Advertisement

Fundus Autofluorescence

  • Antonio P. Ciardella
  • Chiara M. Eandi

Fundus spectrophotometric studies by Delori et al.1,2 have shown that fundus autofluorescence (FAF) in vivo is mainly derived from retinal pigment epithelium (RPE) lipofuscin. In the past, lipofuscin accumulation has been largely studied in vitro using fluorescence microscopic techniques.3–5 Excessive accumulation of lipofuscin represents a common pathogenetic pathway in various complex retinal diseases and is believed to precede photoreceptor degeneration.6–8

Keywords

Optical Coherence Tomography Retinal Pigment Epithelium Retinal Pigment Epithelium Cell Macular Hole Central Serous Chorioretinopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delori FC, Dorey CK, Staurenghi G, Arend O, Goger DG, Weiter JJ. In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics. Invest Ophthalmol Vis Sci 1995;36:718–729.PubMedGoogle Scholar
  2. 2.
    Delori FC, Staurenghi G, Arend O, Dorey CK, Goger DG, Weiter JJ. In vivo measurement of lipofuscin in Stargardt’s disease-fundus flavimaculatus. Invest Ophthalmol Vis Sci 1995;36:2327–2331.PubMedGoogle Scholar
  3. 3.
    Feeney-Burns L, Berman ER, Rothman H. Lipofuscin of human retinal pigment epithelium. Am J Ophthalmol 1980;90:783–791.PubMedGoogle Scholar
  4. 4.
    Weiter JJ, Delori FC, Wing GL, Fitch KA. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 1986;27:145–152.PubMedGoogle Scholar
  5. 5.
    Dorey KC, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in aging retina: relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 1989;30:1691–1699.PubMedGoogle Scholar
  6. 6.
    Wing GL, Blanchard GC, Weiter JJ. The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 1978;17:601–607.PubMedGoogle Scholar
  7. 7.
    Weiter JJ, Delori FC, Wing GL, Fitch KA. Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 1986;27:145–152.PubMedGoogle Scholar
  8. 8.
    Dorey CK, Wu G, Ebenstein D, Garsd A, Weiter JJ. Cell loss in the aging retina: relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 1989;30:1691–1699.PubMedGoogle Scholar
  9. 9.
    von Rückmann A, Fitzke FW, Bird AC. Distribution of fundus autofluorescence with a scanning laser ophthalmoscope. Br J Ophthalmol 1995;79:407–412.CrossRefGoogle Scholar
  10. 10.
    Bellmann C, Holz FG, Schapp O, Volcker HE, Otto TP. Topography of fundus autofluorescence with a new confocal scanning laser ophthalmoscope [in German]. Ophthalmologe 1997;94:385–391.PubMedCrossRefGoogle Scholar
  11. 11.
    Holz FG, Bellmann C, Margaritidis M, Schutt F, Otto TP, Volcker HE. Patterns of increased in vivo fundus autofluorescence in the junctional zone of geographic atrophy of the retinal pigment epithelium associated with age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 1999;237:145–152.PubMedCrossRefGoogle Scholar
  12. 12.
    Bindewald A, Jorzik JJ, Loesch A, Schutt F, Holz FG. Visualization of retinal pigment epithelial cells in vivo using digital high-resolution confocal scanning laser ophthalmoscopy. Am J Ophthalmol 2004;137:556–558.PubMedCrossRefGoogle Scholar
  13. 13.
    Delori FC, Fleckner MR, Goger DG, Weiter JJ, Dorey CK. Autofluorescence distribution associated with drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci 2000;41:496–504.PubMedGoogle Scholar
  14. 14.
    Kennedy CJ, Rakozcy PE, Constable IJ. Lipofuscin in the retinal pigment epithelium: a review. Eye 1995;9:763–771.PubMedGoogle Scholar
  15. 15.
    Katz ML. Incomplete proteolysis may contribute to lipofuscin accumulation in the retinal pigment epithelium. Adv Exp Med Biol 1989;266:109–116.PubMedGoogle Scholar
  16. 16.
    Eldred GE, Katz ML. Fluorophores of human retinal pigment epithelium: separation and spectral characterization. Exp Eye Res 1988;47:71–86.PubMedCrossRefGoogle Scholar
  17. 17.
    Kitagawa K, Nishida S, Ogura Y. In vivo quantitation of autofluorescence in human RPE. Ophthalmologica 1989;199:116–121.PubMedCrossRefGoogle Scholar
  18. 18.
    Green WR, Enger C. Age-related macular degeneration histopathologic studies. Ophthalmology 1993;100:1519–1535.PubMedGoogle Scholar
  19. 19.
    von Rückmann A, Fizke FW, Bird AC. Fundus autofluorescence in age related macular disease imaged with a laser scanning ophthalmoscope. Invest Ophthalmol Vis Sci 1997;38:478–486.Google Scholar
  20. 20.
    Allikmets R, Shroyer NF, Singh N, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 1997;277:1805–1807.PubMedCrossRefGoogle Scholar
  21. 21.
    Delori FC, Staurenghi G, Arend O, et al. In vivo measurement of Stargardt’s disease—fundus flavimaculatus. Invest Ophthalmol Vis Sci 1995;36:2327–2331.PubMedGoogle Scholar
  22. 22.
    Eagle RC, Lucier AC, Bernadino VB, Janoff M. Retinal pigment epithelial abnormalities in fundus flavimaculatus; a light and electron microscopical study. Ophthalmology 1980;87:1189–2000.PubMedGoogle Scholar
  23. 23.
    Frangieh GT, Green WR, Fine SL. A histopathologic study of Best’s macular dystrophy. Arch Ophthalmol 1982;100:1115–1121.PubMedGoogle Scholar
  24. 24.
    Lopez PF, Maumenee IH, de la Cruz Z, Green WR. Autosomal dominant fundus flavimaculatus: clinicopathologic correlation. Ophthalmology 1990;97:798–809.PubMedGoogle Scholar
  25. 25.
    Framme C, Roider J, Sachs HG, Brinkmann R, Gabel VP. Noninvasive Imaging and Monitoring of retinal pigment epithelium patterns using fundus autofluorescence—review. Curr Med Imag Rev 2005;1:89–103.CrossRefGoogle Scholar
  26. 26.
    Eldred GE, Lasky MR. Retinal age-pigments generated by self-assembling lysosomotropic detergents. Nature 1993;361:145–152.CrossRefGoogle Scholar
  27. 27.
    Eldred GE. Age pigment structure. Nature 1993;364(6436):396.PubMedCrossRefGoogle Scholar
  28. 28.
    Parish CA, Hashimoto M, Nakanishi K, et al. Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium. Proc Natl Acad Sci USA 1998;95:14609–14613.PubMedCrossRefGoogle Scholar
  29. 29.
    Holz FG, Schutt F, Kopitz J, et al. Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 1999;40:737–743.PubMedGoogle Scholar
  30. 30.
    Spaide RF. Fundus autofluorescence and age-related macular degeneration. Ophthalmology 2003;110:392–399.PubMedCrossRefGoogle Scholar
  31. 31.
    Holz FG, Bellmann C, Rohrschneider K, Burk ROW, Volcker HE. Simultaneous confocal scanning laser fluorescein- and indocyanine green angiography. Am J Ophthalmol 1998;125:227–236.PubMedCrossRefGoogle Scholar
  32. 32.
    von RRückmann A, Fitzke FW, Fan J, Halfyard A, Bird AC. Abnormalities of fundus autofluorescence in central serous retinopathy. Am J Ophthalmol 2002;133:780–786.CrossRefGoogle Scholar
  33. 33.
    Bindewald A, Bird AC, Dandekar SS, et al. Classification of fundus autofluorescence patterns in early age-related macular disease. Invest Ophthalmol Vis Sci 2005;46:3309–3314.PubMedCrossRefGoogle Scholar
  34. 34.
    Keilhauer CN, Delori FC. Near-infrared autofluorescence imaging of the fundus: visualization of ocular melanin. Invest Ophthalmol Vis Sci 2006;47(8):3556–3564.PubMedCrossRefGoogle Scholar
  35. 35.
    Staurenghi G, Wolf S, Holz FG, Bellman C, Staudt S, Schutt F, Volcker HE. Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 2001;42:1051–1056.Google Scholar
  36. 36.
    Eandi CM, Ober M, Iranmanesh R, et al. Acute central serous chorioretinopathy and fundus autofluorescence. Retina 2005;25:989–993.PubMedCrossRefGoogle Scholar
  37. 37.
    Spaide RF, Klancnik JM Jr. Fundus autofluorescence and central serous chorioretinopathy. Ophthalmology 2005;112:825–833.PubMedCrossRefGoogle Scholar
  38. 38.
    Sjaarda RN, Thompson JT. Macular hole. In: Ryan SJ, ed. Retina. Philadelphia: Elsevier, 2006.Google Scholar
  39. 39.
    Johnson RN, Gass JDM. Idiopathic macular holes. Observations, stages of formation, and implications for surgical intervention. Ophthalmology 1988;95:917–924.PubMedGoogle Scholar
  40. 40.
    Gass JDM. Reappraisal of biomicroscopic classification of stages of development of a macular hole. Am J Ophthalmol 1995;119:752–759.PubMedGoogle Scholar
  41. 41.
    von Ruckmann A, Fitzke FW, Gregor ZJ. Fundus autofluorescence in patients with macular holes imaged with a laser scanning ophthalmoscope. Br J Ophthalmol 1998;82:346–351.CrossRefGoogle Scholar
  42. 42.
    Ciardella AP, Lee GC, Langton K. Autofluorescence as a novel approach to diagnosing macular holes. Am J Ophthalmol 2004;137:956–959.PubMedCrossRefGoogle Scholar
  43. 43.
    Framme C, Roider J. Fundus autofluorescence in macular hole surgery. Ophthalmic Surg Lasers 2001;32:383–390.PubMedGoogle Scholar
  44. 44.
    Roth DB, Smiddy WE, Feuer W. Vitreous surgery for chronic macular holes. Ophthalmology 1997;104:2047–2052.PubMedGoogle Scholar
  45. 45.
    Thompson JT, Sjaarda RN, Lansing MB. The results of vitreous surgery for chronic macular holes. Retina 1997;17:493–501.PubMedCrossRefGoogle Scholar
  46. 46.
    Lois N, Halfyard AS, Bird AC, Holder GE, Fitzke FW. Fundus autofluorescence in Stargardt macular dystrophy—fundus flavimaculatus. Am J Ophthalmol 2004;138:55–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  • Antonio P. Ciardella
    • 1
    • 2
  • Chiara M. Eandi
    • 3
  1. 1.Denver Health Medical CenterUSA
  2. 2.University of Colorado Health Science CenterDenver
  3. 3.Eye Clinic University of TorinoTorinoItaly

Personalised recommendations