49:901–908.PubMedCrossRefGoogle Scholar
  253. 253.
    Gaunt SJ, Cockley A, Drage D. Additional enhancer copies, with intact cdx binding sites, anteriorize Hoxa-7/lacZ expression in mouse embryos: Evidence in keeping with an instructional cdx gradient. Int J Dev Biol 2004; 48:613–622.PubMedCrossRefGoogle Scholar
  254. 254.
    Gaunt SJ, Drage D, Cockley A. Vertebrate caudal gene expression gradients investigated by use of chick cdx-A/lacZ and mouse cdx-1/lacZ reporters in transgenic mouse embryos: Evidence for an intron enhancer. Mech Dev 2003; 120:573–586.PubMedCrossRefGoogle Scholar
  255. 255.
    Gaunt SJ. Gradients and forward spreading of vertebrate Hox gene expression detected by using a Hox/lacZ transgene. Dev Dyn 2001; 221:26–36.PubMedCrossRefGoogle Scholar
  256. 256.
    Carpenter EM, Goddard JM, Chisaka O et al. Loss of Hoxa-1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 1993; 118:1063–1075.PubMedGoogle Scholar
  257. 257.
    Goddard J, Rossel M, Manley N et al. Mice with targeted disruption of Hoxb1 fail to form the motor nucleus of the Vllth nerve. Development 1996; 122:3217–3228.PubMedGoogle Scholar
  258. 258.
    Jungbluth S, Bell E, Lumsden A. Specification of distinct motor neuron identities by the singular activities of individual Hox genes. Development 1999; 126(12):2751–2758.PubMedGoogle Scholar
  259. 259.
    Arenkiel BR, Tvrdik P, Gaufo GO et al. Hoxb1 functions in both motoneurons and in tissues of the periphery to establish and maintain the proper neuronal circuitry. Genes Dev 2004; 18(13):1539–1552.PubMedCrossRefGoogle Scholar
  260. 260.
    Davenne M, Maconochie MK, Neun R et al. Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 1999; 22:677–691.PubMedCrossRefGoogle Scholar
  261. 261.
    Guidato S, Prin F, Guthrie S. Somatic motoneurone specification in the hindbrain: The influence of somite-derived signals, retinoic acid and Hoxa3. Development 2003; 130:2981–2996.PubMedCrossRefGoogle Scholar
  262. 262.
    Wingate RJ, Hatten ME. The role of the rhombic lip in avian cerebellum development. Development 1999; 126:4395–4404.PubMedGoogle Scholar
  263. 263.
    Wahba GM, Hostikka SL, Carpenter EM. The paralogous Hox genes Hoxa10 and Hoxd10 interact to pattern the mouse hindlimb peripheral nervous system and skeleton. Dev Biol 2001; 231(1):87–102.PubMedCrossRefGoogle Scholar
  264. 264.
    Economides KD, Zeltser L, Capecchi MR. Hoxb13 mutations cause overgrowth of caudal spinal cord and tail vertebrae. Dev Biol 2003; 256:317–330.PubMedCrossRefGoogle Scholar
  265. 265.
    Gould A. Functions of mammalian Polycomb-group and trithorax-group related genes. Curr Opin Gen Dev 1997; 7:488–494.CrossRefGoogle Scholar
  266. 266.
    Tümpel S, Maconochie M, Wiedemann LM et al. Conservation and diversity in the cis-regulatory networks that integrate information controlling expression of Hoxa2 in hindbrain and cranial neural crest cells in vertebrates. Dev Biol 2002; 246(1):45–56.PubMedCrossRefGoogle Scholar
  267. 267.
    Pöpperl H, Featherstone M. An autoregulatory element of the murine Hox-4.2 gene. EMBO J 1992; 11(10):3673–3680.PubMedGoogle Scholar
  268. 268.
    Gavalas A, Trainor P, Ariza-McNaughton L et al. Synergy between Hoxal and Hoxb1: The relationship between arch patterning and the generation of cranial neural crest. Development 2001; 128(15):3017–3027.PubMedGoogle Scholar
  269. 269.
    Arcioni L, Simeone A, Guazzi S et al. The upstream region of the human homeobox gene HOX3D is a target for regulation by retinoic acid and HOX homeoproteins. EMBO J 1992; 11:265–277.PubMedGoogle Scholar
  270. 270.
    Nonchev S, Maconochie M, Gould A et al. Cross-regulatory interactions between Hox genes and the control of segmental expression in the vertebrate central nervous system. Cold Spring Harb Symp Quant Biol 1997; 62:313–323.PubMedGoogle Scholar
  271. 271.
    Yau TO, Kwan CT, Jakt LM et al. Auto/cross-regulation of Hoxb3 expression in posterior hind-brain and spinal cord. Dev Biol 2002; 252(2):287–300.PubMedCrossRefGoogle Scholar
  272. 272.
    Ferretti E, Cambronero F, Tümpel S et al. The Hoxb1 enhancer and control of rhombomere 4 expression: Complex interplay between PREP1-PBX1-HOXB1 binding sites. Mol Cell Biol 2005; 25:8541–8552.PubMedCrossRefGoogle Scholar
  273. 273.
    Ferretti E, Marshall H, Popperl H et al. Segmental expression of Hoxb2 in r4 requires two separate sites that integrate cooperative interactions between Prepl, Pbx and Hox proteins. Development 2000; 127:155–166.PubMedGoogle Scholar
  274. 274.
    Ferretti E, Schulz H, Talarico D et al. The PBX-regulating protein PREP1 is present in different PBX-complexed forms in mouse. Mech Dev 1999; 83(1–2):53–64.PubMedCrossRefGoogle Scholar
  275. 275.
    Jacobs Y, Schnabel CA, Cleary ML. Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell Biol 1999; 19:5134–5142.PubMedGoogle Scholar
  276. 276.
    Chang CP, Shen WF, Rozenfeld S et al. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev 1995; 9:663–674.PubMedCrossRefGoogle Scholar
  277. 277.
    Piper DE, Batchelor AH, Chang CP et al. Structure of a HoxB1-Pbxl heterodimer bound to DNA: Role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 1999; 96(4):587–597.PubMedCrossRefGoogle Scholar
  278. 278.
    Berthelsen J, Zappavigna V, Ferretti E et al. The novel homeoprotein Prepl modulates Pbx-Hox protein cooperativity. EMBO J 1998; 17(5):1434–1445.PubMedCrossRefGoogle Scholar
  279. 279.
    Fibi M, Zink B, Kessel M et al. Coding sequence and expression of the homeobox gene Hox 1.3. Development 1988; 102(2):349–359.PubMedGoogle Scholar
  280. 280.
    Deflorian G, Tiso N, Ferretti E et al. Prepl. 1 has essential genetic functions in hindbrain development and cranial neural crest cell differentiation. Development 2004; 131(3):613–627.PubMedCrossRefGoogle Scholar
  281. 281.
    Popperl H, Rikhof H, Chang H et al. Lazarus is a novel pbx gene that globally mediates hox gene function in zebrafish. Mol Cell 2000; 6(2):255–267.PubMedCrossRefGoogle Scholar
  282. 282.
    Waskiewicz AJ, Rikhof HA, Moens CB. Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev Cell 2002; 3(5):723–733.PubMedCrossRefGoogle Scholar
  283. 283.
    Kimmel CB, Miller CT, Moens CB. Specification and morphogenesis of the zebrafish larval head skeleton. Dev Biol 2001; 233(2):239–257.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.Stowers Institute for Medical ResearchKansas CityUSA

Personalised recommendations