Skip to main content

Spectral/Fourier Domain Optical Coherence Tomography

  • Chapter
Retinal Angiography and Optical Coherence Tomography

Optical coherence tomography (OCT) is a powerful diagnostic imaging tool with which multiple quantitative and qualitative studies on diseases of the eye have been performed.1–7 Optical coherence tomography imaging is analogous to ultrasonic imaging, except that it measures echo time delays of light instead of sound.1,8 Because light travels extremely quickly, echo time delays cannot be directly measured, and correlation techniques are required. Using a technique called low-coherence interferometry, a beam of light from a low-coherence light source, such as a superluminescent diode (SLD), is directed through a beam splitter and is divided into a sample and a reference beam. Light from the sample beam is reflected back from retinal structures with different echo time delays, depending on internal properties of ocular structures. Light from the reference beam is reflected from a reference mirror whose distance is known. The echoes from the two arms are combined by an interferometer and detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hee MR, Izatt JA, Swanson EA, et al. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325–332.

    PubMed  CAS  Google Scholar 

  2. Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995;102:217–229.

    PubMed  CAS  Google Scholar 

  3. Hee MR, Puliafito CA, Wong C, et al. Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 1995;113:1019–1029.

    PubMed  CAS  Google Scholar 

  4. Hee MR, Puliafito CA, Wong C, et al. Optical coherence tomography of macular holes. Ophthalmology 1995;102:748–756.

    PubMed  CAS  Google Scholar 

  5. Schuman JS, Hee MR, Arya AV, et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr Opin Ophthalmol 1995;6:89–95.

    PubMed  CAS  Google Scholar 

  6. Schuman JS, Hee MR, Puliafito CA, et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995;113: 586–596.

    PubMed  CAS  Google Scholar 

  7. Hee MR, Puliafito CA, Duker JS, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 1998;105:360–370.

    Article  PubMed  CAS  Google Scholar 

  8. Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254:1178–1181.

    Article  PubMed  CAS  Google Scholar 

  9. Drexler W, Morgner U, Ghanta RK, et al. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 2001;7: 502–507.

    Article  PubMed  CAS  Google Scholar 

  10. Drexler W, Sattmann H, Hermann B, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 2003;121: 695–706.

    Article  PubMed  Google Scholar 

  11. Ko TH, Fujimoto JG, Schuman JS, et al. Comparison of ultrahigh-and standard-resolution optical coherence tomography for imaging macular pathology. Ophthalmology 2005;112:1922.

    Article  PubMed  Google Scholar 

  12. Fernandez EJ, Povazav B, Hermann B, et al. Three-dimensional adaptive optics ultrahigh resolution optical coherence tomography using a liquid crystal spatial light modulator. Vision Res 2005;45:3432–3444.

    Article  PubMed  Google Scholar 

  13. Zawadzki R, Jones S, Olivier S, et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express 2005;13:8532–8546.

    Article  Google Scholar 

  14. Zhang Y, Cense B, Rha J, et al. High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. Opt Express 2006;14:4380–4394.

    Article  Google Scholar 

  15. Swanson EA, Izatt JA, Hee MR, et al. In-vivo retinal imaging by optical coherence tomography. Opt Lett 1993;18:1864–1866.

    Article  Google Scholar 

  16. Fercher AF, Hitzenberger CK, Kamp G, Elzaiat SY. Measurement of intraocular distances by backscattering spectral interferometry. Opt Commun 1995;117:43–48.

    Article  CAS  Google Scholar 

  17. Wojtkowski M, Leitgeb R, Kowalczyk A, et al. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002;7:457–463.

    Article  PubMed  Google Scholar 

  18. Nassif NA, Cense B, Park BH, et al. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express 2004;12:367–376.

    Article  Google Scholar 

  19. Leitgeb RA, Drexler W, Unterhuber A, et al. Ultrahigh resolution Fourier domain optical coherence tomography. Opt Express 2004;12:2156–2165.

    Article  Google Scholar 

  20. Wojtkowski M, Bajraszewski T, Gorczynska I, et al. Ophthalmic imaging by spectral optical coherence tomography. Am J Ophthalmol 2004;138:412–419.

    Article  PubMed  Google Scholar 

  21. Wojtkowski M, Srinivasan V, Fujimoto JG, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734–1746.

    Article  PubMed  Google Scholar 

  22. Srinivasan VJ, Wojtkowski M, Witkin AJ, et al. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2006;113:2054el–14.

    Article  Google Scholar 

  23. Schuman JS, Wollstein G, Farra T, et al. Comparison of optic nerve head measurements obtained by optical coherence tomography and confocal scanning laser ophthalmoscopy. Am J Ophthalmol 2003;135:504–512.

    Article  PubMed  Google Scholar 

  24. Li Y Shekhar R, Huang D. Corneal pachymetry mapping with high-speed optical coherence tomography. Ophthalmology 2006;113: 799el–2.

    Google Scholar 

  25. Kaluzy BJ, Kaluzny JJ, Szkulmowska A, et al. Spectral optical coherence tomography: a novel technique for cornea imaging. Cornea 2006;25:960–965.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Chen, R.W.S., Fujimoto, J.G., Duker, J.S. (2009). Spectral/Fourier Domain Optical Coherence Tomography. In: Arevalo, J.F. (eds) Retinal Angiography and Optical Coherence Tomography. Springer, New York, NY. https://doi.org/10.1007/978-0-387-68987-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-68987-6_26

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-68986-9

  • Online ISBN: 978-0-387-68987-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics