Advertisement

Angiography of Macular Diseases

  • Lihteh Wu
  • Raquel Benavides
  • Andrea Porras
  • Rafael A. Garcia-Amaris
  • J. Fernando Arevalo

The optical properties of the eye make the ocular fundus the only location in the human body where direct noninvasive monitoring of vascular flow is possible. During fluorescein angiography (FA) and indocyanine green videoangiography (ICGV), a rapid sequence of serial photographs taken after the intravenous administration of fluorescein or indocyanine green (ICG) is used to visualize and document choroidal and retinal blood flow. Other than blood flow, FA and ICG-V provide information about the integrity of the blood-retinal barriers and the fine details of the retinal pigment epithelium (RPE), and provide a glimpse of associated systemic pathology. Although both technologies reveal important and different aspects of retinal and choroidal diseases, some phases of various diseases are best seen with FA and other aspects are best revealed with ICGV.

Keywords

Optical Coherence Tomography Macular Hole Cystoid Macular Edema Central Serous Chorioretinopathy Indocyanine Green Angiography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sarks SH, Sarks JP. Age-related maculopathy: nonneovascular age-related macular degeneration and the evolution of geographic atrophy. In: Schachat AP ed. Retina, vol 2, 3rd ed. St Louis: Mosby, 2001.Google Scholar
  2. 2.
    Gass JD. Pathogenesis of disciform detachment of the neuroepithelium. Am J Ophthalmol 1967;63(suppl 3):1–139.PubMedGoogle Scholar
  3. 3.
    Seddon JM, Chen CA. The epidemiology of age-related macular degeneration. Int Ophthalmol Clin 2004;44(4): 17–39.PubMedCrossRefGoogle Scholar
  4. 4.
    Ambati J, Anand A, Fernandez S, et al. An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 2003;9(11):1390–1397.PubMedCrossRefGoogle Scholar
  5. 5.
    Abdelsalam A, Del Priore L, Zarbin MA. Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. Surv Ophthalmol 1999;44(1):1–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Klein RJ, Zeiss C, Chew EY, et al. Complement factor H polymorphism in age-related macular degeneration. Science 2005;308(5720):385–389.PubMedCrossRefGoogle Scholar
  7. 7.
    Donoso LA, Kim D, Frost A, et al. The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 2006;51(2):137–152.PubMedCrossRefGoogle Scholar
  8. 8.
    Friedman E. A hemodynamic model of the pathogenesis of age-related macular degeneration. Am J Ophthalmol 1997;124(5):677–682.PubMedGoogle Scholar
  9. 9.
    Starita C, Hussain AA, Patmore A, Marshall J. Localization of the site of major resistance to fluid transport in Bruch’s membrane. Invest Ophthalmol Vis Sci 1997;38(3):762–767.PubMedGoogle Scholar
  10. 10.
    Grossniklaus HE, Ling JX, Wallace TM, et al. Macrophage and retinal pigment epithelium expression of angiogenic cytokines in choroidal neovascularization. Mol Vis 2002;8:119–126.PubMedGoogle Scholar
  11. 11.
    Baffi J, Byrnes G, Chan CC, Csaky KG. Choroidal neovascularization in the rat induced by adenovirus mediated expression of vascular endothelial growth factor. Invest Ophthalmol Vis Sci 2000;41(11):3582–3589.PubMedGoogle Scholar
  12. 12.
    Campochiaro PA, Soloway P, Ryan SJ, Miller JW. The pathogenesis of choroidal neovascularization in patients with age-related macular degeneration. Mol Vis 1999;5:34.PubMedGoogle Scholar
  13. 13.
    Bressler NM, Bressler SB, West SK, et al. The grading and prevalence of macular degeneration in Chesapeake Bay watermen. Arch Ophthalmol 1989;107(6):847–852.PubMedGoogle Scholar
  14. 14.
    Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 1992;99(6):933–943.PubMedGoogle Scholar
  15. 15.
    Bressler NM, Bressler SB, Seddon JM, et al. Drusen characteristics in patients with exudative versus non-exudative age-related macular degeneration. Retina 1988;8(2):109–114.PubMedCrossRefGoogle Scholar
  16. 16.
    Gregor Z, Bird AC, Chisholm IH. Senile disciform macular degeneration in the second eye. Br J Ophthalmol 1977;61(2):141–147.PubMedCrossRefGoogle Scholar
  17. 17.
    Sarks JP, Sarks SH, Killingsworth MC. Evolution of geographic atrophy of the retinal pigment epithelium. Eye 1988;2(pt 5):552–577.PubMedGoogle Scholar
  18. 18.
    Gass JD. Drusen and disciform macular detachment and degeneration. Arch Ophthalmol 1973;90(3):206–217.PubMedGoogle Scholar
  19. 19.
    Casswell AG, Kohen D, Bird AC. Retinal pigment epithelial detachments in the elderly: classification and outcome. Br J Ophthalmol 1985;69(6):397–403.PubMedCrossRefGoogle Scholar
  20. 20.
    Sunness JS, Rubin GS, Applegate CA, et al. Visual function abnormalities and prognosis in eyes with age-related geographic atrophy of the macula and good visual acuity. Ophthalmology 1997;104(10):1677–1691.PubMedGoogle Scholar
  21. 21.
    Sunness JS. The natural history of geographic atrophy, the advanced atrophic form of age-related macular degeneration. Mol Vis 1999;5:25.PubMedGoogle Scholar
  22. 22.
    Fisher RF. The influence of age on some ocular basement membranes. Eye 1987;l(pt 2): 184–189.PubMedGoogle Scholar
  23. 23.
    Moore DJ, Hussain AA, Marshall J. Age-related variation in the hydraulic conductivity of Bruch’s membrane. Invest Ophthalmol Vis Sci 1995;36(7):1290–1297.PubMedGoogle Scholar
  24. 24.
    Garcia-Arumi J, Corcostegui B, Cavero L, Sararols L. The role of vitreoretinal surgery in the treatment of posttraumatic macular hole. Retina 1997;17(5):372–377.PubMedGoogle Scholar
  25. 25.
    Bird AC, Bressler NM, Bressler SB, et al. An international classification and grading system for age-related maculopathy and age-related macular degeneration. The International ARM Epidemiological Study Group. Surv Ophthalmol 1995;39(5):367–374.PubMedCrossRefGoogle Scholar
  26. 26.
    Subfoveal neovascular lesions in age-related macular degeneration. Guidelines for evaluation and treatment in the macular photocoagulation study. Macular Photocoagulation Study Group. Arch Ophthalmol 1991;109(9):1242–1257.Google Scholar
  27. 27.
    Gass JD. Serous retinal pigment epithelial detachment with a notch. A sign of occult choroidal neovascularization. Retina 1984;4(4):205–220.PubMedCrossRefGoogle Scholar
  28. 28.
    Yannuzzi LA, Slakter JS, Sorenson JA, et al. Digital indocyanine green videoangiography and choroidal neovascularization. Retina 1992;12(3):191–223.PubMedCrossRefGoogle Scholar
  29. 29.
    Staurenghi G, Orzalesi N, La Capria A, Aschero M. Laser treatment of feeder vessels in subfoveal choroidal neovascular membranes: a revisitation using dynamic indocyanine green angiography. Ophthalmology 1998;105(12):2297–2305.PubMedCrossRefGoogle Scholar
  30. 30.
    Flower RW. Optimizing treatment of choroidal neovascularization feeder vessels associated with age-related macular degeneration. Am J Ophthalmol 2002;134(2):228–239.PubMedCrossRefGoogle Scholar
  31. 31.
    Flower RW. Experimental studies of indocyanine green dyeenhanced photocoagulation of choroidal neovascularization feeder vessels. Am J Ophthalmol 2000;129(4):501–512.PubMedCrossRefGoogle Scholar
  32. 32.
    Hee MR, Baumal CR, Puliafito CA, et al. Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 1996;103(8):1260–1270.PubMedGoogle Scholar
  33. 33.
    Rohrschneider K, Bultmann S, Kruse FE, Volcker HE. Functional changes measured with SLO in idiopathic macular holes and in macular changes secondary to premacular fibrosis. Function in macular holes. Int Ophthalmol 2001;24(4):177–184.PubMedCrossRefGoogle Scholar
  34. 34.
    Friberg TR, Musch DC, Lim JI, et al. Prophylactic treatment of age-related macular degeneration report number 1: 810-nanometer laser to eyes with drusen. Unilaterally eligible patients. Ophthalmology 2006;113(4):622 el.CrossRefGoogle Scholar
  35. 35.
    Pulido JS. Multicenter prospective, randomized, double-masked, placebo-controlled study of Rheopheresis to treat nonexudative age-related macular degeneration: interim analysis. Trans Am Ophthalmol Soc 2002;100:85–106; discussion 7.PubMedGoogle Scholar
  36. 36.
    Eckardt C, Eckardt U. Macular translocation in nonexudative age-related macular degeneration. Retina 2002;22(6):786–794.PubMedCrossRefGoogle Scholar
  37. 37.
    Benner JD, Sunness JS, Ziegler MD, Soltanian J. Limited macular translocation for atrophic maculopathy. Arch Ophthalmol 2002;120(5):586–591.PubMedGoogle Scholar
  38. 38.
    Argon laser photocoagulation for neovascular maculopathy. Five-year results from randomized clinical trials. Macular Photocoagulation Study Group. Arch Ophthalmol 1991;109(8):1109–1114.Google Scholar
  39. 39.
    Laser photocoagulation of subfoveal neovascular lesions of age-related macular degeneration. Updated findings from two clinical trials. Macular Photocoagulation Study Group. Arch Ophthalmol 1993;111(9):1200–1209.Google Scholar
  40. 40.
    Laser photocoagulation for juxtafoveal choroidal neovascularization. Five-year results from randomized clinical trials. Macular Photocoagulation Study Group. Arch Ophthalmol 1994;112(4):500–509.Google Scholar
  41. 41.
    Krypton laser photocoagulation for neovascular lesions of age-related macular degeneration. Results of a randomized clinical trial. Macular Photocoagulation Study Group. Arch Ophthalmol 1990;108(6):816–824.Google Scholar
  42. 42.
    Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration. Results of a randomized clinical trial. Macular Photocoagulation Study Group. Arch Ophthalmol 1991;109(9):1220–1231.Google Scholar
  43. 43.
    Persistent and recurrent neovascularization after krypton laser photocoagulation for neovascular lesions of age-related macular degeneration. Macular Photocoagulation Study Group. Arch Ophthalmol 1990;108(6):825–831.Google Scholar
  44. 44.
    Persistent and recurrent neovascularization after laser photocoagulation for subfoveal choroidal neovascularization of age-related macular degeneration. Macular Photocoagulation Study Group. Arch Ophthalmol 1994;112(4):489–499.Google Scholar
  45. 45.
    Wu L, Murphy RP. Photodynamic therapy: a new approach to the treatment of choroidal neovascularization secondary to age-related macular degeneration. Curr Opin Ophthalmol 1999;10(3):217–220.PubMedCrossRefGoogle Scholar
  46. 46.
    Lanzetta P, Michieletto P, Pirracchio A, Bandello F. Early vascular changes induced by transpupillary thermotherapy of choroidal neovascularization. Ophthalmology 2002;109(6):1098–1104.PubMedCrossRefGoogle Scholar
  47. 47.
    Reichel E, Musch D, Blodi B, et al. Results From the TTT4CNV Clinical Trial. Invest Ophthalmol Vis Sci 2005;46:E-Abstract 2311.Google Scholar
  48. 48.
    ShiragaF, Ojima Y, Matsuo T, et al. Feeder vessel photocoagulation of subfoveal choroidal neovascularization secondary to age-related macular degeneration. Ophthalmology 1998;105(4):662–669.PubMedCrossRefGoogle Scholar
  49. 49.
    Desatnik H, Treister G, Alhalel A, et al. ICGA-guided laser photocoagulation of feeder vessels of choroidal neovascular membranes in age-related macular degeneration. Indocyanine green angiography. Retina 2000;20(2):143–150.PubMedCrossRefGoogle Scholar
  50. 50.
    Coscas F, Stanescu D, Coscas G, Soubrane G. [Feeder vessel treatment of choroidal neovascularization in age-related macular degeneration]. J Fr Ophthalmol 2003;26(6):602–608.Google Scholar
  51. 51.
    Hart PM, Chakravarthy U, Mackenzie G, et al. Visual outcomes in the subfoveal radiotherapy study: a randomized controlled trial of teletherapy for age-related macular degeneration. Arch Ophthalmol 2002;120(8):1029–1038.PubMedGoogle Scholar
  52. 52.
    Spaide RF, Guyer DR, McCormick B, et al. External beam radiation therapy for choroidal neovascularization. Ophthalmology 1998;105(1):24–30.PubMedCrossRefGoogle Scholar
  53. 53.
    Gragoudas ES, Adamis AP, Cunningham ET Jr, et al. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004;351(27):2805–2816.PubMedCrossRefGoogle Scholar
  54. 54.
    Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 2006;355(14):1419–1431.PubMedCrossRefGoogle Scholar
  55. 55.
    Brown DM, Kaiser PK, Michels M, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med 2006;355(14):1432–1444.PubMedCrossRefGoogle Scholar
  56. 56.
    Avery RL, Pieramici DJ, Rabena MD, et al. Intravitreal bevacizumab (Avastin) for neovascular age-related macular degeneration. Ophthalmology 2006;113(3):363–372 e5.PubMedCrossRefGoogle Scholar
  57. 57.
    Bashshur ZF, Bazarbachi A, Schakal A, et al. Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 2006;142(1):1–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Rasmussen H, Chu KW, Campochiaro P, et al. Clinical protocol. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). Hum Gene Ther 2001;12(16):2029–2032.PubMedGoogle Scholar
  59. 59.
    Thomas MA, Kaplan HJ. Surgical removal of subfoveal neovascularization in the presumed ocular histoplasmosis syndrome. Am J Ophthalmol 1991;111(1): 1–7.PubMedGoogle Scholar
  60. 60.
    Hawkins BS, Bressler NM, Miskala PH, et al. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings: SST report no. 11. Ophthalmology 2004;111(11):1967–1980.PubMedCrossRefGoogle Scholar
  61. 61.
    Lai JC, Lapolice DJ, Stinnett SS, et al. Visual outcomes following macular translocation with 360-degree peripheral retinectomy. Arch Ophthalmol 2002;120(10):1317–1324.PubMedGoogle Scholar
  62. 62.
    Gass JD, Agarwal A, Lavina AM, Tawansy KA. Focal inner retinal hemorrhages in patients with drusen: an early sign of occult choroidal neovascularization and chorioretinal anastomosis. Retina 2003;23(6):741–751.PubMedCrossRefGoogle Scholar
  63. 63.
    Caskey PJ, Folk JC. Retinal revascularization following laser photocoagulation treatment for choroidal neovascular membranes. Arch Ophthalmol 1988;106(11): 1528–1532.PubMedGoogle Scholar
  64. 64.
    Yannuzzi LA, Negrao S, Iida T, et al. Retinal angiomatous proliferation in age-related macular degeneration. Retina 2001;21(5):416–434.PubMedCrossRefGoogle Scholar
  65. 65.
    Brancato R, Introini U, Pierro L, et al. Optical coherence tomography (OCT) in retinal angiomatous proliferation (RAP). Eur J Ophthalmol 2002;12(6):467–472.PubMedGoogle Scholar
  66. 66.
    Axer-Siegel R, Bourla D, Priel E, et al. Angiographic and flow patterns of retinal choroidal anastomoses in age-related macular degeneration with occult choroidal neovascularization. Ophthalmology 2002;109(9):1726–1736.PubMedCrossRefGoogle Scholar
  67. 67.
    Fernandes LH, Freund KB, Yannuzzi LA, et al. The nature of focal areas of hyperfluorescence or hot spots imaged with indocyanine green angiography. Retina 2002;22(5):557–568.PubMedCrossRefGoogle Scholar
  68. 68.
    Kuhn D, Meunier I, Soubrane G, Coscas G. Imaging of chorioretinal anastomoses in vascularized retinal pigment epithelium detachments. Arch Ophthalmol 1995;113(11):1392–1398.PubMedGoogle Scholar
  69. 69.
    Hartnett ME, Weiter JJ, Garsd A, Jalkh AE. Classification of retinal pigment epithelial detachments associated with drusen. Graefes Arch Clin Exp Ophthalmol 1992;230(1):11–19.PubMedCrossRefGoogle Scholar
  70. 70.
    Borrillo JL, Sivalingam A, Martidis A, Federman JL. Surgical ablation of retinal angiomatous proliferation. Arch Ophthalmol 2003;121(4):558–561.PubMedCrossRefGoogle Scholar
  71. 71.
    Ciardella AP, Donsoff IM, Huang SJ, Costa DL, Yannuzzi LA. Polypoidal choroidal vasculopathy. Surv Ophthalmol 2004;49(1): 25–37.PubMedCrossRefGoogle Scholar
  72. 72.
    Iijima H, Iida T, Imai M, et al. Optical coherence tomography of orange-red subretinal lesions in eyes with idiopathic polypoidal choroidal vasculopathy. Am J Ophthalmol 2000;129(1):21–26.PubMedCrossRefGoogle Scholar
  73. 73.
    Giovannini A, Amato GP, D’Altobrando E, Giuliani M. Optical coherence tomography (OCT) in idiopathic polypoidal choroidal vasculopathy (IPCV). Doc Ophthalmol 1999;97(3–4):367–371.PubMedCrossRefGoogle Scholar
  74. 74.
    Otsuji T, Takahashi K, Fukushima I, Uyama M. Optical coherence tomographic findings of idiopathic polypoidal choroidal vasculopathy. Ophthalmic Surg Lasers 2000;31(3):210–214.PubMedGoogle Scholar
  75. 75.
    Curtin BJ. Physiologic vs pathologic myopia: genetics vs environment. Ophthalmology 1979;86(5):681–691.PubMedGoogle Scholar
  76. 76.
    Ohno-Matsui K, Ito M, Tokoro T. Subretinal bleeding without choroidal neovascularization in pathologic myopia. A sign of new lacquer crack formation. Retina 1996;16(3):196–202.PubMedCrossRefGoogle Scholar
  77. 77.
    Avila MP, Weiter JJ, Jalkh AE, et al. Natural history of choroidal neovascularization in degenerative myopia. Ophthalmology 1984;91(12):1573–1581.PubMedGoogle Scholar
  78. 78.
    Hotchkiss ML, Fine SL. Pathologic myopia and choroidal neovascularization. Am J Ophthalmol 1981;91(2):177–183.PubMedGoogle Scholar
  79. 79.
    Miller DG, Singerman LJ. Natural history of choroidal neovascularization in high myopia. Curr Opin Ophthalmol 2001;12(3):222–224.PubMedCrossRefGoogle Scholar
  80. 80.
    Quaranta M, Arnold J, Coscas G, et al. Indocyanine green angiographic features of pathologic myopia. Am J Ophthalmol 1996;122(5):663–671.PubMedGoogle Scholar
  81. 81.
    Costa RA, Calucci D, Teixeira LF, et al. Selective occlusion of subfoveal choroidal neovascularization in pathologic myopia using a new technique of ingrowth site treatment. Am J Ophthalmol 2003;135(6):857–866.PubMedCrossRefGoogle Scholar
  82. 82.
    Baba T, Ohno-Matsui K, Yoshida T, et al. Optical coherence tomography of choroidal neovascularization in high myopia. Acta Ophthalmol Scand 2002;80(1):82–87.PubMedCrossRefGoogle Scholar
  83. 83.
    Ruiz-Moreno JM, Montero JA. Long-term visual acuity after argon green laser photocoagulation of juxtafoveal choroidal neovascularization in highly myopic eyes. Eur J Ophthalmol 2002;12(2):117–122.PubMedGoogle Scholar
  84. 84.
    Tano Y. Pathologic myopia: where are we now? Am J Ophthalmol 2002;134(5):645–660.PubMedCrossRefGoogle Scholar
  85. 85.
    Hamelin N, Glacet-Bernard A, Brindeau C, et al. Surgical treatment of subfoveal neovascularization in myopia: macular translocation vs surgical removal. Am J Ophthalmol 2002;133(4):530–536.PubMedCrossRefGoogle Scholar
  86. 86.
    Bottoni F, Perego E, Airaghi P, et al. Surgical removal of subfoveal choroidal neovascular membranes in high myopia. Graefes Arch Clin Exp Ophthalmol 1999;237(7):573–582.PubMedCrossRefGoogle Scholar
  87. 87.
    Khalil MK. Histopathology of presumed ocular histoplasmosis. Am J Ophthalmol 1982;94(3):369–376.PubMedGoogle Scholar
  88. 88.
    Gass JDM. Presumed Ocular Histoplasmosis Syndrome (POHS). In: Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment, vol 1. St. Louis: Mosby, 1997.Google Scholar
  89. 89.
    Five-year follow-up of fellow eyes of individuals with ocular histoplasmosis and unilateral extrafoveal or juxtafoveal choroidal neovascularization. Macular Photocoagulation Study Group. Arch Ophthalmol 1996;114(6):677–688.Google Scholar
  90. 90.
    Laser photocoagulation for neovascular lesions nasal to the fovea. Results from clinical trials for lesions secondary to ocular histoplasmosis or idiopathic causes. Macular Photocoagulation Study Group. Arch Ophthalmol 1995;113(1):56–61.Google Scholar
  91. 91.
    Lisch W. Follow-up study of X-linked retinoschisis. Graefes Arch Clin Exp Ophthalmol 1991;229(5):497.PubMedCrossRefGoogle Scholar
  92. 92.
    Saperstein DA, Rosenfeld PJ, Bressler NM, et al. Photodynamic therapy of subfoveal choroidal neovascularization with verteporfin in the ocular histoplasmosis syndrome: one-year results of an uncontrolled, prospective case series. Ophthalmology 2002;109(8):1499–1505.PubMedCrossRefGoogle Scholar
  93. 93.
    Martidis A, Miller DG, Ciulla TA, et al. Corticosteroids as an antiangiogenic agent for histoplasmosis-related subfoveal choroidal neovascularization. J Ocul Pharmacol Ther 1999;15(5):425–428.PubMedGoogle Scholar
  94. 94.
    Schlaegel TF Jr. Corticosteroids in the treatment of ocular histoplasmosis. Int Ophthalmol Clin 1983;23(2):111–123.PubMedCrossRefGoogle Scholar
  95. 95.
    Hawkins BS, Bressler NM, Bressler SB, et al. Surgical removal vs observation for subfoveal choroidal neovascularization, either associated with the ocular histoplasmosis syndrome or idiopathic: I. Ophthalmic findings from a randomized clinical trial: Submacular Surgery Trials (SST) Group H Trial: SST Report No. 9. Arch Ophthalmol 2004;122(11):1597–1611.PubMedCrossRefGoogle Scholar
  96. 96.
    Argon laser photocoagulation for idiopathic neovascularization. Results of a randomized clinical trial. Arch Ophthalmol 1983;101(9):1358–1361.Google Scholar
  97. 97.
    Ho AC, Yannuzzi LA, Pisicano K, DeRosa J. The natural history of idiopathic subfoveal choroidal neovascularization. Ophthalmology 1995;102(5):782–789.PubMedGoogle Scholar
  98. 98.
    Shiraga F, Shiragami C, Matsuo T, et al. Identification of ingrowth site of idiopathic subfoveal choroidal neovascularization by indocyanine green angiography. Ophthalmology 2000;107(3):600–607.PubMedCrossRefGoogle Scholar
  99. 99.
    Fukuchi T, Takahashi K, Ida H, et al. Staging of idiopathic choroidal neovascularization by optical coherence tomography. Graefes Arch Clin Exp Ophthalmol 2001;239(6):424–429.PubMedCrossRefGoogle Scholar
  100. 100.
    Chan WM, Lam DS, Wong TH, et al. Photodynamic therapy with verteporfin for subfoveal idiopathic choroidal neovascularization: one-year results from a prospective case series. Ophthalmology 2003;110(12): 2395–2402.PubMedCrossRefGoogle Scholar
  101. 101.
    Aguilar JP, Green WR. Choroidal rupture. A histopathologic study of 47 cases. Retina 1984;4(4):269–275.PubMedCrossRefGoogle Scholar
  102. 102.
    Fuller B, Gitter KA. Traumatic choroidal rupture with late serous detachment of macula. Report of successful argon laser treatment. Arch Ophthalmol 1973;89(4):354–355.PubMedGoogle Scholar
  103. 103.
    Gross JG, King LP, de Juan E Jr, Powers T. Subfoveal neovascular membrane removal in patients with traumatic choroidal rupture. Ophthalmology 1996;103(4):579–585.PubMedGoogle Scholar
  104. 104.
    Conrath J, Forzano O, Ridings B. Photodynamic therapy for subfoveal CNV complicating traumatic choroidal rupture. Eye 2004;18:946–947.PubMedCrossRefGoogle Scholar
  105. 105.
    Nettleship E. Peculiar lines in the choroid in a case of postpaillitic atrophy. Trans Ophthalmol Soc U K 1883–1884;4:167–168.Google Scholar
  106. 106.
    Cangemi FE, Trempe CL, Walsh JB. Choroidal folds. Am J Ophthalmol 1978;86(3):380–387.PubMedGoogle Scholar
  107. 107.
    Newell FW. Choroidal folds. The seventh Harry Searls Gradle Memorial lecture. Am J Ophthalmol 1973;75(6):930–942.PubMedGoogle Scholar
  108. 108.
    Haruyama M, Yuzawa M, Kawamura A, et al. Indocyanine green angiographic findings of chorioretinal folds. Jpn J Ophthalmol 2001;45(3):293–300.PubMedCrossRefGoogle Scholar
  109. 109.
    Singh G. Choroidal folds in posterior scleritis. Arch Ophthalmol 1989;107(2):168–169.PubMedGoogle Scholar
  110. 110.
    Augsburger JJ, Coats TD, Lauritzen K. Localized suprachoroidal hematomas. Ophthalmoscopic features, fluorescein angiography, and clinical course. Arch Ophthalmol 1990;108(7):968–972.PubMedGoogle Scholar
  111. 111.
    Norton EWD. A characteristic angiographic pattern in choroidal folds. Proc R Soc Med 1969;62:119–128.PubMedGoogle Scholar
  112. 112.
    Discin J, Maguire AM, Margherio RR. Choroidal folds induced with diode endolaser. Arch Ophthalmol 1992;110(6):754.Google Scholar
  113. 113.
    Gass JDM. Chorioretinal folds. In: Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment, vol 1, 4th ed. St. Louis: Mosby, 1997.Google Scholar
  114. 114.
    Hussain D, Gass JD. Idiopathic central serous chorioretinopathy. Indian J Ophthalmol 1998;46(3):131–137.PubMedGoogle Scholar
  115. 115.
    Spaide RF, Hall L, Haas A, et al. Indocyanine green videoangiography of older patients with central serous chorioretinopathy. Retina 1996;16(3):203–213.PubMedCrossRefGoogle Scholar
  116. 116.
    Guyer DR, Yannuzzi LA, Slakter JS, et al. Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 1994;112(8): 1057–1062.PubMedGoogle Scholar
  117. 117.
    Bouzas EA, Karadimas P, Pournaras CJ. Central serous chorioretinopathy and glucocorticoids. Surv Ophthalmol 2002;47(5):431–448.PubMedCrossRefGoogle Scholar
  118. 118.
    Shimizu K, Tobari I. Central serous retinopathy dynamics of subretinal fluid. Mod Probl Ophthalmol 1971;9:152–157.Google Scholar
  119. 119.
    Prunte C, Flammer J. Choroidal capillary and venous congestion in central serous chorioretinopathy. Am J Ophthalmol 1996;121(1):26–34.PubMedGoogle Scholar
  120. 120.
    Gilbert CM, Owens SL, Smith PD, Fine SL. Long-term follow-up of central serous chorioretinopathy. Br J Ophthalmol 1984;68(11):815–820.PubMedCrossRefGoogle Scholar
  121. 121.
    Ficker L, Vafidis G, While A, Leaver P. Long-term followup of a prospective trial of argon laser photocoagulation in the treatment of central serous retinopathy. Br J Ophthalmol 1988;72(11):829–834.PubMedCrossRefGoogle Scholar
  122. 122.
    Jalkh AE, Jabbour N, Avila MP, et al. Retinal pigment epithelium decompensation. II. Laser treatment. Ophthalmology 1984;91(12):1549–1553.PubMedGoogle Scholar
  123. 123.
    Yannuzzi LA, Shakin JL, Fisher YL, Altomonte MA. Peripheral retinal detachments and retinal pigment epithelial atrophic tracts secondary to central serous pigment epitheliopathy. Ophthalmology 1984;91(12):1554–1572.PubMedGoogle Scholar
  124. 124.
    Poulson AV, Snead DR, Jacobs PM, et al. Intraocular surgery for optic nerve disorders. Eye 2004;18(11):1056–1065.PubMedCrossRefGoogle Scholar
  125. 125.
    Krivoy D, Gentile R, Liebmann JM, et al. Imaging congenital optic disc pits and associated maculopathy using optical coherence tomography. Arch Ophthalmol 1996;114(2):165–170.PubMedGoogle Scholar
  126. 126.
    Ho AC, Guyer DR, Fine SL. Macular hole. Surv Ophthalmol 1998;42(5):393–416.PubMedCrossRefGoogle Scholar
  127. 127.
    Pournaras CJ, Donati G, Brazitikos PD, et al. Macular epiretinal membranes. Semin Ophthalmol 2000;15(2): 100–107.PubMedCrossRefGoogle Scholar
  128. 128.
    Fish RH, Anand R, Izbrand DJ. Macular pseudoholes. Clinical features and accuracy of diagnosis. Ophthalmology 1992;99(11):1665–1670.PubMedGoogle Scholar
  129. 129.
    Klein BR, Hiner CJ, Glaser BM, et al. Fundus photographic and fluorescein angiographic characteristics of pseudoholes of the macula in eyes with epiretinal membranes. Ophthalmology 1995;102(5):768–774.PubMedGoogle Scholar
  130. 130.
    Wilkins JR, Puliafito CA, Hee MR, et al. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 1996;103(12):2142–2151.PubMedGoogle Scholar
  131. 131.
    Azzolini C, Patelli F, Codenotti M, et al. Optical coherence tomography in idiopathic epiretinal macular membrane surgery. Eur J Ophthalmol 1999;9(3):206–211.PubMedGoogle Scholar
  132. 132.
    Irvine SR. A newly defined vitreous syndrome following cataract surgery. Am J Ophthalmol 1953;36:599–619.Google Scholar
  133. 133.
    Lobes LA, Jr., Grand MG. Incidence of cystoid macular edema following scleral buckling procedure. Arch Ophthalmol 1980;98(7):1230–1232.PubMedGoogle Scholar
  134. 134.
    Meredith TA, Reeser FH, Topping TM, Aaberg TM. Cystoid macular edema after retinal detachment surgery. Ophthalmology 1980;87(11):1090–1095.PubMedGoogle Scholar
  135. 135.
    Kramer SG. Penetrating keratoplasty combined with extracapsular cataract extraction. Am J Ophthalmol 1985;100(1): 129–133.PubMedGoogle Scholar
  136. 136.
    Melamed S, Neumann D, Blumenthal M. Trabeculectomy with anterior vitrectomy in aphakic and pseudophakic glaucoma. Int Ophthalmol 1991;15(3):157–162.PubMedCrossRefGoogle Scholar
  137. 137.
    Lotufo DG. Postoperative complications and visual loss following Molteno implantation. Ophthalmic Surg 1991;22(11): 650–656.Google Scholar
  138. 138.
    Steinert RF, Puliafito CA, Kumar SR, et al. Cystoid macular edema, retinal detachment, and glaucoma after Nd:YAG laser posterior capsulotomy. Am J Ophthalmol 1991;112(4):373–380.PubMedGoogle Scholar
  139. 139.
    Johnson SH, Kratz RP, Olson PR Clinical experience with the Nd:YAG laser. J Am Intraocul Implant Soc 1984;10(4):452–460.PubMedGoogle Scholar
  140. 140.
    Bukelman A, Abrahami S, Oliver M, Pollack A. Cystoid macular oedema following neodymium:YAG laser capsulotomy a prospective study. Eye 1992;6(Pt 1):35–38.PubMedGoogle Scholar
  141. 141.
    Fung WE. Vitrectomy for chronic aphakic cystoid macular edema. Results of a national, collaborative, prospective, randomized investigation. Ophthalmology 1985;92(8): 1102–1111.PubMedGoogle Scholar
  142. 142.
    Gass JD, Norton EW. Cystoid macular edema and papilledema following cataract extraction. A fluorescein fundoscopic and angiographic study. Arch Ophthalmol 1966;76(5):646–661.PubMedGoogle Scholar
  143. 143.
    Wolfensberger TJ, Herbort CP. Treatment of cystoid macular edema with non-steroidal anti-inflammatory drugs and corticosteroids. Doc Ophthalmol 1999;97(3–4):381–386.PubMedCrossRefGoogle Scholar
  144. 144.
    Wolfensberger TJ. The role of carbonic anhydrase inhibitors in the management of macular edema. Doc Ophthalmol 1999;97(3–4):387–397.PubMedCrossRefGoogle Scholar
  145. 145.
    Tchah H, Rosenberg M, Larson RS, Lindstrom RL. Neodymium: YAG laser vitreolysis for treatment and prophylaxis of cystoid macular oedema. Aust N Z J Ophthalmol 1989;17(2):179–183.PubMedCrossRefGoogle Scholar
  146. 146.
    Alpar JJ. The role of 1% sodium hyaluronate in treating vitreous incarceration with the neodymium:YAG laser in patients with corneal decompensation. J Cataract Refract Surg 1986;12(5):502–506.PubMedGoogle Scholar
  147. 147.
    Alpar JJ. Experiences with the neodymium: YAG laser: interruption of anterior hyaloid membrane of the vitreous and cystoid macular edema. Ophthalmic Surg 1986;17(3):157–165.Google Scholar
  148. 148.
    Fung WE. The national, prospective, randomized vitrectomy study for chronic aphakic cystoid macular edema. Progress report and comparison between the control and nonrandomized groups. Surv Ophthalmol 1984;28(suppl):569–575.PubMedCrossRefGoogle Scholar
  149. 149.
    Fung WE. Anterior vitrectomy for chronic aphakic cystoid macular edema. Ophthalmology 1980;87(3):189–193.PubMedGoogle Scholar
  150. 150.
    Fung WE. Surgical therapy for chronic aphakic cystoid macular edema. Ophthalmology 1982;89(8):898–901.PubMedGoogle Scholar
  151. 151.
    Adams JE. Case showing peculiar changes in the macula. Trans Ophthalmol Soc U K 1883;3:113–114.Google Scholar
  152. 152.
    Best F. Ueber eine hereditäire Maculaaffecktion. Ztschr F Augenh 1905;13:199–212.Google Scholar
  153. 153.
    Seddon JM, Sharma S, Chong S, et al. Phenotype and genotype correlations in two best families. Ophthalmology 2003;110(9):1724–1731.PubMedCrossRefGoogle Scholar
  154. 154.
    Fishman GA, Baca W, Alexander KR, et al. Visual acuity in patients with best vitelliform macular dystrophy. Ophthalmology 1993;100(11):1665–1670.PubMedGoogle Scholar
  155. 155.
    Mohler CW, Fine SL. Long-term evaluation of patients with Best’s vitelliform dystrophy. Ophthalmology 1981;88(7): 688–692.PubMedGoogle Scholar
  156. 156.
    O’Gorman S, Flaherty WA, Fishman GA, Berson EL. Histopathologic findings in Best’s vitelliform macular dystrophy. Arch Ophthalmol 1988;106(9):1261–1268.PubMedGoogle Scholar
  157. 157.
    Andrade RE, Farah ME, Costa RA. Photodynamic therapy with verteporfin for subfoveal choroidal neovascularization in best disease. Am J Ophthalmol 2003;136(6):1179–1181.PubMedCrossRefGoogle Scholar
  158. 158.
    Stargardt K. Über amiliare, progressive degeneration in der makulagegend des auges. Graefes Arch Ophthalmol 1909;71:534–550.Google Scholar
  159. 159.
    Souied EH, Ducroq D, Gerber S, et al. Age-related macular degeneration in grandparents of patients with Stargardt disease: genetic study. Am J Ophthalmol 1999;128(2): 173–178.PubMedCrossRefGoogle Scholar
  160. 160.
    Donoso LA, Edwards AO, Frost A, et al. Autosomal dominant Stargardt-like macular dystrophy. Surv Ophthalmol 2001;46(2):149–163.PubMedCrossRefGoogle Scholar
  161. 161.
    Molday LL, Rabin AR, Molday RS. ABCR expression in foveal cone photoreceptors and its role in Stargardt macular dystrophy. Nat Genet 2000;25(3):257–258.PubMedCrossRefGoogle Scholar
  162. 162.
    Weleber RG. Stargardt’s macular dystrophy. Arch Ophthalmol 1994;112(6):752–754.PubMedGoogle Scholar
  163. 163.
    Armstrong JD, Meyer D, Xu S, Elfervig JL. Long-term followup of Stargardt’s disease and fundus flavimaculatus. Ophthalmology 1998;105(3):448–457; discussion 57–58.PubMedCrossRefGoogle Scholar
  164. 164.
    Fishman GA, Farber M, Patel BS, Derlacki DJ. Visual acuity loss in patients with Stargardt’s macular dystrophy. Ophthalmology 1987;94(7):809–814.PubMedGoogle Scholar
  165. 165.
    Eagle RC Jr, Lucier AC, Bernardino VB Jr, Yanoff M. Retinal pigment epithelial abnormalities in fundus flavimaculatus: a light and electron microscopic study. Ophthalmology 1980;87(12):1189–1200.PubMedGoogle Scholar
  166. 166.
    Birnbach CD, Jarvelainen M, Possin DE, Milam AH. Histopathology and immunocytochemistry of the neurosensory retina in fundus flavimaculatus. Ophthalmology 1994;101(7):1211–1219.PubMedGoogle Scholar
  167. 167.
    Wroblewski JJ, Gitter KA, Cohen G, Schomaker K. Indocyanine green angiography in Stargardt’s flavimaculatus. Am J Ophthalmol 1995;120(2):208–218.PubMedGoogle Scholar
  168. 168.
    Gass JD. A clinicopathologic study of a peculiar foveomacular dystrophy. Trans Am Ophthalmol Soc 1974;72:139–156.PubMedGoogle Scholar
  169. 169.
    Yang Z, Lin W, Moshfeghi DM, et al. A novel mutation in the RDS/peripherin gene causes adult-onset foveomacular dystrophy. Am J Ophthalmol 2003;135(2):213–218.PubMedCrossRefGoogle Scholar
  170. 170.
    Zhang K, Garibaldi DC, Li Y, et al. Butterfly-shaped pattern dystrophy: a genetic, clinical, and histopathological report. Arch Ophthalmol 2002;120(4):485–490.PubMedGoogle Scholar
  171. 171.
    Lim JI, Enger C, Fine SL. Foveomacular dystrophy. Am J Ophthalmol 1994;117(1): 1–6.PubMedGoogle Scholar
  172. 172.
    Vine AK, Schatz H. Adult-onset foveomacular pigment epithelial dystrophy. Am J Ophthalmol 1980;89(5):680–691.PubMedGoogle Scholar
  173. 173.
    Brecher R, Bird AC. Adult vitelliform macular dystrophy. Eye 1990;4(pt 1):210–215.PubMedGoogle Scholar
  174. 174.
    Deutman AF, van Blommestein JD, Henkes HE, et al. Butterflyshaped pigment dystrophy of the fovea. Arch Ophthalmol 1970;83(5):558–569.PubMedGoogle Scholar
  175. 175.
    Gutman I, Walsh JB, Henkind P. Vitelliform macular dystrophy and butterfly-shaped epithelial dystrophy: a continuum? Br J Ophthalmol 1982;66(3):170–173.PubMedCrossRefGoogle Scholar
  176. 176.
    Mejia JR, Gieser RG. Sporadic butterfly macular dystrophy. Ann Ophthalmol 1981;13(11):1253–1254.PubMedGoogle Scholar
  177. 177.
    Deutman AF, Rumke AM. Reticular dystrophy of the retinal pigment epithelium. Dystrophia reticularis laminae pigmentosa retinae of H. Sjogren. Arch Ophthalmol 1969;82(1):4–9.PubMedGoogle Scholar
  178. 178.
    Chopdar A. Reticular dystrophy of retina. Br J Ophthalmol 1976;60(5):342–344.PubMedCrossRefGoogle Scholar
  179. 179.
    Fishman GA, Woolf MB, Goldberg MF, Busse B. Reticular tapeto-retinal dystrophy. As a possible late stage of Sjogren’s reticular dystrophy. Br J Ophthalmol 1976;60(1):35–40.PubMedCrossRefGoogle Scholar
  180. 180.
    Marmor MF, Byers B. Pattern dystrophy of the pigment epithelium. Am J Ophthalmol 1977;84(1):32–44.PubMedGoogle Scholar
  181. 181.
    O’Donnell FE, Schatz H, Reid P, Green WR. Autosomal dominant dystrophy of the retinal pigment epithelium. Arch Ophthalmol 1979;97(4):680–683.PubMedGoogle Scholar
  182. 182.
    Battaglia Parodi M, Iustulin D, Russo D, Ravalico G. Adultonset foveomacular vitelliform dystrophy and indocyanine green videoangiography. Graefes Arch Clin Exp Ophthalmol 1996;234(3):208–211.PubMedCrossRefGoogle Scholar
  183. 183.
    Pierro L, Tremolada G, Introini U, et al. Optical coherence tomography findings in adult-onset foveomacular vitelliform dystrophy. Am J Ophthalmol 2002;134(5):675–680.PubMedCrossRefGoogle Scholar
  184. 184.
    Sanfilippo P, Troutbeck R, Vandeleur K, Lenton L. Optical coherence tomography of adult-onset fovemacular vitelliform dystrophy. Clin Experiment Ophthalmol 2004;32(1):114–118.PubMedCrossRefGoogle Scholar
  185. 185.
    Benhamou N, Messas-Kaplan A, Cohen Y, et al. Adult-onset foveomacular vitelliform dystrophy with OCT 3. Am J Ophthalmol 2004;138(2):294–296.PubMedCrossRefGoogle Scholar
  186. 186.
    Cruz-Villegas V, Villate N, Knighton RW, et al. Optical coherence tomographic findings in acute exudative polymorphous vitelliform maculopathy. Am J Ophthalmol 2003;136(4):760–763.PubMedCrossRefGoogle Scholar
  187. 187.
    Ghazi NG. Adult-onset foveomacular vitelliform dystrophy: a study by optical coherence tomography. Am J Ophthalmol 2003;136(5):962–964; author reply 4.PubMedCrossRefGoogle Scholar
  188. 188.
    Hayami M, Decock C, Brabant P, et al. Optical coherence tomography of adult-onset vitelliform dystrophy. Bull Soc Belge Ophtalmol 2003(289):53–61.Google Scholar
  189. 189.
    Battaglia Parodi M, Da Pozzo S, Ravalico G. Photodynamic therapy for choroidal neovascularization associated with pattern dystrophy. Retina 2003;23(2):171–176.PubMedCrossRefGoogle Scholar
  190. 190.
    Tantri A, Vrabec TR, Cu-Unjieng A, et al. X-linked retinoschisis: a clinical and molecular genetic review. Surv Ophthalmol 2004;49(2):214–230.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Lihteh Wu
    • 1
  • Raquel Benavides
    • 2
  • Andrea Porras
    • 2
  • Rafael A. Garcia-Amaris
    • 3
  • J. Fernando Arevalo
    • 3
  1. 1.Retina ServiceInstituto de Cirugia OcularSan JoseCosta Rica
  2. 2.Department of OphthalmologyHospital MexicoSan JoseCosta Rica
  3. 3.Retina and Vitreous Service, Clinica Oftalmológica Centro CaracasArevalo-Coutinho Foundation for Research in OphthalmologyCaracasVenezuela

Personalised recommendations