Skip to main content

The Homeobox as a Key for Understanding the Principles of the Genetic Control of Development

  • Chapter
HOX Gene Expression

Abstract

The discovery of the homeobox, and the Hox gene clusters have uncovered a general universal principle of the genetic control of development. In all bilaterian animals these Hox clusters determine the body plan along the antero-posterior axis. Despite a bewildering diver-sity of modes of development, ranging from animals with a fixed cell lineage and a predetermined egg architecture to organisms with a highly variable cell lineage whose development is primarily based on cellular interactions, all metazoans share Hox gene clusters, characterized by a high degree of sequence conservation and a colinear gene arrangement in which the Hox genes are arranged on the chromosome in the same order as they are expressed along the antero-posterior axis of the developing embryo. This arrangement can only be understood on the basis of evolution. Hox genes have provided the entry point for a newly emerging field, evolutionary developmental genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan TH. Embryology and Genetics. New York: Columbia University Press, 1934.

    Google Scholar 

  2. Bridges C, Morgan TH. Carnegie Inst Wash Publ 1923; 317:1–251.

    Google Scholar 

  3. Lewis EB. Genes and developmental pathways. Am Zool 1963; 3:33–56.

    Google Scholar 

  4. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978; 276:565–70.

    Article  PubMed  CAS  Google Scholar 

  5. Garcia-Bellido A, Ripoll P, Morata G. Developmental compartmentalisation of the wing disk of Drosophila. Nature New Biol 1973; 245:251–253.

    Article  PubMed  CAS  Google Scholar 

  6. Sánchez-Herrero E, Vernós RM, Morata G. Genetic organization of Drosophila bithorax complex. Nature 1985; 313:108–113.

    Article  PubMed  Google Scholar 

  7. Lewis EB. Clusters of master control genes regulate the development of higher organisms. The Journal of the American Medical Association (JAMA) 1992; 267:1524–1531.

    Article  CAS  Google Scholar 

  8. Ronshaugen M, Biemar F, Piel J et al. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wing. Genes and Dev 2005; 19:2947–2952.

    Article  PubMed  CAS  Google Scholar 

  9. Bender W, Spierer P, Hogness DS. Chromosomal walking and jumping to isolate DNA from the Ace and rosy loci and the bithorax complex in Drosophila melanogaster. J Mol Biol 1983; 168:17–33.

    Article  PubMed  CAS  Google Scholar 

  10. Bender W, Akam M, Karch F et al. Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 1983; 221:23–29.

    Article  CAS  Google Scholar 

  11. Karch F, Weiffenbach B, Peifer M et al. The abdominal region of the bithorax complex. Cell 1985; 43:81–96.

    Article  PubMed  CAS  Google Scholar 

  12. Aravin AA, Lagos-Quintana M, Yalcin A et al. The small RNA profile during Drosophila melanogaster development. Dev Cell 2003; 5:337–350.

    Article  PubMed  CAS  Google Scholar 

  13. Gehring W. Bildung eines vollständigen Mittelbeines mit Sternopleura in der Antennenregion bei der Mutante Nasobemia (Ns) von Drosophila melanogaster. Jul Klaus Arch 1966; 41:44–54.

    Google Scholar 

  14. Le Calvez J. Mutation ®stapediax” hétérozygote dominate, homozygote léthale chez Drosophila melanogaster. Bull Biol France et Belgique 1948; 82:97–113.

    Google Scholar 

  15. Lewis E. Report on the mutants Antennapedia-Bacon and Antennapedia-Yu. Drosoph Inf Serv 1956; 30:76.

    Google Scholar 

  16. Jorgensen EM, Garber RL. Function and misfunction of the two promoters of the Drosophila Antennapedia gene. Genes and Dev 1987; 1:544–555.

    Article  PubMed  CAS  Google Scholar 

  17. Garber RL, Kuroiwa A, Gehring WJ. Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J 1983; 2:2027–2036.

    PubMed  CAS  Google Scholar 

  18. McGinnis W, Lawrence PA. Historical Transformations. Nature 1999; 398:301–302.

    Article  CAS  Google Scholar 

  19. Gehring W. Lifting the lid on the homeobox discovery. Nature 1999; 399:521–522.

    Article  Google Scholar 

  20. McGinnis W, Levine MS, Hafen E et al. A conserved DNA sequence in homeotic genes of the Drosophila Antennapedia and bithorax complex. Nature 1984; 308:428–433.

    Article  PubMed  CAS  Google Scholar 

  21. Scott MP, Weiner AJ, Hazelrigg TI et al. The molecular organization of the Antennapedia Locus of Drosophila. Cell 1983; 35:763–776.

    Article  PubMed  CAS  Google Scholar 

  22. Scott M, Weiner A. Structural relationships among genes that control development: Sequence homology between Antennapedia, Ultrabithorax, and fushi tarazu loci of Drosophila. Proc Natl Acad Sci USA 1984; 81:4115–4119.

    Article  PubMed  CAS  Google Scholar 

  23. McGinnis W, Garber RL, Wirz J et al. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 1984; 37:403–408.

    Article  PubMed  CAS  Google Scholar 

  24. Carrasco AE, McGinnis W, Gehring WJ et al. Cloning of an X.laevis gene expressed during early embryogenesis that codes for a peptide region homologous to Drosophila homeotic genes. Cell 1984; 37:409–414.

    Article  PubMed  CAS  Google Scholar 

  25. McGinnes W, Hart CP, Gehring WJ et al. Molecular cloning and chromosome mapping of a mouse DNA sequence homologous to homeotic genes of Drosophila. Cell 1984; 38:675–680.

    Article  Google Scholar 

  26. Levine M, Hafen E, Garber RL et al. Spatial distribution of Antennapedia transcripts during Drosophila development. EMBO J 1983; 2:2037–2046.

    PubMed  CAS  Google Scholar 

  27. Mlodzik M, Fjose A, Gehring WJ. Isolation of caudal, a Drosophila homeobox-containing gene with maternal expression, whose transcripts form a concentration gradient at the preblastoderm stage. EMBO J 1985; 4:2961–2969.

    PubMed  CAS  Google Scholar 

  28. Fjose A, McGinnis WJ, Gehring WJ. Isolation of a homeobox-containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 1985; 313:284–289.

    Article  PubMed  CAS  Google Scholar 

  29. Schneuwly S, Klemenz R, Gehring WJ. Redesigning the body plan of Drosophila by ectopic expression of the homeotic gene Antennapedia. Nature 1987; 325:816–818.

    Article  PubMed  CAS  Google Scholar 

  30. Carroll SB, Weatherbee SD, Langeland JA. Homeotic genes and the regulation and evolution of insect wing number. Nature 1995; 375:58–61.

    Article  PubMed  CAS  Google Scholar 

  31. Shepherd JCW, McGinnis W, Carrasco AE et al. Fly and frog homeodomains show homologies with yeast mating type regulatory proteins. Nature 1984; 310:70–71.

    Article  PubMed  CAS  Google Scholar 

  32. Laughon A, Scott MP. Sequence of a Drosophila segmentation gene: Protein structure homology with DNA-binding proteins. Nature 1984; 310:25–31.

    Article  PubMed  CAS  Google Scholar 

  33. Affolter M, Percival-Smith A, Müller M et al. DNA binding properties of the purified Antennapedia homeodomain. Proc Natl Acad Sci USA 1990; 87:4093–4097.

    Article  PubMed  CAS  Google Scholar 

  34. Qian YO, Billeter M, Otting G et al. The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution. Comparison with prokaryotic repressors. Cell 1989; 59:573–580.

    Article  PubMed  CAS  Google Scholar 

  35. Otting G, Qian YQ, Billeter M et al. Protein-DNA contacts in the structure of a homeodomain-DNA complex determined by nuclear magnetic resonance spectroscopy in solution. EMBO J 1990; 9:3085–3092.

    PubMed  CAS  Google Scholar 

  36. Billeter M, Qian YQ, Otting G et al. Determination of the nuclear magnetic resonance solution structure of an Antennapedia homeodomain-DNA complex. J Mol Biol 1993; 234:1084–1093.

    Article  PubMed  CAS  Google Scholar 

  37. Kissinger CR, Liu B, Martin-Bianco E et al. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions. Cell 1990; 63:579–590.

    Article  PubMed  CAS  Google Scholar 

  38. Wolberger C, Vershon AK, Liu B et al. Crystal structure of a MAT α2 homeodomain-operator complex suggests a general model for homeodomain-DANN interactions. Cell 1991; 67:517–528.

    Article  PubMed  CAS  Google Scholar 

  39. Hanes SD, Brent R. DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell 1989; 57:1275–83.

    Article  PubMed  CAS  Google Scholar 

  40. Treisman J, Gönczy P, Vashishtha M et al. A single amino acid can determine the DNA binding specificity of homeodomain proteins. Cell 1989; 59:553–562.

    Article  PubMed  CAS  Google Scholar 

  41. Schier AF, Gehring WJ. Direct homeodomain-DNA interaction in the auto regulation of the fushi tarazu gene. Nature 1992; 356:804–807.

    Article  PubMed  CAS  Google Scholar 

  42. Percival-Smith A, Müller M, Affolter M et al. The interaction with DNA of wild-type and mutant fushi tarazu homeodomains. EMBO J 1990; 9:3967–3974.

    PubMed  CAS  Google Scholar 

  43. Furukubo-Tokunaga K, Flister S, Gehring WJ. Functional specificity of the Antennapedia homeodomain. Proc Natl Acad Sci USA 1993; 90:6360–6364.

    Article  PubMed  CAS  Google Scholar 

  44. Berry M, Gehring WJ. Phosphorylation status of the SCR homeodomain determines its functional activity: Essential role for protein phosphatase 2A,B’. EMBO J 2000; 19:2946–2957.

    Article  PubMed  CAS  Google Scholar 

  45. Rivera-Pomar R, Niessing D, Schmitt-Ott U et al. RNA binding and translational suppression by bicoid. Nature 1996; 379:747–749.

    Article  Google Scholar 

  46. Plaza S, Prince F, Jäger J et al. Molecular basis for the inhibition of Drosophila eye development by Antennapedia. EMBO J 2001; 20:802–811.

    Article  PubMed  CAS  Google Scholar 

  47. Joliot A, Prochiantz A. Transduction peptides: From technology to physiology. Nat Cell Biol 2004; 6:189–196.

    Article  PubMed  CAS  Google Scholar 

  48. Brunet I, Weinl C, Piper M et al. The transcription factor Engrailed-2 guides retinal axons. Nature 2005; 438:94–98.

    Article  PubMed  CAS  Google Scholar 

  49. Schulz B, Banuett F, Dahl M et al. The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 1990; 60:295–306.

    Article  PubMed  CAS  Google Scholar 

  50. Vollbrecht E, Veit B, Sinha N et al. The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 1991; 350:241–243.

    Article  PubMed  CAS  Google Scholar 

  51. Kmita-Cunisse M, Loosli B, Bièrne J et al. Homeobox genes in the ribbonworm Lineus sanguineus: Evolutionary implications. Proc Natl Acad Sci USA 1998; 95:3030–3035.

    Article  PubMed  CAS  Google Scholar 

  52. Gehring WJ. Master control genes in development and evolution: The homeobox story. New Haven: Yale University Press, 1998.

    Google Scholar 

  53. Zhang J, Nei M. Evolution of antennapedia-class homeobox genes. Genetics 1996; 142:295–303.

    PubMed  CAS  Google Scholar 

  54. Kessel M, Gruss P. Homeotic transformation of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 1991; 67:89–104.

    Article  PubMed  CAS  Google Scholar 

  55. Condie B, Capecchi MR. Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and the axis. Development 1993; 119:579–595.

    PubMed  CAS  Google Scholar 

  56. Malicki J, Schughart K, McGinnis W. Mouse Hox-2.2 specifies thoracic segmental identity in Drosophila embryos and larvae. Cell 1990; 63:961–967.

    Article  PubMed  CAS  Google Scholar 

  57. Zhao JJ, Lazzarini RA, Pick L. The mouse Hox-1.3 gene is functionally equivalent to the Drosophila Sex combs reduced gene. Genes Dev 1993; 7:343–354.

    Article  PubMed  CAS  Google Scholar 

  58. Mann RS, Carroll SB. Molecular mechanisms of selector gene function and evolution. Curr Opin Gent Dev 2002; 12:592–600.

    Article  CAS  Google Scholar 

  59. Carroll SB, Grenier JK, Weatherbee SD. From DNA to diversity. Molecular Genetics and the Evolution of Animal Design, 2nd ed. Maiden: Blackwell Scientific, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Gehring, W.J. (2007). The Homeobox as a Key for Understanding the Principles of the Genetic Control of Development. In: HOX Gene Expression. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68990-6_1

Download citation

Publish with us

Policies and ethics