Future of Optical Coherence Tomography: Ultrahigh-Resolution Versus Standard-Resolution OCT

  • Jay S. Duker
  • Lelia Adelina Paunescu
  • James G. Fujimoto

Optical coherence tomography (OCT) is a noninvasive technology that enables high-resolution cross-sectional imaging of tissue by measuring backscattered light.1 Optical coherence tomography imaging is analogous to ultrasound B-mode imaging but uses light instead of sound. By performing multiple longitudinal scans at different transverse locations, a two-dimensional (2D) scanned image is obtained. Noncontact, noninvasive human eye imaging using OCT proved to advance ophthalmic diagnostics by enabling direct cross-sectional retinal layer visualization and quantification.2


Optical Coherence Tomography Retinal Pigment Epithelium Macular Hole Diabetic Macular Edema Retinal Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254(5035):1178–1181.PubMedCrossRefGoogle Scholar
  2. 2.
    Swanson E, Izatt, Hee M, et al. In vivo retinal imaging by optical coherence tomography. Opt Lett 1993;18:1864–1866.CrossRefGoogle Scholar
  3. 3.
    Drexler W, Morgner U, Ghanta RK, Kartner FX, Schuman, JS, Fujimoto JG. Ultrahigh-resolution ophthalmic optical coherence tomography. Nat Med 2001;7(4):502–507.PubMedCrossRefGoogle Scholar
  4. 4.
    Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol 2003;21(11):1361–1367.PubMedCrossRefGoogle Scholar
  5. 5.
    Gass JDM. Stereoscopic Atlas of Macular Diseases: Diagnosis and Treatment. St. Louis: CV Mosby, 1987:46–65.Google Scholar
  6. 6.
    Toth CA, Narayan DG, Boppart SA, et al. A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy. Arch Ophthalmol 1997;115(11):1425–1428.PubMedGoogle Scholar
  7. 7.
    Ko TH, Fujimoto JG, Duker JS, Paunescu LA, Drexler W, Baumal CR, Puliafito CA, Reichel E, Rogers AH, Schuman JS. Comparison of ultrahigh- and standard-resolution optical coherence tomography for imaging macular hole pathology and repair. Ophthalmology 2004;(111):2033–2043.Google Scholar
  8. 8.
    Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995;102(2):218–229.Google Scholar
  9. 9.
    Wilkins JR, Puliafito CA, Hee MR, et al. Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 1996;103(12):2142–2151.PubMedGoogle Scholar
  10. 10.
    Hee MR, Puliafito CA, Duker JS, et al. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology 1998;105(2):360–369.PubMedCrossRefGoogle Scholar
  11. 11.
    Schuman JS, Pedut-Kloizman T, Hertzmark E, et al. Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography. Ophthalmology 1996;103(11):1889–1898.PubMedGoogle Scholar
  12. 12.
    Guedes V, Schuman JS, Hertzmark E, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eye. Ophthalmology 2003;110(1):177–189.PubMedCrossRefGoogle Scholar
  13. 13.
    Drexler W, Sattmann H, Hermann B, et al. Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch Ophthalmol 2003;121(5):695–706.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Jay S. Duker
    • 1
  • Lelia Adelina Paunescu
    • 1
  • James G. Fujimoto
    • 2
  1. 1.Vitreoretinal Service, New England Eye CenterTufts University School of MedicineBoston
  2. 2.Research Laboratory of Electronics and Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridge

Personalised recommendations